ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO.		061439	
FEDERAL AID PROJEC	CT NO	HSIP-0026(32)	
HV	VY. 7 – DEEI	RPARK RD. (SAFETY IMPV	TS.) (S)
STATE HIGHWAY	5	SECTION	6
IN		GARLAND	COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

January 26, 2016

TO:

Mr. Trinity Smith, Engineer of Roadway Design

SUBJECT:

Job No. 061439

Hwy. 7 - Hwy. 128 (Safety Impvts.) (S)

Route 5 Section 6
Garland County

Transmitted herewith are the requested Soil Survey, Strength Data, and Resilient Modulus test results for the above referenced job. The project consists of widening two 1.9 mile sections of Highway 7 to three lanes. Samples were obtained in the existing travel lanes, shoulders and ditch line. Some ditch and shoulder locations could not be sampled due to utility conflicts, photos of the utility markings are included with the test results.

Based on laboratory results of samples obtained, the subgrade soils consist primarily of low plasticity clayey sands. Cross sections are not currently available, but it is anticipated that the construction grade line will closely match that of the existing roadway. The subgrade soils are expected to provide a stable working platform with conventional processing if the weather is favorable during construction. Rock was encountered at several locations within the project limits, Table 1 below list the location and depth to rock. Undercut, embankment and cut slope recommendations will be made when plans are further developed and cross sections become available.

Table 1 Location of Rock

Station	Location from centerline	Depth (ft.)	
148+00	6' Lt	3.5	
212+00	14' Lt	2.5	
237+00	6', 14' Lt	3.5, 3.0	
269+00	14' Rt	2.5	

Listed below is the additional information requested for use in developing the plans:

1. The Qualified Products List (QPL) indicates that Aggregate Base Course (Class CL-7) is available from commercial producers located in the vicinity of Malvern.

2. Asphalt Concrete Hot Mix

Туре	Asphalt Cement %	Mineral Aggregate %
Surface Course	4.9	95.1
Binder Course	4.2	95.8
Base Course	3.8	96.2

Michael C. Benson Materials Engineer

MCB:pt:bjj Attachment

CC:

State Constr. Eng. - Master File Copy

District 6 Engineer

System Information and Research Div.

G. C. File

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY STRENGTH TEST REPORT ***

DATE - 01/25/2016

JOB NUMBER - 061439 MATERIAL CODE - SSRVPS

SPEC. YEAR - 2014

SUPPLIER ID. - 1 COUNTY/STATE - 26

SEQUENCE NO. - 1

DISTRICT NO. - 06

JOB NAME - HWY.7 - HWY.128 (SAFETY IMPVTS)(S)

BEGIN JOB END JOB 10

RESILIENT MODULUS

STA.261+00 4970 STA.293+00 5815

REMARKS -

AASHTO TESTS : T190

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested:	061439 1/20/16 January 20, 2016	Material Code Station No.: Location:	SSRVPS 261+00 18' LT	
Name of Project:	HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S)			
County:	Code: 26 Name: GARLAND			
Sampled By:	DICKERSON	Depth:		0-5
Lab No.:	20154100	AASHTO Class:		A-4(0)
Sample ID: LATITUDE:	RV915	Material Type (1 or 2): LONGITUDE:		2
1. Testing Inform	nation:			
	Preconditioning - Permanent Strain > 5% (Y=Yes	or N= No)		N
	Testing - Permanent Strain > 5% (Y=Yes or N=No)		N
	Number of Load Sequences Completed (0-15)		*	15
2. Specimen Info	ormation:			
•	Specimen Diameter (in):			
	Тор			3.95
	Middle			3.92
	Bottom			3.94
	Average			3.94
	Membrane Thickness (in):			0.01
	Height of Specimen, Cap and Base (in):		26	8.04
	Height of Cap and Base (in):			0.00
	Initial Length, Lo (in):			8.04
	Initial Area, Ao (sq. in):			12.10
	Initial Volume, AoLo (cu. in):			97.31
3. Soil Specimer	Woight:			
5. Son Specimer	Weight of Wet Soil Used (g):			3284.10
	vveight of vvet con osed (g).		2	3204.10
4. Soil Properties	s:			
	Optimum Moisture Content (%):			15.5
	Maximum Dry Density (pcf):			111.2
	95% of MDD (pcf):			105.6
	In-Situ Moisture Content (%):			N/A
5. Specimen Pro	perties:			
•	Wet Weight (g):			3284.10
	Compaction Moisture content (%):			15.3
	Compaction Wet Density (pcf):			128.59
	Compaction Dry Density (pcf):			111.52
	Moisture Content After Mr Test (%):			15.3
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):			#VALUE!
7. Resilient Modu	ulus Mr	5055(%)	c)^-0.27433(83\^0 48304
	······································	3733(0	o, 0.2/455(I	0,10077
8. Comments	Secretary and the secretary an			
9. Tested By:	C.GARRETT Date	: January 20, 2016		

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

SSRVPS 261+00 18'LT

Material Code Station No.: Location: HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S) January 20, 2016 1/20/16 061439 Name of Project: Date Sampled: Date Tested: Job No.

AASHTO Class: Depth: GARLAND Name: Code: 26 DICKERSON 20154100 Sampled By: Lab No.: County:

RV915

Sample ID:

LONGITUDE: LATITUDE:

A-4(0)

Material Type (1 or 2): 2

0-5

	Chamber Confining	Nominal	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Actual Applied	Average Recov Def.	Resilient Strain	Resilient
PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Мах.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axia/	Stress	Stress	and 2		
						Stress					
DESIGNATION	S	Scyclic	P _{max}	P _{cyclic}	P _{contact}	Smax	Scyclic	Scontact	Havg	ż	M
TINO	psi	psi	sql	sql	sql	psi	psi	psi	'n	in/in	psi
Sequence 1	6.0	2.0	24.9	22.1	2.8	2.1	1.8	0.2	0.00123	0.00015	11,905
Sequence 2	0.9	4.0	46.6	43.8	2.9	3.9	3.6	0.2	0.00275	0.00034	10,559
Sequence 3	0.9	0.9	68.9	65.2	3.7	5.7	5.4	0.3	0.00458	0.00057	9,467
Sequence 4	0.9	8.0	91.5	85.3	6.1	7.6	7.1	0.5	0.00684	0.00085	8,291
Sequence 5	0.9	10.0	114.4	105.9	9.8	9.5	8.7	0.7	0.00913	0.00114	7,705
Sequence 6	4.0	2.0	24.6	21.8	2.8	2.0	1.8	0.2	0.00147	0.00018	9,836
Sequence 7	4.0	4.0	45.8	42.9	2.9	3.8	3.5	0.2	0.00359	0.00045	7,946
Sequence 8	4.0	0.9	9.99	63.7	2.9	5.5	5.3	0.2	0.00600	0.00075	7,044
Sequence 9	4.0	8.0	89.5	84.3	5.2	7.4	7.0	0.4	0.00847	0.00105	6,610
Sequence 10	4.0	10.0	112.2	104.5	7.7	9.3	9.8	9.0	0.01101	0.00137	6,304
Sequence 11	2.0	2.0	24.2	21.4	2.8	2.0	1.8	0.2	0.00194	0.00024	7,340
Sequence 12	2.0	4.0	44.1	41.2	2.9	3.6	3.4	0.2	0.00473	0.00059	5,792
Sequence 13	2.0	0.9	63.6	9.09	2.9	5.3	5.0	0.2	0.00780	0.00097	5,166
Sequence 14	2.0	8.0	85.8	81.4	4.4	7.1	6.7	0.4	0.01073	0.00133	5,040
Sequence 15	2.0	10.0	107.8	101.0	6.8	8.9	8.3	9.0	0.01350	0.00168	4,970

January 20, 2016

DATE DATE

C.GARRETT

REVIEWED BY

TESTED BY

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

Job No.

061439

Material Code SSRVPS

Date Sampled:

1/20/16

Station No.: 261+00

Date Tested:

January 20, 2016

Location: 18' LT

Name of Project: HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S)

County:

Code: 26

Name: GARLAND

Sampled By:

Depth: 0-5'

Lab No.:

DICKERSON

AASHTO Class: A-4(0)

Sample ID:

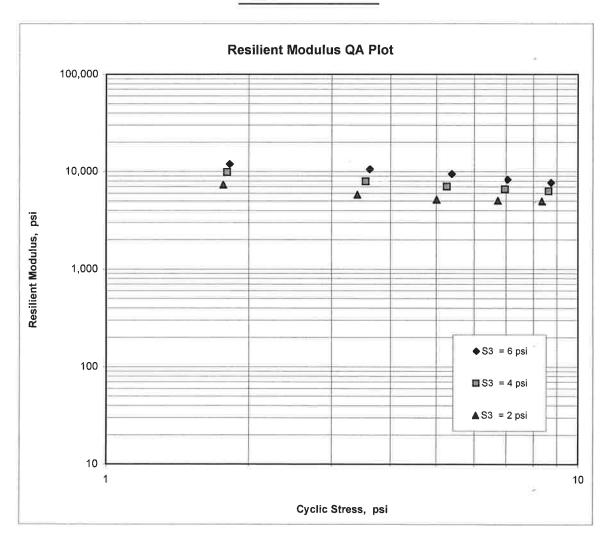
20154100

Material Type (1 or 2): 2

LATITUDE:

RV915

LONGITUDE:


$$M_R = K1 (S_C)^{K2} (S_3)^{K5}$$

K1 = 5,955

K2 = -0.27433

K5 = 0.48394

 $R^2 = 0.98$

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

Job No. Date Sampled: Date Tested: Name of Project:	061439 1/20/16 January 20, 2016 HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S)	Material Code Station No.: Location:	SSRVPS 293+00 27' LT	
County: Sampled By: Lab No.: Sample ID: LATITUDE:	Code: 26 Name: GARLAND DICKERSON 20154101 RV916	Depth: AASHTO Class: Material Type (1 or 2 LONGITUDE:):	0-5' A-4(0) 2
1. Testing Inform	nation:			
	Preconditioning - Permanent Strain > 5% (Y=Yes Testing - Permanent Strain > 5% (Y=Yes or N=No Number of Load Sequences Completed (0-15)	•	ž	N N 15
2. Specimen Info	ormation:			
3. Soil Specimen	Specimen Diameter (in): Top Middle Bottom Average Membrane Thickness (in): Height of Specimen, Cap and Base (in): Height of Cap and Base (in): Initial Length, Lo (in): Initial Area, Ao (sq. in): Initial Volume, AoLo (cu. in):		6	3.95 3.93 3.94 0.01 8.04 0.00 8.04 12.10 97.31
	Weight of Wet Soil Used (g):		ε;	3129.70
4. Soil Properties	5;			
	Optimum Moisture Content (%): Maximum Dry Density (pcf): 95% of MDD (pcf): In-Situ Moisture Content (%):			14.7 112.2 106.6 N/A
5. Specimen Pro	perties:			
	Wet Weight (g): Compaction Moisture content (%): Compaction Wet Density (pcf): Compaction Dry Density (pcf): Moisture Content After Mr Test (%):		Ø,	3129.70 14.4 122.54 107.12 14.4
6. Quick Shear T	est (Y=Yes, N=No, N/A=Not Applicable):			#VALUE!
7. Resilient Modu	ulus, Mr:	6255((Sc)^-0.20459	(S3)^0.45876
8. Comments			341	
9. Tested By:	C.GARRETT Date	: January 20, 2016		

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED SAMPLES

SSRVPS 293+00 27'LT

Material Code Station No.: Location: HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S) January 20, 2016 1/20/16 061439 Name of Project: Date Sampled: Date Tested: Job No.

Name of Project: HWY. 7 - HWY. 128 (SAFETY IMPVIS) (S)

County: Code: 26 Name: GARLAND

Sampled By: DICKERSON

Lab No.: 20154101

 Lab No.:
 20154101

 Sample ID:
 RV916

 LATITUDE:

AASHTO Class: A-4(0) Material Type (1 or 2): 2 LONGITUDE:

0-5

Depth:

	Chamber	Nominal	Actual	Actual	Actual	Actual	Actual	Actual	Average	Resilient	Resilient
	Confining	Maximum	Applied	Applied	Applied	Applied	Applied	Applied	Recov Def.	Strain	Modulus
PARAMETER	Pressure	Axial	Max. Axial	Cyclic Load	Contact	Мах.	Cyclic	Contact	LVDT 1		
		Stress	Load		Load	Axial	Stress	Stress	and 2		
						Stress					
DESIGNATION	လိ	Scyclic	P _{max}	P _{cyclic}	Pcontact	Smax	Sayalic	Scontact	Havg	^J 3	M _r
UNIT	psi	psi	lbs	sql	sql	psi	psi	psi	.L	in/in	isd
Sequence 1	0.9	2.0	25.0	22.3	2.7	2.1	1.8	0.2	0.00120	0.00015	12,317
Sequence 2	0.9	4.0	47.0	44.3	2.7	3.9	3.7	0.2	0.00256	0.00032	11,499
Sequence 3	0.9	0.9	69.3	65.7	3.5	5.7	5.4	0.3	0.00415	0.00052	10,518
Sequence 4	0.9	8.0	92.5	86.5	6.0	7.6	7.1	0.5	0.00604	0.00075	9,510
Sequence 5	0.9	10.0	115.6	107.1	8.5	9.6	8.8	0.7	0.00787	0.00098	9,038
Sequence 6	4.0	2.0	24.8	22.1	2.7	2.0	1.8	0.2	0.00141	0.00018	10,431
Sequence 7	4.0	4.0	46.0	43.3	2.7	3.8	3.6	0.2	0.00325	0.00040	8,844
Sequence 8	4.0	0.9	6.99	64.1	2.8	5.5	5.3	0.2	0.00525	0.00065	8,110
Sequence 9	4.0	8.0	90.5	85.4	5.2	7.5	7.1	0.4	0.00736	0.00092	7,699
Sequence 10	4.0	10.0	113.6	105.7	7.8	9.4	8.7	9.0	0.00940	0.00117	7,472
Sequence 11	2.0	12.0	24.4	21.5	2.9	2.0	1.8	0.2	0.00182	0.00023	7,857
Sequence 12	2.0	4.0	44.5	41.5	2.9	3.7	3.4	0.2	0.00423	0.00053	6,521
Sequence 13	2.0	0.9	64.6	61.6	3.0	5.3	5.1	0.2	0.00678	0.00084	6,036
Sequence 14	2.0	8.0	86.8	82.4	4.4	7.2	6.8	0.4	0.00932	0.00116	5,870
Sequence 15	2.0	10.0	109.5	102.5	7.0	9.0	8.5	9.0	0.01171	0.00146	5,815

DATE	DATE
C.GARRETT	4
TESTED BY	REVIEWED BY

January 20, 2016

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT MATERIALS DIVISION

AASHTO T 307-99 - RESILIENT MODULUS OF SUBGRADE SOILS RECOMPACTED / THINWALL TUBE SAMPLES

061439 Job No.

Material Code SSRVPS

Date Sampled:

1/20/16

Station No.: 293+00

Date Tested:

Location: 27' LT

Name of Project: HWY. 7 - HWY. 128 (SAFETY IMPVTS) (S)

January 20, 2016

County:

Code: 26

Depth: 0-5'

Sampled By:

DICKERSON

AASHTO Class: A-4(0)

Lab No.:

20154101 RV916

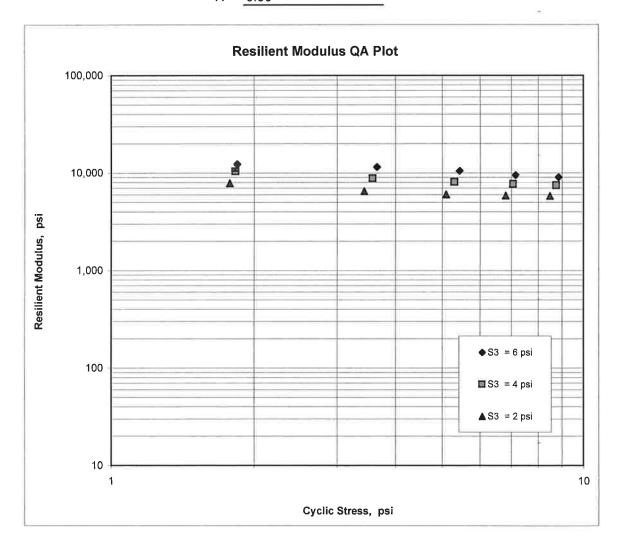
Material Type (1 or 2): 2

Sample ID:

Name: GARLAND

LATITUDE:

LONGITUDE:


$$M_R = K1 (S_C)^{K2} (S_3)^{K5}$$

K1 = 6,255

K2 = -0.20459

K5 = 0.45876

 $R^2 = 0.99$

11. Wallsus State Highway Transportation Department

· JOB NAME: HWY.7 - HWY.128 (SAFETY IMPVTS)(S)

Materials Division

COUNTY NO. 26 DATE TESTED 1/22/2016 Michael Benson, Materials Engineer

COUIV	11110.	20	DATE TEST		1221	2010						Ü	
STA.#	LOC.	DEPTH	COLOR	#4	#10	#40	#80	#200 E S	L.L.	<i>P.I</i> .	SOIL CLASS	<i>LAB</i> #:	%MOISTURE
261+00	18' LT	0-5	BROWN	98	93	82	77	72	27	07	A-4(3)	RV915	
293+00	27' LT	0-5	BROWN	98	95	86	79	71	27	06	A-4(3)	RV916	
124+00	06' RT	0-5	BROWN	95	87	76	70	64	21	5	A-4(1)	S865	7.9
132+00	06' LT	0-5	BROWN	86	71	51	44	38	20	4	A-4(0)	S866	9.5
132+00	14' LT	0-5	RED	71	51	45	45	39	25	10	A-4(1)	S867	10
140+00	06' RT	0-5	BROWN	97	84	65	58	51	20	05	A-4(0)	S868	11
140+00	14' RT	0-5	BROWN	91	81	67	60	55	22	07	A-4(1)	S869	11.9
148+00	06' LT	0-3.5Z	BROWN	93	79	58	51	45	22	07	A-4(0)	S870	9.4
156+00	06' RT	0-5	BROWN	95	90	81	75	71	27	11	A-6(5)	S871	21.3
156+00	14' RT	0-5	BROWN	96	85	70	64	59	20	5	A-4(0)	S872	21.7
164+00	06' LT	0-5	BROWN	97	89	76	69	62	25	12	A-6(4)	S873	20.3
164+00	15' LT	0-5	BROWN	94	88	74	64	54	24	08	A-4(2)	S874	17.2
172+00	06' RT	0-5	BROWN	97	84	67	58	49	29	14	A-6(3)	S875	9.5
172+00	14' RT	0-5	BROWN	97	94	86	78	70	22	6	A-4(2)	S876	17.8
180+00	06' LT	0-5	BROWN	91	83	72	66	61	27	11	A-6(4)	S877	15.3
180+00	14' LT	0-5	BROWN	96	87	75	69	64	27	10	A-4(4)	S878	17.1
188+00	06' RT	0-5	BROWN	98	91	81	75	70	23	05	A-4(1)	S879	18
188+00	14' RT	0-5	BROWN	95	81	73	68	64	24	06	A-4(2)	S880	19.3
196+00	06' LT	0-5	BROWN	97	85	68	62	55	22	06	A-4(1)	S881	16.5
196+00	14' LT	0-5	BROWN	88	76	63	58	54	22	05	A-4(0)	S882	16.4
204+00	06' RT	0-5	BROWN	97	91	73	65	58	26	08	A-4(2)	S883	21.4
204+00	14' RT	0-5	BROWN	97	92	79	70	61	25	05	A-4(1)	S884	23
212+00	06' LT	0-5	BROWN	98	93	85	80	75	38	17	A-6(12)	S885	23.4
212+00	14' LT	0-2.5Z	GRAY	93	81	55	44	39	30	12	A-6(1)	S886	18.4
221+00	06' RT	0-5	BROWN	98	93	82	75	68	34	13	A-6(7)	S887	26.4
221+00	15' RT	0-5	GRAY	89	70	49	41	36	28	11	A-6(1)	S888	14.9

comments: W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

Monday, January 25, 2016

211111	DO 01 1	, 13x x x x	COLOR	C C C C	L.L.	1 .1.	DOIL CLADO	LILD II.	
221+00	27' RT	0-5	BR/GR	94 83 68 60 54	29	8	A-4(3)	S889	15.7
229+00	06' LT	0-5	BROWN	97 93 83 76 71	29	8	A-4(5)	S890	14.2
229+00	14' LT	0-5	BROWN	99 97 92 88 84	35	12	A-6(9)	S891	17.7
229+00	18' LT	0-5	BROWN	94 90 83 79 74	32	10	A-4(6)	S892	18
237+00	06' RT	0-3.5Z	BROWN	92 83 68 63 57	35	11	A-6(4)	S893	12.9
237+00	14' LT	0-3.0Z	GRAY	94 86 71 63 57	31	8	A-4(3)	S894	12.6
245+00	06' LT	0-5	BROWN	95 90 83 79 76	30	10	A-4(6)	S895	20.7
245+00	14' LT	0-5	BROWN	89 75 55 47 40	28	9	A-4(1)	S896	20
253+00	06' RT	0-5	BR/GR	91 79 66 61 55	31	12	A-6(3)	S897	20.7
253+00	14' RT	0-5	BROWN	70 63 52 47 43	29	9	A-4(1)	S898	21
261+00	06' LT	0-5	RED	99 96 84 77 72	25	7	A-4(5)	S899	19.7
261+00	14'LT	0-5	RED	95 85 71 65 61	25	7	A-4(3)	S900	20.6
261+00	18' LT	0-5	BROWN	99 94 79 73 69	29	9	A-4(5)	S901	19.4
269+00	06' RT	0-5	RED	99 94 87 84 80	48	28	A-7-6(11)	S902	30.6
269+00	14' RT	0-2.5Z	RED	62 51 42 38 36				S903	19.7
277+00	06' LT	0-5	BROWN	96 89 76 70 64	31	9	A-4(5)	S904	15.3
277+00	14' LT	0-5	BROWN	96 86 71 64 58	32	10	A-4(4)	S905	12.1
285+00	06' RT	0-5	BROWN	97 89 73 67 62	25	7	A-4(3)	S906	17.3
285+00	14' RT	0-5	BROWN	91 83 73 67 62	27	2	A-4(4)	S907	23.8
293+00	06' LT	0-5	BROWN	93 86 71 64 58	25	6	A-4(3)	S908	17.3
293+00	14' LT	0-5	BROWN	93 77 59 53 49	27	7	A-4(2)	S909	20.4
293+00	27' LT	0-5	BROWN	95 86 72 66 60	25	6	A-4(3)	S910	16.9
301+00	06' RT	0-5	BROWN	99 98 94 92 87	31	10	A-4(8)	S911	23.9
301+00	14' RT	0-5	BROWN	100 99 98 96 89	28	7	A-4(8)	S912	24.6
309+00	15' LT	0-5	BROWN	90 91 78 70 63	25	7	A-4(4)	S913	18.4
309+00	22' LT	0-5	GRAY	97 86 73 49 43	24	4	A-4(1)	S914	22.3
				e					

OB:
061439

OB NAME: HWY.7 - HWY.128 (SAFETY IMPVTS)(S)

Arkansas State Highway Transporation Department Materials Division

DATE TESTED 1/13/2016

	8.0	6.50	1	5.50WX		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' LT	96+00
	1	8.0	1	6.0WX		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' RT	88+00
	7.0	1	5.50	4.0		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' RT	88+00
		1	8.0	8.0W		
31	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' LT	80+00
	7.0	7.0]1	6.50WX		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' LT	80+00
	31	6.0	!!	6.0WX		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' RT	72+00
	6.0	1	6.0	4.0		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' RT	72+00
	8.0	6.0	7.0	3.0W		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' LT	64+00
	8.0	1	6.50	3.50W		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	15' LT	64+00
	8.0	1	31	9.0W		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' RT	56+00
÷	(f)	6.0	3	6.0WX		
	AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' RT	56+00
		7.0	5.0	6.0WX		
		AGG.BASE CRS CL-7	PCCP	ACHMSC	06' LT	48+00
		6.0	(1)	9.50		
		AGG BASE CRS CL-7	PCCP	ACHMSC	14' RT	40+00
			6.0	6.0WX		
		AGG.BASE CRS CL-7	PCCP	ACHMSC	06' RT	40+00
	ť	5.0	4.25W			
AGG.BASE CRS CL-7	PCCP AG	ACHMBC	ACHMSC	CHIP SEAL	14' LT	32+00
	6.0 7.0	1	5.0WX	1		
AGG.BASE CRS CL-7	PCCP AG	ACHMBC	ACHMSC	CHIP SEAL	06' LT	32+00
	6.0	9 :	6.0WX	.25		
AGG.BASE CRS CL-7	PCCP AG	ACHMBC	ACHMSC	CHIP SEAL	06' RT	24+00
IGS	PAVEMENT SOUNDINGS				LOC.	TA.# LOC.
c						TATOOT
ls Engineer	Michael Benson, Materials Engineer			26		ON ALIVIO

comments: W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

Monday, January 25, 2016

Control of the Contro					
9.0	1	1	T		
AGG.BAS CRS.CL7	PCCP	ACHMBC	ACHMSC	14'LT	261+00
1	6.5		4.5WX		
AGG.BAS CRS.CL7	PCCP	ACHMBC	ACHMSC	06' LT	261+00
	3	6.5	4.0		
AGG.BAS CRS.CL7	PCCP	ACHMBC	ACHMSC	14' RT	253+00
1	7.0	1	6.0WX		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	06' RT	253+00
6.0	<u>J.</u>	5.5	5.0W		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	14' LT	245+00
	8.5	£	5.5WX		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	06' LT	245+00
	ij	7.0	4.0		
	PCCP	ACHMBC	ACHMSC	14' LT	237+00
	6.0	F.	6.5WX		
	PCCP	ACHMBC	ACHMSC	06' RT	237+00
	ľ	6.50	4.0		
	PCCP	ACHMBC	ACHMSC	14' LT	29+00
	7.0	ı	6.0WX		
	PCCP	ACHMBC	ACHMSC	06' LT	29+00
	I)		Ė		
	PCCP	ACHMBC	ACHMSC	18' LT	29+00
	Ū	II.	i.		
	PCCP	ACHMBC	ACHMSC	27' RT	21+00
	9.0	T.	4.0		
	AGG.BASE CRS CL-7	ACHMBC	ACHMSC	15' RT	21+00
	8.0	5.0	3.50W		
	AGG.BASE CRS CL-7	ACHMBC	ACHMSC	06' RT	21+00
-	7.0	Y.	6.50		
	AGG.BASE CRS CL-7	ACHMBC	ACHMSC	14' LT	12+00
Ĭ	5.0	ľ	11.0WX		
AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' LT	12+00
6.0	Ĭ	6.0	5.50W		
AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' RT	104+00
Ē	5.50	I)	8.0W		
AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	06' RT	104+00
8.0	1	5.5	4.0		
AGG.BASE CRS CL-7	PCCP	ACHMBC	ACHMSC	14' LT	96+00

TA.# LOC.

PAVEMENT SOUNDINGS

comments: W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

Monday, January 25, 2016

,	TA.#
1	LOC

_
⋛
Ë
\equiv
\Box
=
Ĕ
\overline{A}
\preceq
皿
ŝ
•
¥
X=STRIPPED,
X=STRIPPED,
X=STRIPPED, Z=AUG
X=STRIPPED, Z=AU

comments:

PAVEMENT SOUNDINGS

		7.0	9.5		
	CL7	AGG.BASE CRS, CL7	ACHMSC	15' LT	809+00
			î		
	CL7	AGG.BASE CRS. CL7	ACHMSC	22' LT	309+00
7.0		6.0	3.5W		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	14' RT	301+00
Ē	7.0	T	5.5W		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	06' RT	301+00
Ĭ,	ij.	ï	Ĭ		
AGG.BASE CRS.CL7	PCCP	ACHMBC	ACHMSC	27' LT	293+00
	Įį.	7.5	4.0		
	PCCP	ACHMBC	ACHMSC	14' LT	293+00
	7.0	1	4.0WX		
	PCCP	ACHMBC	ACHMSC	06' LT	293+00
	T)	6.0	3.5W		
	PCCP	ACHMBC	ACHMSC	14' RT	285+00
í	6.5W	5.5	0.20		
AGG.BASE CRS. CL7	PCCP	ACHMSC	CHIP SEAL	06' RT	285+00
ì	6.5	5.0WX	T)		
AGG.BASE CRS. CL7	PCCP	ACHMSC	CHIP SEAL	06' LT	277+00
6.0	E	10W	Ĭ		
AGG.BASE CRS. CL7	PCCP	ACHMSC	CHIP SEAL	14' LT	277+00
			8.5W		
		PCCP	ACHMSC	14' RT	269+00
		7.0	6.5		
		PCCP	ACHMSC	06' RT	269+00
		(1)	(1)		
		PCCP	ACHMSC	18' LT	61+00

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

JOB NUMBER - 061 FEDERAL AID NO TO	BE ASSI L SURVE SPECIFI ATE HWY.7 -	Y SAMPLE CATION CHECK HWY.128 (SAFETY I	MPV	TS) (S)	MATERIA SPEC. I	AL YEA ER /ST	ATE - 26
LOCATION - GARLA		TV			מערב כ	7\MT	PLED - 12/03/15
SAMPLED BY - D.DIC		111					IVED - 12/07/15
SAMPLE FROM - TEST							ED - 01/13/16
MATERIAL DESC SO		EY - R VALUE- PAV	EME	ENT SOUNDIN			
LAB NUMBER	_	0.01.54.04.0	2	20154050		-	20154051
SAMPLE ID		20154049 S865		S866			20154051 S867
TEST STATUS	_				V.TMO MC		INFORMATION ONLY
STATION		124+00	2	132+00	N ONLI		132+00
LOCATION		06' RT	-	06' LT			14' LT
DEPTH IN FEET		0-5	*	0-5			0-5
MAT'L COLOR		BROWN		BROWN		7 -	RED
MAT'L TYPE	-		-			-	
LATITUDE DEG-MIN-		34 34 43.50	75	34 34	49.10	-	34 34 49.20
LONGITUDE DEG-MIN-	SEC -	92 58 51.80		92 58	44.90		92 58 45.00
% PASSING 2	IN					_	
1 1/2	IN		-			_	100
3/4	IN -	100	-	100		-	99
3/8	IN	99	-	98		-	88
NO.	4 -	95	_	86		_	71
NO.	10 -	87	_	71		_	51
NO.	40 -	76	-	51		-	45
NO.		70	-	44		-	45
NO.	200 -	64		38			39
LIQUID LIMIT	_	21	2	20			25
PLASTICITY INDEX	_	5	4	4			10
AASHTO SOIL	-	A-4(1)	##	A-4 (0)		-	A-4(1)
UNIFIED SOIL	-		77			_	
% MOISTURE CONTENT	-	7.9	-	9.5			10.0
CHIP SEAL	(IN) -	.25	-			÷	ww
ACHMSC	(IN) -	6.0WX	-	5.0WX		#5	4.25W
ACHMBC	(IN) -	88	α	22		57.	5.0
PCCP	(IN) -	6.0		6.0		-	22.22
AGG.BASE CRS CL-7	(IN) _	7.75	-	7.0		-	
	_		-			=	
	_		-			2	
	-		-			÷	
	-		-			25	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

5

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/ JOB NUMBER - 061 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN LOCATION - GARLA SAMPLED BY - D.DICK SAMPLE FROM - TEST MATERIAL DESC SOI	439 BE ASSI L SURVE SPECIFI TE WY.7 - OT APPL SAS ND COUN ERSON HOLE	Y SAMPLE CATION CHECK HWY.128 (SAFETY II ICABLE TY		TS) (S)	MATERIAL SPEC. YEA SUPPLIER COUNTY/ST DISTRICT DATE SAM DATE RECE DATE TES	NO. = 2 CODE - SSRVPS AR = 2014 ID. = 1 TATE - 26 NO. = 06 PLED - 12/03/15 EIVED - 12/07/15 TED = 01/12/16
LAB NUMBER	: =	20154052	-	20154053	1.7	20154054
SAMPLE ID	3	S868	===	S869		S870
TEST STATUS						INFORMATION ONLY
STATION	#	140+00	-	140+00		148+00
LOCATION		06' RT	-	14' RT		06' LT
DEPTH IN FEET		0 - 5	22	0 - 5	12	0-3.5Z
MAT'L COLOR MAT'L TYPE	24	BROWN	-	BROWN	:=: :=:	BROWN
LATITUDE DEG-MIN-	SEC -	34 34 54.00	77	34 34		34 34 57.90
LONGITUDE DEG-MIN-	SEC =	92 58 37.40		92 58	37.50	92 58 28.70
% PASSING 2 1 1/2	IN		2 3		=	
	IN.		77		1251	100
3/8	IN	100	-	100		99
	4 =		_	91		93
NO.	10 -	84	-	81	=	79
NO.	40 -	65	2	67	_	58
NO.		58	$\stackrel{\sim}{=}$	60	=	51
NO .	200 -	51		55		45
LIQUID LIMIT	**	20	-	22		22
PLASTICITY INDEX	-	05	=	07	-	07
AASHTO SOIL	¥	A-4 (0)	ā	A-4(1)	-	A-4 (0)
UNIFIED SOIL	=					
% MOISTURE CONTENT	1.55	11.0		11.9		9.4
ACHMSC	(IN) -	6.0WX	-	9.50	-	6.0WX
PCCP	(IN) =	6.0	120		_	5.0
AGG.BASE CRS CL-7	(IN) _	**	-	6.0	_	7.0
	-		-		-	
	75		177		-	
	=======================================		-		-	
			-		-	
	<u></u>		-7.0		_	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

•

.

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

	DOIL	BORVET /	LAVBRIDIVI		ONDING IED	I KEFOKI	
JOB NUMBER - 06 FEDERAL AID NO TO	BE ASSI IL SURVE SPECIFI ATE HWY.7 - NOT APPI	EY SAMPLE CATION CH HWY.128 (ECK	MPV	TS) (S)	MATERIAI SPEC. YE SUPPLIEF COUNTY/S	E NO 3 L CODE - SSRVPS EAR - 2014 R ID 1 STATE - 26 F NO 06
,	AND COUN	TTV					MDI ED 12/02/15
SAMPLED BY - D.DIC		V I I					MPLED - 12/03/15 CEIVED - 12/07/15
SAMPLE FROM - TEST							STED - 01/12/16
MATERIAL DESC SO		EY - R VA	LUE- PAV	EME	ENT SOUNDIN		01/12/10
LAB NUMBER	2				20154056		00154055
SAMPLE ID		20154055 S871			5872		20154057 \$873
TEST STATUS	-		LON ONLY				INFORMATION ONLY
STATION	2		LON ONDI		156+00		164+00
LOCATION		06' RT		#	14' RT		06' LT
DEPTH IN FEET		0-5		-	0-5	12	0-5
MAT'L COLOR		BROWN		+	BROWN	(#	BROWN
MAT'L TYPE				2		2**	
LATITUDE DEG-MIN-	-SEC -	34 35	2.40	2	34 35	2.40	34 35 8.40
LONGITUDE DEG-MIN-	-SEC -	92 58	21.40			21.40	92 58 14.70
% PASSING 2	IN. =						
	IN.					_	
	1 IN			72		-	
	B IN.	100		$\tilde{c} = 0$	100	-	100
·	4 =	95		9	96	-	97
NO.	10 -	90		7.5	85	_	89
NO.	40 -	81		.=	70	_	76
NO.	80 -	75		1	64	-	69
NO.	200	71			59		62
LIQUID LIMIT	12	27			20		25
PLASTICITY INDEX		11		-	5	-	
AASHTO SOIL	-	A-6(5)		$\hat{x} = \hat{x}$	A-4(0)	·	A-6(4)
UNIFIED SOIL	3,50			-		: =	
% MOISTURE CONTENT		21.3		7.55	21.7	-	20.3
ACHMSC	(IN) -	6.0WX		2	9.0W	79	3.0W
ACHMBC	(IN) -	22		2		(82	7.0
PCCP	(IN) -	6.0		*	***	-	6.0
AGG.BASE CRS CL-7	(IN)			× = = = = = = = = = = = = = = = = = = =	8.0	9 8	8.0
				2		55 24	
	120			-			e
	7			77		87	5
	~			2		(8	
	-			-			•:

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

*

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

JOB NUMBER - 063 FEDERAL AID NO TO PURPOSE - SO3 SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - H PIT/QUARRY - ARKAL	BE ASSI IL SURVE SPECIFI ATE HWY.7 - NOT APPI NSAS AND COUN KERSON HOLE	Y SAMPLE CATION CHECK HWY.128 (SAFETY I ICABLE			MATERIAL SPEC. YE SUPPLIER COUNTY/S DISTRICT DATE SAM DATE REC DATE TES	MPLED - 12/03/15 CEIVED - 12/07/15	
LAB NUMBER	-	20154058		20154059		20154060	
SAMPLE ID	_	20154058 S874		S875		20154060 S876	
TEST STATUS	_					INFORMATION ONLY	V
STATION	_		2	172+00		172+00	_
LOCATION	_		÷	06' RT	-	14' RT	
DEPTH IN FEET		0-5	<i>i</i> =	0-5	=	0-5	
MAT'L COLOR		BROWN	-	BROWN	-	BROWN	
MAT'L TYPE	=		-		-		
LATITUDE DEG-MIN-	-SEC -	34 35 8.40	=	34 35	13.20	34 35 13.10	
LONGITUDE DEG-MIN-		92 58 14.90		92 58	7.20	92 58 7.20	
% PASSING 2	IN		4		_		
	2 IN		=		_		
		100	=		-	100	
-	3 IN -	99	7	100	_	99	
NO.		94	2	97	-	97	
NO.		88	*	84	-	9.4	
	40 -	74	Ħ	67	=	86	
NO.		64	- T	58			
	200 -	54		49		70	
LIQUID LIMIT	-	24	-	29	-	22	
PLASTICITY INDEX	-	08	**	14	_	6	
AASHTO SOIL	-	A-4(2)	- 5	A-6(3)	_	A-4(2)	
UNIFIED SOIL	-		_		-		
% MOISTURE CONTENT	-	17.2		9.5		17.8	
ACHMSC	(IN) -	3.50W	-	6.0WX	-	4.0	
ACHMBC	(IN) -	6.50	7		=	6.0	
PCCP	(IN) -		-	6.0	2	- =	
AGG.BASE CRS CL-7	(IN) -	8.0		22	_	6.0	
	-		-		-		
			2		=		
	-		-		-		
	-		+		-		
			27.		~		

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/14/16 SEQUENCE NO. - 5

JOB NUMBER - 061439 MATERIAL CODE - SSRVPS

FEDERAL AID NO. - TO BE ASSIGNED SPEC. YEAR - 2014

PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID. - 1

SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26

SUPPLIER NAME - STATE DISTRICT NO. - 066

NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S)

PROJECT ENGINEER - NOT APPLICABLE

PIT/QUARRY - ARKANSAS

LOCATION - GARLAND COUNTY DATE SAMPLED - 12/03/15 SAMPLED BY - D.DICKERSON DATE RECEIVED - 12/07/15 SAMPLE FROM - TEST HOLE DATE TESTED - 01/12/16

MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS

LAB NUMBER	7	20154061	7	20154062	-	20154063
SAMPLE ID	-	S877	22	S878		S879
TEST STATUS	2	INFORMATION ONLY	*	INFORMATION ONLY	-	INFORMATION ONLY
STATION	2	180+00	π	180+00	i=1	188+00
LOCATION	5	06' LT		14' LT	100	06' RT
DEPTH IN FEET	-	0 – 5	_	0-5		0 - 5
MAT'L COLOR	-	BROWN	_	BROWN	-	BROWN
MAT'L TYPE	*		-		-	
LATITUDE DEG-MIN-S	EC -	34 35 18.90	22	34 35 19.00	227	34 35 24.20
LONGITUDE DEG-MIN-S	EC -	92 58 40		92 58 .40		92 57 54.50
% PASSING 2	IN		_		_	
1 1/2			_		-	
	IN.	100	-		-	
· ·	IN		-	100	-	100
·	4		-	96	-	98
NO.	10 -	83	_	87	_	91
NO.	40 -	72	_	75	_	81
NO.	80 -	66	-	69	_	75
NO. 2	00 -	61		64		70
LIQUID LIMIT	-	27	-	27	_	23
PLASTICITY INDEX	,	11	1	10	-	05
AASHTO SOIL		A-6(4)	-	A-4 (4)	-	A-4(1)
UNIFIED SOIL	÷		*		***	
% MOISTURE CONTENT	12	15.3	=	17.1	-	18.0
ACHMSC	(IN) -	6.50WX	- -	8.0W	2	6.0WX
ACHMBC ((IN) -	2.2	-	8.0	=	思表
PCCP ((IN) -	7.0	#	3.5	-	8.0
AGG.BASE CRS CL-7	(IN)	7.0	=		E	#A
	2		2		2	
	÷		¥.)		÷	
	=		. =		**	
	-		= 0.0		77	
	2		277		-	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

--S : T24 T88 T89 T90 T

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/ JOB NUMBER - 061 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN	439 BE ASSI L SURVE SPECIFI TE WY.7 - OT APPI SAS	Y SAMPLE CATION CHECK HWY.128 (SAFETY I	MPV		MATERIAL SPEC. YEA SUPPLIER COUNTY/ST DISTRICT	NO 6 CODE - SSRVPS AR - 2014 ID 1 TATE - 26 NO 06
LOCATION - GARLA SAMPLED BY - D.DICK SAMPLE FROM - TEST MATERIAL DESC SOI	ERSON HOLE		/EME	ENT SOUNDING	DATE REC	PLED - 12/03/15 EIVED - 12/07/15 TED - 01/12/16
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	2 2 2	20154064 \$880 INFORMATION ONLY 188+00 14' RT 0-5 BROWN	# #	20154065 S881 INFORMATION 196+00 06' LT 0-5 BROWN	ON ONLY -	20154066 S882 INFORMATION ONLY 196+00 14' LT 0-5 BROWN
LATITUDE DEG-MIN- LONGITUDE DEG-MIN-	SEC -	34 35 24.20 92 57 54.40	-	34 35 92 57		34 35 30.90 92 57 47.90
3/4 3/8 NO. NO. NO.	IN IN 4 -	100 95 81 73 68 64		100 97 85 68 62 55	-	100 99 88 76 63 58
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	2 2 2 2	24 06 A-4(2)		22 06 A-4(1)	- - - -	22 05 A-4(0) 16.4
ACHMSC ACHMBC PCCP AGG.BASE CRS CL-7	(IN) - (IN) - (IN) - (IN) -	4.0 5.50 7.0		5.50WX 6.50 8.0	# 6 8 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.0 5.5 8.0
	-				5	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

-

AASHTO TESTS : T24 T88 T89 T90 T265

:

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/1 JOB NUMBER - 0614 FEDERAL AID NO TO E PURPOSE - SOIL SPEC. REMARKS - NO S SUPPLIER NAME - STAT NAME OF PROJECT - HW PROJECT ENGINEER - NO PIT/QUARRY - ARKANS	TS) (S)	MATERIAL SPEC. YEA SUPPLIER COUNTY/ST	NO 7 CODE - SSRVPS AR - 2014 ID 1 FATE - 26 NO 06			
LOCATION - GARLAN SAMPLED BY - D.DICKE SAMPLE FROM - TEST E	ID COUN ERSON HOLE				DATE REC	PLED - 12/03/15 EIVED - 12/07/15 TED - 01/12/16
MATERIAL DESC SOII	L SURVE	EY - R VALUE- PAV	EME	ENT SOUNDING	GS	
LAB NUMBER	-	20154067		20154068		20154069
SAMPLE ID	-	S883		S884		S885
TEST STATUS	-		Δ.			INFORMATION ONLY
STATION		204+00	-	204+00 14' RT		212+00 06' LT
LOCATION DEPTH IN FEET		06' RT 0-5	2	0-5	-	0-5
MAT'L COLOR		BROWN	<u>;;</u>	BROWN	-	BROWN
MAT'L COLOR	_	DICO NII	-		(=)	
LATITUDE DEG-MIN-S		34 35 37.50		34 35	37.50	34 35 44.40
LONGITUDE DEG-MIN-S	SEC -	92 57 42.30		92 57	42.30	92 57 37.50
% PASSING 2	IN		-		(+)	
1 1/2	IN				1.00	
•	IN, -	100	-			
·	IN	99	-	100	(-)	100
NO.		97	77	97	1,50	98
NO.		91 73	<u>_</u>	92 79	=	93 85
		73 65	=	79		80
NO. 2	_	58	-	61	· - -	75
				2.5		38
LIQUID LIMIT PLASTICITY INDEX	50 50		_	25 05	-	17
AASHTO SOIL	-		_	A-4(1)		A-6(12)
UNIFIED SOIL	-	A 1(2)	-	11 1 (1)	-	11 0 (12)
% MOISTURE CONTENT	=	21.4	-	23.0	-	23.4
ACHMSC	(IN) -	8.0W	-	5.50W	_	11.0WX
	(IN) -	==	2	6.0	-	
PCCP	(IN) -	5.50	-		-	5.0
AGG.BASE CRS CL-7	(IN) -		*	6.0	_	2010
			-		-	
	÷		-		-	
ě.	=		***		-	
	2 2		- 00		_	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

AASHTO TESTS : T24 T88 T89 T90 T265

: cicar oin

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/ JOB NUMBER - 061 FEDERAL AID NO TO PURPOSE - SOI SPEC. REMARKS - NO SUPPLIER NAME - STA NAME OF PROJECT - H PROJECT ENGINEER - N PIT/QUARRY - ARKAN	439 BE ASSI L SURVE SPECIFI TE WY.7 - OT APPL	Y SAMPLE CATION CHECK HWY.128 (SAFETY I	MPV	TS) (S)	MATERIAL SPEC. YE SUPPLIER COUNTY/S	NO. = 8 CODE = SSRVPS AR = 2014 ID. = 1 TATE = 26 NO. = 06
LOCATION - GARLA SAMPLED BY - D.DICK SAMPLE FROM - TEST MATERIAL DESC SOI	ERSON HOLE		זניו <i>א</i> נ	'NT GOIINDIN	DATE REC	PLED - 12/03/15 EIVED - 12/07/15 TED - 01/12/16
			EME	INT SOUNDING		
LAB NUMBER	-	20131070		20154071		20154072
SAMPLE ID	-	S886		S887		S888
TEST STATUS STATION		212+00	-	221+00		INFORMATION ONLY 221+00
LOCATION		14' LT	=	06' RT		15' RT
		0-2.5Z	2	0-5	=	0-5
MAT'L COLOR		GRAY	-	BROWN	-	GRAY
MAT'L TYPE	-		=		_	
LATITUDE DEG-MIN-				34 35		34 35 49.90
LONGITUDE DEG-MIN-	SEC -	92 57 37.50		92 57	30.10	92 57 30.10
% PASSING 2	IN		+		_	
1 1/2	IN		=		-	
	IN	100	=		-	100
-	IN			100	_	99
	4 -		==	98	-	89
	10 -		7	93	-	70
	40 -		22	82	_	49
	80 -		*	75	~	41
NO.	200 -	39		68		36
LIQUID LIMIT	-	30	77	34	(2)	28
PLASTICITY INDEX	=	12	=	13	-	11
AASHTO SOIL	-	A-6 (1)	=======================================	A-6(7)	-	A-6(1)
UNIFIED SOIL	-		_		12	
% MOISTURE CONTENT	-	18.4		26.4		14.9
ACHMSC	(IN) -	6.50	-	3.50W	<u>=</u>	4.0
ACHMBC	(IN) -		-	5.0	=	
AGG.BASE CRS CL-7	(IN) -	7.0	-	8.0	-	9.0
	_		300		2	
			=		_	
	-		*		-	
	-		;		5	
	_		(T)		-	
	_					

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

AASHTO TESTS : T24 T88 T89 T90 T265

1

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

	2011	,			
	1/13/16			SEQUENCE	NO. 9
JOB NUMBER - 0	61439		MATERIAL	CODE - SSRVPS	
FEDERAL AID NO To	O BE ASS	IGNED		SPEC. YEA	AR = 2014
		EY SAMPLE			ID. = 1
SPEC. REMARKS - N	O SPECIF	ICATION CHECK		COUNTY/S'	TATE = 26
SUPPLIER NAME - S'					NO 06
NAME OF PROJECT -	HWY.7 -	HWY.128 (SAFETY IM	MPVTS) (S)		
PROJECT ENGINEER -	NOT APP	LICABLE			
PIT/QUARRY - ARK	ANSAS				
LOCATION - GAR	LAND COU	NTY			PLED = 12/03/15
SAMPLED BY - D.DI	CKERSON				EIVED = 12/07/15
SAMPLE FROM - TES	T HOLE			DATE TES	TED = 01/12/16
MATERIAL DESC S	OIL SURV	EY - R VALUE- PAVI	EMENT SOUNDIN	IGS	
LAB NUMBER	-	20154073	- 20154074	377	20154075
SAMPLE ID			_ 5890		S891
TEST STATUS	=	INFORMATION ONLY	- INFORMATI	ON ONLY	INFORMATION ONLY
STATION	-	INFORMATION ONLY 221+00	- 229+00	_	229+00
LOCATION	-	27' RT	- 06' LT	-	14' LT
DEPTH IN FEET		0-5	0-5	:=:	0-5
MAT'L COLOR		BR/GR	BROWN	·	BROWN
MAT'L TYPE	2	,	_	-	
LATITUDE DEG-MI	N-SEC =	34 35 49.80	- 34 35	51.60 -	34 35 51.70
LONGITUDE DEG-MI	N-SEC =	92 57 30.00	92 57	21.20	92 57 21.30
% PASSING 2			2		
	/2 IN. =		-	-	
	/4 IN. =	100	= 100	-	100
	/8 IN		= 99	-	99
	. 4 =		97	2	99
NO	10 -	83	93	-	97
NO	40 =	68	83		92
	. 80 -		76	= 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	88
	. 200 -		71		84
I TOUTD I TMIM		2.0	= 29		35
LIQUID LIMIT			- 29	_	12
PLASTICITY INDEX AASHTO SOIL		A-4(3)	A-4(5)	-	A-6(9)
UNIFIED SOIL	_	A-4 (3)	A-4(5)	-	A-0 (3)
% MOISTURE CONTE	\Tm	15.7	14.2	-	17.7
6 MOISTORE CONTE		13.7			
ACHMSC	(IN) -		- 6.0WX	-	4.0
ACHMBC	(IN) -	**		7. 2	6.50
PCCP	(IN) -	**	7.0	_	34.8
	*		-	-	
	-		-	=	
	立		-	~	
			_	-	
	-		-	*	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

AASHTO TESTS : T24 T88 T89 T90 T265

9

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/13/16 SEQUENCE NO. = 10 JOB NUMBER - 061439 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR = 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID. = 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE = 26 SUPPLIER NAME - STATE DISTRICT NO. = 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - GARLA SAMPLED BY - D.DICK SAMPLE FROM - TEST MATERIAL DESC SOI	ND COUN ERSON HOLE		E.M.E	NT SOUNDIN	DATE RE	MPLED - 12/03/15 CEIVED - 12/07/15 STED - 01/12/16
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE LATITUDE DEG-MIN-	- - - - - - - SEC -	20154076 \$892 INFORMATION ONLY 229+00 18' LT 0-5 BROWN		20154077 S893 INFORMATIO 237+00 06' RT 0-3.5Z BROWN	ON ONLY	20154078 S894 INFORMATION ONLY 237+00 14' LT 0-3.0Z GRAY 34 35 55.10
3/4 3/8 NO. NO.	IN IN IN IN IN 4 - 10 - 40 -	100 95 94 90	H H H H H H H	92 57 100 92 83 68	12.80	92 57 12.80
NO.		79	-	63 57 35	à	63 57 - 31
PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTENT	- - -		± ±	11 A-6(4) 12.9	а я у	- 8 - A-4(3) - 12.6
ACHMSC ACHMBC PCCP	(IN) - (IN) - (IN) - - - - -	5.5 5.5 10.5		6.5WX 6.0		4.0 7.0

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

*

AASHTO TESTS : T24 T88 T89 T90 T265

.

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/13/16 SEQUENCE NO 11 JOB NUMBER - 061439 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS								
LOCATION - GARLA		I.T. X						- 12/03/15
SAMPLED BY - D.DICI SAMPLE FROM - TEST								- 12/07/15 - 01/12/16
MATERIAL DESC SO		7V _ D WAT	.IIF - DAW	a Ma	מדכותווסף ידוני		TED	- 01/12/16
	III DOKVI		IOE PAVE					
LAB NUMBER	3	20154079			20154080		20154	081
SAMPLE ID	-				S896		S897	
TEST STATUS	A :							MATION ONLY
STATION		245+00			245+00	-	253+0	
LOCATION	-			=	14' LT	-	06' R	Т
DEPTH IN FEET		0-5		-	0 - 5	-	0-5	
MAT'L COLOR	H-0	BROWN		=	BROWN	-	BR/GR	
MAT'L TYPE	ana -	24 25	E 6 70	-	24 25	-	34	35 57.60
LATITUDE DEG-MIN-				-	34 35 92 57	3.50	92	
LONGITUDE DEG-MIN-	SEC =	92 57	3.50		92 57	3.50	24	56 53.60
% PASSING 2	IN.			$(x,y) \in \mathcal{C}_{k}$		-		
•	IN.			7		_		
	IN.			21	100	_	100	
·	3 IN			-	99		99	
	4 -			Ξ,	89	-	91	
NO.		90		=	75	-	79	
	40	83		-	55	_	66	
	80 =			-	47 40		61 55	
NO.	200 =	76			40		55	
LIQUID LIMIT	20	30		7	28	2=	31	
PLASTICITY INDEX	-	10		-	9	:: :	12	
AASHTO SOIL	<i>(75)</i>	A-4(6)		-	A-4(1)	9 5	A-6 (3)
UNIFIED SOIL	=			***		25		
% MOISTURE CONTENT	=	20.7		70	20.0		20	. 7
ACHMSC	(IN) -	5.5WX		-	5 - OW	-	6.0)WX
ACHMBC	(IN) -				5.5	>		
PCCP	(IN) -	8.5		-		=	7.0)
AGG.BASE CRS.CL7	(IN) =	200		-	6.0	3		
				*			en en	
	-			-			· 87	
	-			-		-	50	
	27			**		-	20	
	520			-			20	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

	DOIL	, 111VIIIII		0110 1101	10110101	
DATE - 01/13/16 SEQUENCE NO 12 JOB NUMBER - 061439 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS) (S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - GARLA		TY			DATE SAM	PLED - 12/03/15
SAMPLED BY - D.DICK	ERSON				DATE REC	EIVED - 12/07/15
SAMPLE FROM - TEST	HOLE				DATE TEST	TED = 01/12/16
MATERIAL DESC SOI	L SURVE	CY - R VALUE- PA	VEME	NT SOUNDING	GS	
LAB NUMBER	16	20154082	12	20154083	-	20154084
SAMPLE ID		\$898		S899		S900
TEST STATUS			-	INFORMATIO	ON ONLY -	INFORMATION ONLY
STATION		253+00		261+00		261+00
LOCATION		14' RT	=	06' LT		14'LT
DEPTH IN FEET	2		*	0-5	-	0-5
MAT'L COLOR	_		**	RED		RED
MAT'L TYPE	-					
LATITUDE DEG-MIN-	SEC -	34 35 57.50	-	34 35	57.50 -	34 35 57.70
LONGITUDE DEG-MIN-					44.00	92 56 43.90
	IN IN		15			
	IN.	100	16		-	100
•		79	-	100	-	99
· ·			1,77	99	(70)	95
	10	70	100	96	20	0.5
NO.	10 =	52	-	84	-	71
	80 -	47		77	-	65
	200 -			72	-	61
110 %		13				
LIQUID LIMIT	-	29	22	25	:=:	25
PLASTICITY INDEX	2	9	+-	7		7
AASHTO SOIL	E E	A-4(1)	#	A-4(5)	河 (本)	A-4(3)
UNIFIED SOIL	-		2		540	
% MOISTURE CONTENT	3.00	21.0		19.7		20.6
ACHMSC	(IN) -	4.0	-	4.5WX	_	=:=:
ACHMBC	(IN) -	6.5	~		-	22
PCCP	(IN) -	22	-	6.5	=	9/6
AGG.BAS CRS.CL7	(IN)	5.5	-	7772	_	9.0
	:=		_		_	
	100		_		_	
	72		_		_	
	200		-		-	
	35		-		-	

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

-

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/13/16 SEQUENCE NO 13 JOB NUMBER - 061439 MATERIAL CODE SSRVPS FEDERAL AID NO TO BE ASSIGNED PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/OUARRY - ARKANSAS						
, -	LAND COUN CKERSON CHOLE		/EME	NT SOUNDING	DATE RECI	PLED - 12/03/15 EIVED - 12/07/15 FED - 01/12/16
LAB NUMBER SAMPLE ID TEST STATUS STATION LOCATION DEPTH IN FEET MAT'L COLOR MAT'L TYPE	- - - - -	20154085 S901 INFORMATION ONLY 261+00 18' LT 0-5	-	20154086 S902	- N ONLY - - - - -	20154087 S903 INFORMATION ONLY 269+00 14' RT 0-2.5Z RED 34 35 57.80
LONGITUDE DEG-MIN % PASSING 2 1 1/ 3/ 3/ NO. NO.	I-SEC - IN 2 IN 4 IN 8 IN 4 - 10 - 40 -	92 56 44.00 100 99 94 79 73 69			34.70 - - - - - - -	92 56 34.70 100 84 62 51 42 38 36
LIQUID LIMIT PLASTICITY INDEX AASHTO SOIL UNIFIED SOIL % MOISTURE CONTEN	- - - - TT -	29 9 A-4(5) 19.4	1 3	48 28 A-7-6(11) 30.6		19.7
ACHMSC PCCP	- - - - - - (IN) - (IN) -	82 83	-	6.5 7.0	2 8 8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.5W

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

#

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

```
DATE
            - 01/14/16
                                                 SEOUENCE NO. = 14
JOB NUMBER - 061439
                                                 MATERIAL CODE = SSRVPS
FEDERAL AID NO. - TO BE ASSIGNED
                                                 SPEC. YEAR = 2014
PURPOSE - SOIL SURVEY SAMPLE
                                                 SUPPLIER ID. - 1
SPEC. REMARKS - NO SPECIFICATION CHECK
                                                COUNTY/STATE - 26
SUPPLIER NAME - STATE
                                                DISTRICT NO. - 06
NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S)
PROJECT ENGINEER - NOT APPLICABLE
PIT/QUARRY - ARKANSAS
LOCATION - GARLAND COUNTY
                                                 DATE SAMPLED = 12/03/15
SAMPLED BY - D.DICKERSON
                                                 DATE RECEIVED = 12/07/15
SAMPLE FROM - TEST HOLE
                                                 DATE TESTED - 01/12/16
MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS
 LAB NUMBER
                    20154088
                                    20154089
                                                      20154090
                                S905
                     - S904
 SAMPLE ID
                                                       = S906
 TEST STATUS
                    - INFORMATION ONLY - INFORMATION ONLY - INFORMATION ONLY
                    - 277+00 = 277+00 = 285+00
 STATION
                                     14 LT
                                                       7 06' RT
 LOCATION
                    - 06' LT
                                     0-5
 DEPTH IN FEET
                   - 0-5
                                                        0-5
                                                      BROWN
                                  BROWN
                 - BROWN
 MAT'L COLOR
 MAT'L TYPE
 LATITUDE DEG-MIN-SEC - 34 35 59.50 - 34 35 59.60 - 34 36 .80
                                                         92 56 15.20
 LONGITUDE DEG-MIN-SEC - 92 56 25.10
                                        92 56 25.10
  % PASSING 2 IN. -
            1 1/2 IN. -
              3/4 IN. -
                                                        100
             3/8 IN. - 100
                                        100
                                         96
             NO. 4 - 96
                       89
             NO. 10 -
                                         86
                                                          89
                                     71
             NO. 40 -
                        76
                                                          73
             NO. 80 - 70
                                     - 64
                                                       - 67
             NO. 200 - 64
                                         58
                                                          62
                                                       25
 LIOUID LIMIT
                                        32
                       31
 PLASTICITY INDEX
                   - 9
                                        10
                   - A-4(5)
                                        A-4(4)
                                                        A-4(3)
 AASHTO SOIL
 UNIFIED SOIL
                                         12.1
                                                          17.3
 % MOISTURE CONTENT -
                         15.3
                 (IN) -
                         ÷ ••
                                                         0.20
CHIP SEAL
                 (IN) -
                                        10W
                                                         5.5
ACHMSC
                        5.0WX
PCCP
                (IN) -
                         6.5
                                         - -
                                                           6.5W
AGG.BASE CRS. CL7
                (IN)
                                         6.0
```

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

2

MICHAEL BENSON, MATERIALS ENGINEER *** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DOLL DOLLAR / TITLE INTE	DOONDING TEDT RELOW!					
DATE - 01/14/16 SEQUENCE NO. = 15 JOB NUMBER - 061439 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS						
LOCATION - GARLAND COUNTY SAMPLED BY - D.DICKERSON SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE- PAVI	DATE SAMPLED - 12/03/15 DATE RECEIVED - 12/07/15 DATE TESTED - 01/12/16 EMENT SOUNDINGS					
SAMPLE ID - S907 TEST STATUS - INFORMATION ONLY STATION - 285+00 LOCATION - 14'RT DEPTH IN FEET - 0-5 MAT'L COLOR - BROWN MAT'L TYPE - LATITUDE DEG-MIN-SEC - 34 36 .80						
LONGITUDE DEG-MIN-SEC - 92 56 15.20 % PASSING 2 IN 1 1/2 IN 3/4 IN 100 3/8 IN 95 NO. 4 - 91 NO. 10 - 83 NO. 40 - 73 NO. 80 - 67 NO. 200 - 62	92 56 6.30 92 56 6.30 -					
LIQUID LIMIT - 27 PLASTICITY INDEX - 2 AASHTO SOIL - A-4(4) UNIFIED SOIL - % MOISTURE CONTENT - 23.8	- 25 - 27 - 6 - 7 - A-4(3) - A-4(2) - 17.3 20.4					
ACHMSC (IN) - 3.5W ACHMBC (IN) - 6.0 PCCP (IN)	- 4.0WX - 4.0 - 7.5 - 7.0 					

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

3

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

DATE - 01/14/16 SEQUENCE NO 16 JOB NUMBER - 061439 MATERIAL CODE - SSRVPS FEDERAL AID NO TO BE ASSIGNED SPEC. YEAR - 2014 PURPOSE - SOIL SURVEY SAMPLE SUPPLIER ID 1 SPEC. REMARKS - NO SPECIFICATION CHECK COUNTY/STATE - 26 SUPPLIER NAME - STATE DISTRICT NO 06 NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S) PROJECT ENGINEER - NOT APPLICABLE PIT/QUARRY - ARKANSAS LOCATION - GARLAND COUNTY DATE SAMPLED - 12/03/15 SAMPLED BY - D.DICKERSON DATE RECEIVED - 12/07/15						
SAMPLE FROM - TEST HOLE MATERIAL DESC SOIL SURVEY - R VALUE-	DATE TESTED - 01/12/16 PAVEMENT SOUNDINGS					
LAB NUMBER 20154094 SAMPLE ID - S910 TEST STATUS - INFORMATION OF 293+00 LOCATION - 27' LT DEPTH IN FEET - 0-5	- 20154095 - 20154096 - S911 - S912 NLY - INFORMATION ONLY - INFORMATION ONLY - 301+00 - 301+00 - 06' RT - 14' RT - 0-5					
MAT'L COLOR - BROWN MAT'L TYPE - 34 36 3.7 LONGITUDE DEG-MIN-SEC - 92 56 6.4						
% PASSING 2 IN 1 1/2 IN 3/4 IN 3/8 IN 100 NO. 4 - 95 NO. 10 - 86 NO. 40 - 72 NO. 80 - 66 NO. 200 - 60	100 - 100 - 100 - 98 - 99 - 94 - 98 - 96 87 89					
LIQUID LIMIT = 25 PLASTICITY INDEX = 6 AASHTO SOIL = A-4(3) UNIFIED SOIL = 16.9	- 31 - 28 - 10 - 7 - A-4(8) - A-4(8) - 23.9 - 24.6					
ACHMSC (IN) ACHMBC (IN) PCCP (IN) AGG.BASE CRS.CL7 (IN)	- 5.5W - 3.5W 6.0 - 7.0 - 7.0 - 7.0					

REMARKS = W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

```
- 01/13/16
                                                  SEQUENCE NO. = 19
DATE
JOB NUMBER - 061439
                                                  MATERIAL CODE - SSRVPS
FEDERAL AID NO. - TO BE ASSIGNED
                                                  SPEC. YEAR = 2014
PURPOSE - SOIL SURVEY SAMPLE
                                                  SUPPLIER ID. = 1
SPEC. REMARKS - NO SPECIFICATION CHECK
                                                  COUNTY/STATE = 26
SUPPLIER NAME - STATE
                                                  DISTRICT NO. - 06
NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS) (S)
PROJECT ENGINEER - NOT APPLICABLE
PIT/QUARRY - ARKANSAS
LOCATION - GARLAND COUNTY
                                                  DATE SAMPLED - 12/03/15
SAMPLED BY - D.DICKERSON
                                                  DATE RECEIVED = 12/07/15
SAMPLE FROM - TEST HOLE
                                                  DATE TESTED - 01/12/16
MATERIAL DESC. - SOIL SURVEY - R VALUE- PAVEMENT SOUNDINGS
 LAB NUMBER
                     - 20154097
                                      20154098
                                = S914
                     - S913
  SAMPLE ID
                     - INFORMATION ONLY - INFORMATION ONLY -
  TEST STATUS
                     - 309+00 = 309+00
  STATION
                                       = 22' LT
                     - 15' LT
  LOCATION
                                      0-5
  DEPTH IN FEET
                     - 0-5
                                      GRAY
                    - BROWN
  MAT'L COLOR
 MAT'L TYPE
  LATITUDE DEG-MIN-SEC - 34 36 12.40 = 34 36 12.40
  LONGITUDE DEG-MIN-SEC -
                         92 55 48.80
                                          92 55 48.80
  % PASSING 2 IN. -
             1 1/2 IN. -
              3/4 IN. -
              3/8 IN. - 100
                                         100
             NO. 4 - 90
                                          97
                                          86
              NO. 10
                         91
              NO 40 -
                         78
                                          73
                                         49
              NO. 80 - 70
             NO. 200 - 63
                                          43
  LIOUID LIMIT
                       25
                                         24
  PLASTICITY INDEX
                     - 7
                                          4
                                         A-4(1)
  AASHTO SOIL
                    - A-4(4)
  UNIFIED SOIL
                                           22.3
  % MOISTURE CONTENT -
                         18.4
                 (IN) -
                         9.5
AGG.BASE CRS. CL7 (IN) -
                         7.0
```

REMARKS - W=MULTIPLE LAYERS, X=STRIPPED, Z=AUGER REFUSAL

MICHAEL BENSON, MATERIALS ENGINEER

*** SOIL SURVEY / PAVEMENT SOUNDING TEST REPORT ***

```
DATE
            - 01/19/16
                                                  SEOUENCE NO. - 1
JOB NUMBER - 061439
                                                  MATERIAL CODE - RV
FEDERAL AID NO.- TO BE ASSIGNED
                                                  SPEC. YEAR - 2014
PURPOSE - SOIL SURVEY SAMPLE
                                                  SUPPLIER ID. - 1
SPEC. REMARKS - NO SPECIFICATION CHECK
                                                  COUNTY/STATE - 26
SUPPLIER NAME - STATE
                                                  DISTRICT NO. - 06
NAME OF PROJECT - HWY.7 - HWY.128 (SAFETY IMPVTS)(S)
PROJECT ENGINEER - NOT APPLICABLE
PIT/QUARRY - ARKANSAS
LOCATION - GARLAND COUNTY
                                                   DATE SAMPLED - 12/03/15
SAMPLED BY - D.DICKERSON
                                                   DATE RECEIVED - 12/07/15
SAMPLE FROM - TEST HOLE
                                                   DATE TESTED - 01/22/16
MATERIAL DESC. - SOIL SURVEY - RESISTANCE R-VALUE ACTUAL RESULTS
 LAB NUMBER
                     - 20154100
                                      20154101
                              _ RV916
                     - RV915
  SAMPLE ID
                     - INFORMATION ONLY - INFORMATION ONLY -
  TEST STATUS
                    - 261+00 = 293+00
  STATION
                                       = 27' LT
                     - 18' LT
  LOCATION
                                       0-5
  DEPTH IN FEET
                    - 0-5
                                       BROWN
                  - BROWN
  MAT'L COLOR
  MAT'L TYPE
  LATITUDE DEG-MIN-SEC - 34 35 57.80 = 34 36 3.70
                                          92 56 6.40
  LONGITUDE DEG-MIN-SEC -
                         92 56 44.00
  % PASSING
          2 IN. -
             1 1/2 IN. -
              3/4 IN. -
              3/8 IN. - 100
                                          100
             NO. 4 - 98
                                          98
                        93
                                          95
             NO: 10 -
                                         86
             NO. 40 - 82
                                          79
             NO. 80 - 77
             NO. 200 - 72
                                          71
                                          27
  LIQUID LIMIT
                     - 27
  PLASTICITY INDEX
                    - 07
                                         06
                      - A-4(3)
                                          A-4(3)
  AASHTO SOIL
  UNIFIED SOIL
  % MOISTURE CONTENT
```

REMARKS -

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

September 14, 2021

TO:

Mr. Rick Ellis, Bridge Engineer

SUBJECT:

Job No. 061439

Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Garland County Route 5, Section 6

Provided herein is a summary of subsurface conditions obtained for widening an existing bridge on Arkansas Highway 5 in Garland County. The existing bridge over South Fork Saline River is a 180.0-ft. long, 42.8-ft. wide (out-to-out width) structure. The proposed work consists of widening the existing bridge on both sides to an out-to-out width of 53 ft. 6 in. The widened bridge will utilize the same C.L. Bridge & Const. The bridge is comprised of six (6), 30-ft. reinforced concrete spans. Existing end slopes are expected to be utilized to the extent possible, with minor reshaping of the existing slopes and re-distribution / re-application of dumped riprap. It is understood only a summary of subsurface conditions is desired and foundation recommendations are not requested by Bridge Division for this project.

A subsurface investigation was requested on July 23, 2021 by Bridge Division to verify subsurface conditions shown on the existing bridge Plans. The results of field investigation are presented in Attachment A. These include a Plan of Borings showing the boring locations, boring logs, a Legend interpreting the boring logs, and rock core pictures of the borings.

The laboratory test results of uniaxial compressive tests on rock cores, are presented in Attachment B. Geological Strength Index (GSI) and Rock Mass Rating (RMR) of the rock cores, as evaluated by licensed Professional Geologists, are also included in Attachment B.

Selected pictures of the job site is included as Attachment C. The particle size through which 50% of particles by weight passing, D_{50} , is summarized below in Table 1. Detailed particle size distribution curve used for D_{50} determination is included in Attachment C.

Table 1: Summary of D₅₀ for Scour Analysis

Creek Name	Station and Offset	Sample Type	Location	D ₅₀ , mm
South Fork	166+83, 16 ft.	Bulk	Creek Bank	2.5
Saline River	Lt.	23	orden Barin	2.0

The site geology in the alignment for the South Fork Saline River Bridge is mapped within the Womble Formation. The Womble Formation consists primarily of black shale with thin layers of limestone, silty sandstone, and some chert. Cleavage, at an angle to bedding, frequently displays ribboned cleavage surfaces. The sandstones are dark-gray, compact, fine-grained, occasionally conglomeratic, and may be phosphatic. These sandstones are generally present in the lower part of the formation. Dense, blue-gray limestone usually occurs near the top of the formation in thin to medium beds. Black chert is present as thin layers at the top of the formation. Large milky quartz veins often fill fractures in the formation. The formation rests conformably on the underlying Blakely Sandstone and ranges from 500 to 1200 ft. in thickness. Horizontally

ARKANSAS DEPARTMENT OF TRANSPORTATION

ARDOT.gov | IDriveArkansas.com | Lorie H. Tudor, P.E., Director

MATERIALS DIVISION

11301 West Baseline Road | P.O. Box 2261 | Little Rock, AR 72203-2261 | Phone: 501.569.2185 | Fax: 501.569.2368

bedded shale was observed in a ditch on the north bank of the river channel. The observed shale was highly weathered and approximately 2 ft. below the surface. Weathered shale was also exposed in the channel under the bridge. Sediment load observed in the channel consists of sand, gravel, cobbles and boulders. There is an overall decrease in fractures and slickensides observed in the rock core with depth. Mapped faults are located to the north and the south of the project alignment and other unmapped faults in the area are likely.

A Generalized Subsurface Profile is included in Attachment D to aid in visualizing subsurface conditions. In light of the natural variations in stratigraphy and subsurface conditions, slight deviation from those illustrated on the profile should be anticipated.

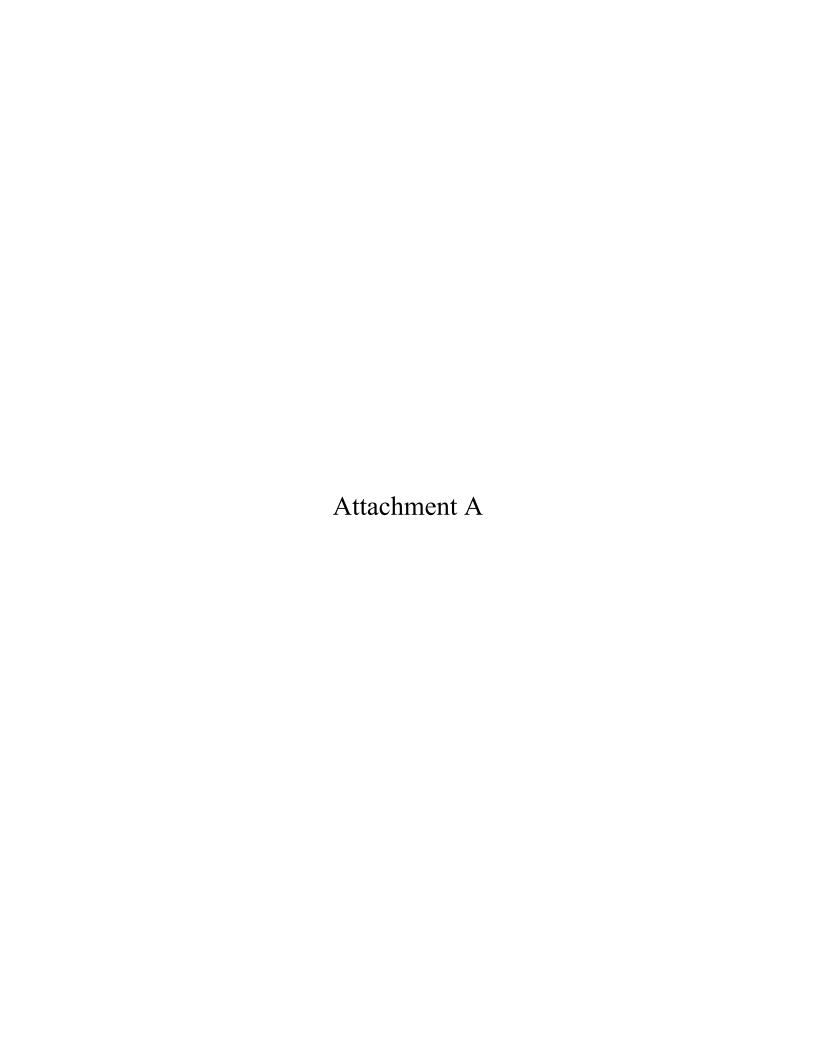
In light of the average subsurface conditions as revealed by the borings, a **Seismic Site Class C (Very Dense Soil and Soft Rock Profile)** is calculated for the project site. Utilizing the Seismic Site Class C and the approximate GPS coordinates of the project site, the following design peak ground acceleration coefficient (A_S), design short-period spectral acceleration coefficient (A_S), as well as design long-period spectral acceleration coefficient (A_S), are determined. These seismic coefficients are summarized in Table 2. Design Response Spectrum is presented in Attachment E.

Table 2: Summary of Design Ground Motion Acceleration Response Coefficients

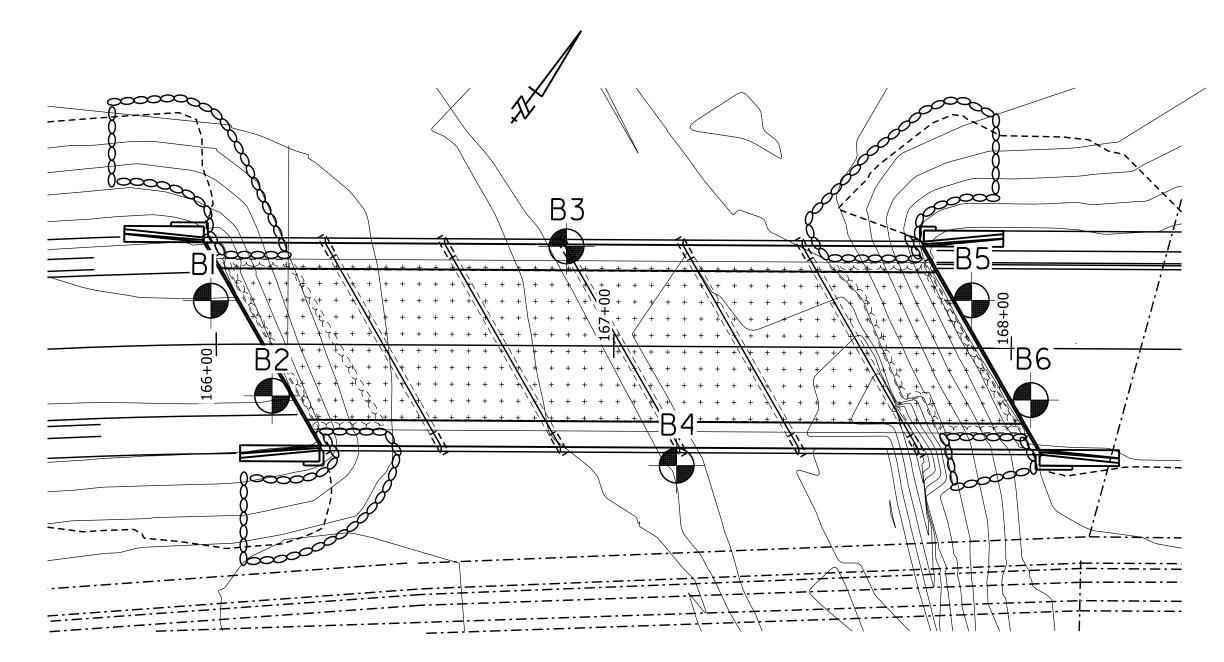
Design Acceleration Coefficient	Value, g
A _S (Site PGA)	0.109
S _{DS} (0.2 sec)	0.248
S _{D1} (1 sec)	0.120

For the design long-period spectral acceleration coefficient (S_{D1}) of 0.120, a **Seismic Performance Zone 1** is considered applicable to the project site.

JAA:yz:mlg:pwc


c: State Construction Engineer

District 6 Engineer


G. C. File

Page 2 of 2

Jonathan A. Annabl Materials Engineer

	FED, ROAD DIST, NO.	STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS	
	6	AR				
	JOB N	0.	061439			
PLAN OF BORINGS						

SO	SOUTH FORK SALINE RIVER								
BORING	STATION	OFFSET	ELEVATION						
B1	165+99	11 LT	540.20						
B2	166+14	13 RT	538.39						
В3	166+88	25 LT	524.74						
B4	167+16	30 RT	525.31						
B5	167+90	12 LT	539.67						
В6	168+05	13 RT	538.80						

PLAN OF BORINGS

HWY. 7 - DEERPARK RD. (SAFETY IMPVTS.)(S) ROUTE 5, SECTION 6 GARLAND COUNTY SOUTH FORK SALINE RIVER

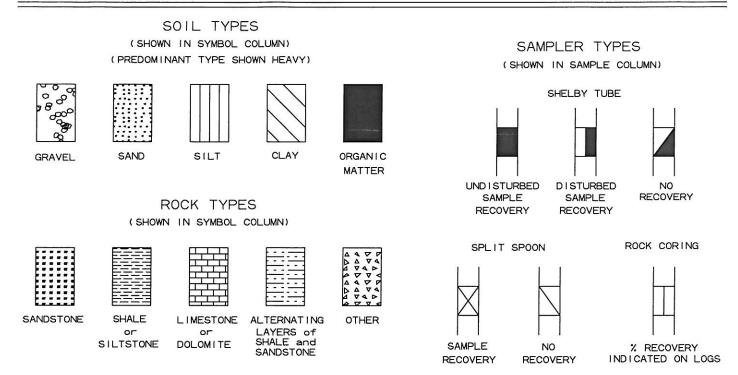
JOB NO. 061439

SHEET 1/1

ARKANSAS DEPARTMENT OF TRANSPORTATION BORING NO. 1 MATERIALS DIVISION - GEOTECHNICAL SEC. PAGE 1 OF 1 061439 **Garland County** September 1, 2021 JOB NO. Hwy. 7 - Deerpark Rd. (Safety Impvts.) (S) JOB NAME: TYPE OF DRILLING: Route 5, Section 6 Hollow Stem Auger - Diamond Core STATION: 165+99 EQUIPMENT: **CME 75** 11' Left of Construction Centerline LOCATION: LOGGED BY: Anthony Nicholson HAMMER CORRECTION FACTOR: N/A **COMPLETION DEPTH: 31.6** D S PERCENT PASSING NO. 200 SIEVE S NO. OF BLOWS PER 6-IN. Ε Α Υ Ρ M **DESCRIPTION OF MATERIAL** Μ SOIL T R Т Ρ **GROUP** C Q В Η L R D MOISTURE CONTENT (%) ● 0 Ε L FT. S SURFACE ELEVATION: 540.2 40 50 Asphalt and Base 2 5 2-4 Moist, Loose, Brown Sand with Gravel 3 10 4-6 15 6-8 Wet, Medium Dense, Brown Sand with Gravel SHALE WITH FREQUENT 15 20 (1") CALCITE SEAMS AND LAYERS -79 0 Weathered, Medium Hard, Frequent Fractures, Gray 96 90 25 SHALE WITH FREQUENT CALCITE SEAMS AND LAYERS -Unweathered, Hard, Occasional Fractures, Gray 94 68 30 **Boring Terminated** REMARKS: * Water was encountered at approximately 14.0 feet below ground level.

ARKANSAS DEPARTMENT OF TRANSPORTATION BORING NO. 2 MATERIALS DIVISION - GEOTECHNICAL SEC. OF 2 PAGE 1 JOB NO. 061439 **Garland County** September 1, 2021 DATE: JOB NAME: Hwy. 7 - Deerpark Rd. (Safety Impvts.) (S) TYPE OF DRILLING: Route 5, Section 6 Hollow Stem Auger - Diamond Core STATION: 166+14 EQUIPMENT: **CME 75** LOCATION: 13' Right of Construction Centerline LOGGED BY: Anthony Nicholson HAMMER CORRECTION FACTOR: N/A **COMPLETION DEPTH: 36.9** D S PERCENT PASSING NO. 200 SIEVE NO. OF BLOWS PER 6-IN. S Ε Α Υ Ρ Μ **DESCRIPTION OF MATERIAL** M SOIL T R Т Ρ **GROUP** C В Q Н L R D 0 MOISTURE CONTENT (%) Ε L FT. S SURFACE ELEVATION: 538.4 40 50 60 Ashpalt and Base 6 5 7-4 Moist, Medium Dense, Brown Sand with Gravel Wet, Very Loose, Brown Sandy 2 10 2-1 Gravel Wet, Soft, Brown Sandy Clay* 3 15 3-5 Wet, Loose, Brown Sand with Gravel Wet, Very Dense, Brown Sand with 5 15 Gravel (2")SHALE WITH FREQUENT 70 0 CALCITE SEAMS AND LAYERS -Weathered, Medium Hard with Soft ayers, Frequent Fractures, Gray SHALE WITH FREQUENT 50 24 25 CALCITE SEAMS AND LAYERS -Slightly Weathered, Medium Hard, Frequent Fractures, Gray 98 90 30 SHALE WITH FREQUENT CALCITE SEAMS AND LAYERS -Unweathered, Hard, Gray 100 88 REMARKS: *A water was encountered at approximately 14.0 feet below ground level.

			DEPARTMENT OF TRANSPORTATION O	ON				BOR PAG	ING	NO. 2	2 OF	2				
JOB N		\LS	061439 Garland County					DAT					mber 1	, 2021		-
JOB N	AME	:	Hwy. 7 - Deerpark Rd. (Safety Impvts	Hwy. 7 - Deerpark Rd. (Safety Impvts.) (S) Route 5, Section 6 TYPE OF DRILLING: Hollow Stem Auger - Diamond Core												
STATI	ON:		166+14						Ollov IPME		em A	uger		nond Co E 75	re	
LOCA	TION		13' Right of Construction Centerline													
			Anthony Nicholson N DEPTH: 36.9					HAM	IMER	COR	RECT	ION I	FACTOF	R: N	/A	_
D		s	N DEF 111. 30.9										Ö			
Е	S Y	Α											PERCENT PASSING NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	%	%
P T	М	M P	DESCRIPTION OF MATERIAL	SOIL GROUP									T PA	F BL(T C	R Q
Н	В О	L E		GROOT			TUR	E CO	NTEI	NT (9	%)	•	CEN VO. 2	0.0 PEI	R	D
FT.	L		SURFACE ELEVATION: 538.4		PL 1			0 4		0 6		LL 0	PER	Z		
			Boring Terminated													
			Boning Ferninated													
 40																
45																
50																
 55																
60																
65																
<u> </u>																
70	V D 1 4		*^	4 4	0,		<u> </u>		1	1						
KEM	AKK	S:	*A water was encountered at approxin	nately 14	.U fe	et b	elov	gro	und	leve	eI.					


			DEPARTMENT OF TRANSPORTATI DIVISION - GEOTECHNICAL SEC.	ON				BORII PAGE			г 1				
JOB N		1	061439 Garland County					DATE:		<u> </u>		ust 23,	2021		-
JOB N		:	Hwy. 7 - Deerpark Rd. (Safety Impvts	;.) (S)						RILLING	_	,			
			Route 5, Section 6												
STATI			166+88					EQUIP	MENT	Γ:		Ack	ker 2		
LOCA'			25' Left of Construction Centerline										•		
	LOGGED BY: Stanley Bates and Brandon McKinney HAMMER CORRECTION FACTOR: N/A COMPLETION DEPTH: 29.3														
	PLE		N DEP1H: 29.3	Τ								rh.		T	
D E	S	S A	I									PERCENT PASSING NO. 200 SIEVE	ΝS		
Р	Y M	M	DESCRIPTION OF MATERIAL	SOIL								ASS SIE	LO'	% T	% D
	B	P	1	GROUP								NT I	OF B	C	R Q
Н	0	L E	I				TUR	E CON	TENT	Γ(%)	•	RCENT PASSIN NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	R	D
FT.	L		SURFACE ELEVATION: 524.7		PL 1		—— 20—3	30 40	50	60	- LL 70	PEF	Z		
	0.000 0.000 0.000 0.000						Ť								
	9.		I												
			Sand with Gravel												
			I												
				_									60		
			I										(5")		
L _		\geq	SHALE - Highly Weathered, Medium Hard, Dark Gray										30 60		
$\perp \perp$			Medium Haru, Dark Gray										(5")		
10			I				<u> </u>	$\perp \perp$	\perp						
$\perp \perp$			SHALE - Weathered, Medium Hard,	.†									3		
$\vdash \vdash$			_ Dark Gray	_									13-60 (10")		
├			I										(10)	96	69
<u>├</u> _ᆜ		Ш	I												
15			I		_	-	\vdash	++	+	_	+-	-			
\vdash			ı												
$\vdash \dashv$			SHALE WITH FREQUENT											8	0
$\vdash \vdash \vdash$			CALCITE SEAMS AND LAYERS - Unweathered, Hard, Frequent												
 20		\mathbb{H}	Fractures, Gray												
20			- I				+	+				·			
$\vdash \neg$			I											92	50
$\vdash \neg$			I											92	50
			ı												
 25		H		1											
			I												
			No Recovery*											0	0
		$ \ \ $													
$\perp \perp$			ı												
30			Boring Terminated				\top		\top		†				
$ldsymbol{\sqcup}$			I												
$\vdash \vdash$			I												
$\vdash \vdash \vdash$			I												
\vdash \vdash			I												
35 DEM			**!	for the dual	<u>اط د ٔ</u>	' - alc		"r	or	1					
KEIVI	AKN	5.	*No core recovered from 24.3 to 29.3 f	eet aue	เด ฌ	OCK	ea o	II COLE) Dai	reı.					

			DEPARTMENT OF TRANSPORTAT DIVISION - GEOTECHNICAL SEC.	ION				BOR PAG		NO.	4 OF	1				
JOB N			061439 Garland County					DATE: August 24, 2021								
JOB N		<u>:</u> :	Hwy. 7 - Deerpark Rd. (Safety Impvts	s.) (S)						DRILI	LING:	_		-		
į			Route 5, Section 6 Hollow Stem Auger -							- Diar	mond Co	ore				
STATI	ION:		167+16					EQU	IPME	NT:			Ack	ker 2		
LOCA			30' Right of Construction Centerline													
	LOGGED BY: Stanley Bates HAMMER CORRECTION FACTOR: N/A															
	PLE.		N DEPTH: 24.8	Т	ı								T ,			I
D E	S	S											ING	S/		
P	Y	A M	DECODIDITION OF MATERIAL										ASS SIE	N. Sol	%	%
Т	M B	Р	DESCRIPTION OF MATERIAL	SOIL GROUP									T P.	F BI R 6-	T C	R Q
Н	0	L		GROOT	l _N	MOIS	TUR	E CO	NTE	NT (9	%) (•	RCENT PASSIN NO. 200 SIEVE	NO. OF BLOWS PER 6-IN.	R	D
FT.	Ĺ	E S	SURFACE ELEVATION: 525.3		PL	+					+	LL	PERCENT PASSING NO. 200 SIEVE	ž		
<u> </u>			SURFACE ELEVATION. 525.5		1	0 2	20 3	80 4	0 5	0 6	0 7	0	<u> </u>		\vdash	
\vdash																
\vdash																
├	$\langle \rangle$		Sandy Clay													
├ '																
5														42		
 		\times												9-10		
\vdash		\longrightarrow	SHALE - Highly Weathered, Very											0.0		
\vdash			Soft, Brown and Gray*													
\vdash			,													
10			CHAIF Medium Houd		-									60		
\vdash \vdash		\bigcap	SHALE - Weathered, Medium Hard Gray	,										60 (6")		
\vdash \vdash			Glay	+										` .		
\vdash															100	100
<u>├</u> '																
15		H														
\vdash			OLIALE MUTIL EDECLIENT													
\vdash \vdash			SHALE WITH FREQUENT CALCITE SEAMS AND LAYERS -												94	80
\vdash \vdash			Unweathered, Hard, Frequent												"	
\vdash			Fractures and Slickensides, Gray													
20		+														
\vdash \vdash																
\vdash															100	72
\vdash															100	12
\vdash \vdash																
25		Н	Boring Terminated									\square			\vdash	
$\vdash \vdash$			3													
\vdash																
 																
<u> </u>																
30																
\vdash																
\vdash \dashv																
$\vdash \vdash$																
┝╌╌																
35 DEM	^ DK		*A water was encountered at approxing the state of the s	∽otoly 8 /	foc	+ ho	low	~rou	A I	21/01	Ш	ш			Ш	
KEIVI	AINN	.S.	A water was encountered at approxi	nately o.) lee	ינ טפ	IOW	grou	iiiu i	evei	•					

ARKANSAS DEPARTMENT OF TRANSPORTATION BORING NO. 5 MATERIALS DIVISION - GEOTECHNICAL SEC. PAGE 1 OF 1 JOB NO. 061439 **Garland County** August 31, 2021 Hwy. 7 - Deerpark Rd. (Safety Impvts.) (S) JOB NAME: TYPE OF DRILLING: Route 5, Section 6 Hollow Stem Auger - Diamond Core 167+90 STATION: EQUIPMENT: Acker 2 12' Left of Construction Centerline LOCATION: LOGGED BY: Coty Campbell HAMMER CORRECTION FACTOR: N/A **COMPLETION DEPTH: 28.6** D S PERCENT PASSING NO. 200 SIEVE S NO. OF BLOWS PER 6-IN. Ε Α Υ Ρ Μ **DESCRIPTION OF MATERIAL** Μ T SOIL R Т Ρ **GROUP** C Q В Η L R D MOISTURE CONTENT (%) ● 0 Ε L FT. S SURFACE ELEVATION: 539.7 40 50 Ashpalt 10 32-22 Moist, Very Dense, Brown Silty Sand with Gravel 10 8 7-8 Moist, Medium Dense, Brown Silty Sand with Gravel 15 40 SHALE WITH FREQUENT (5") CALCITE SEAMS AND LAYERS -Weathered, Medium Hard, Frequent 100 0 Fractures and Slickensides, Dark Gray* 20 100 100 SHALE WITH FREQUENT CALCITE SEAMS AND LAYERS -Unweathered, Hard, Occasional 25 Fractures, Gray 100 74 **Boring Terminated** 30 REMARKS: * Total water loss at approximately 18.6 feet below ground level.

ARKANSAS DEPARTMENT OF TRANSPORTATION BORING NO. 6 MATERIALS DIVISION - GEOTECHNICAL SEC. OF 1 PAGE 1 **Garland County** September 1, 2021 JOB NO. 061439 DATE: Hwy. 7 - Deerpark Rd. (Safety Impvts.) (S) JOB NAME: TYPE OF DRILLING: Route 5, Section 6 Hollow Stem Auger - Diamond Core STATION: 168+05 EQUIPMENT: Acker 2 LOCATION: 13' Right of Construction Centerline LOGGED BY: Coty Campbell HAMMER CORRECTION FACTOR: N/A **COMPLETION DEPTH: 33.8** D S PERCENT PASSING NO. 200 SIEVE S NO. OF BLOWS PER 6-IN. Ε Α Υ Ρ Μ **DESCRIPTION OF MATERIAL** M SOIL T R Т Ρ **GROUP** C В 0 Н L R D 0 MOISTURE CONTENT (%) Ε L FT. S SURFACE ELEVATION: 538.8 40 50 60 Asphalt 5 14 Moist, Dense, Brown Silty Sand with 17-17 Gravel 10 5 4-5 Moist, Loose, Brown Silty Sand with Gravel 15 Moist, Very Dense, Brown Silty 2 Sand with Gravel 16-40 SHALE - Weathered, Medium Hard, Gray 100 0 SHALE WITH FREQUENT CALCITE SEAMS AND LAYERS -20 Slightly Weathered, Medium Hard With Hard Layers, Frequent 74 0 Fractures and Slickensides, Dark Gray* 25 QUARTZ AND CALCITE SHALE WITH FREQUENT 100 76 CALCITE SEAMS AND LAYERS -Unweathered, Hard, Frequent Fractures and Slickensides, Dark Grav SHALE WITH FREQUENT 30 CALCITE SEAMS AND LAYERS -Unweathered, Hard, Occasional 100 100 Fractures, Gray **Boring Terminated** REMARKS: * Total water loss at approximately 18.8 feet below ground level.

LEGEND

TERMS DESCRIBING CONSISTENCY OR CONDITION

GRANU	GRANULAR SOIL CLAY		CLAY	CLA	Y-SHALE	SHALE			
'N' Value	Density	'N' Value	Consistency	'N' Value	Consistency	'N' Value	Consistency		
0-4 5-10 11-30 31-50 Over 50	Very Loose Loose Medium Dense Dense Very Dense	0-1 2-4 5-8 9-15	Very Soft Soft Medium Stiff Stiff Very Stiff	0-1 2-4 5-8 9-15	Very Soft Soft Medium Stiff Stiff Very Stiff	31-60 Over 60 More than Penetrati			
3751 33	very berise	31-60 Over 60	Hard Very Hard	31-60 Over 60	Hard Very Hard		vs: Medium Hard 2' on		

- 1. Ground water elevations indicated on boring logs represent ground water elevations at date or time shown on boring log. Absence of water surface implies that no ground water data is available but does not necessarily mean that ground water will not be encountered at locations or within the vertical reaches of these borings.
- 2. Borings represent subsurface conditions at their respective locations for their respective depths. Variations in conditions between or adjacent to boring locations may be encountered.
- Terms used for describing soils according to their texture or grain size distribution are in accordance with the Unified Soil Classification System.

Standard Penetration Test – Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6.0 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and performing the test are recorded for each 6 inches of penetration on the drill log. The field "N" Value (N_f) can be obtained by

adding the bottom two numbers for example: $\frac{6}{8-9} \Rightarrow 8+9=17 blows/ft$. The "N" Value corrected to 60% efficiency (N₆₀) can be obtained by multiplying N_f by the hammer correction factor published on the boring log.

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 165+99, 11' Lt. Depth, ft: 19.1-26.6

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 165+99, 11' Lt.

Depth, ft: 26.6-31.6

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 166+14, 13' Rt.

Depth, ft: 19.9-26.9

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 166+14, 13' Rt. Depth, ft: 26.9-36.9

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 166+88, 25' Lt. Depth, ft: 11.9-24.3

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 167+16, 30' Rt.

Depth, ft: 10.8-19.8

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 167+16, 30' Rt. Depth, ft: 19.8-24.8

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: Sta. 167+90, 12' Lt. Depth, ft: 14.7-23.6

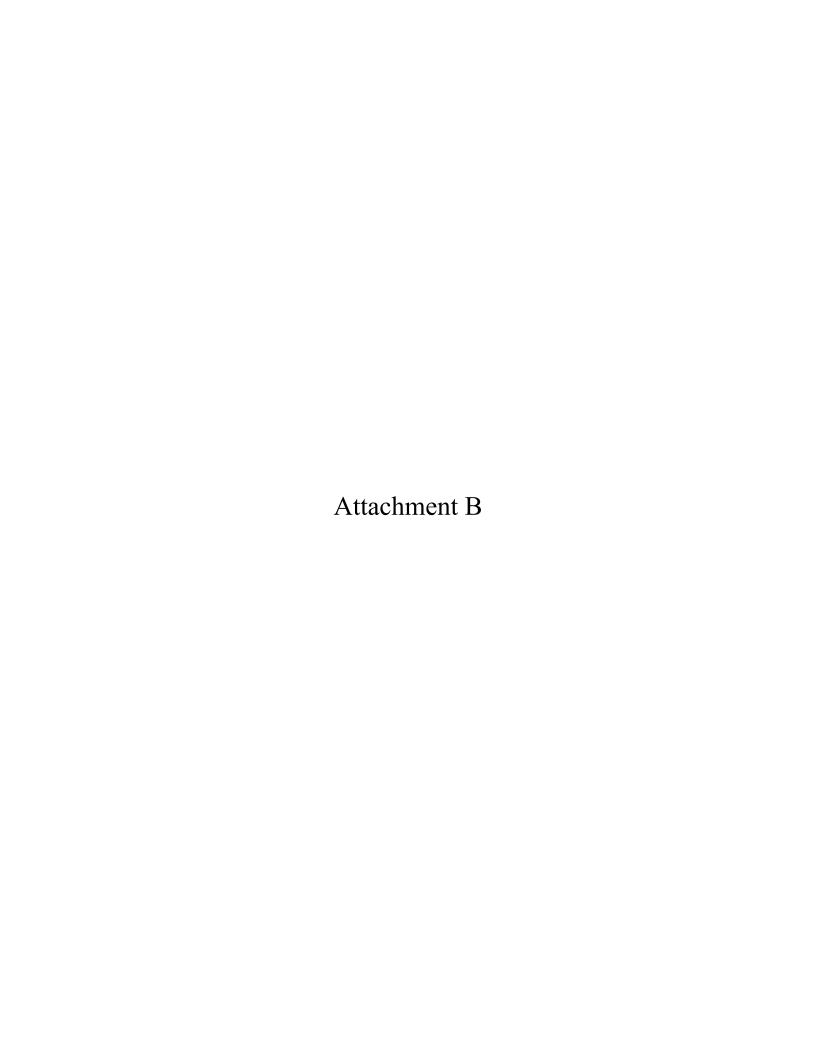
Job No.: 061439

Station and Offset, ft: 167+90, 12' Lt. Depth, ft: 23.6-28.6

Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: 168+05, 13' Rt. Depth, ft: 16.8-23.8



Job No.: 061439

Job Name: Hwy. 7 – Deerpark Rd. (Safety Impvts.) (S)

Station and Offset, ft: 168+05, 13' Rt. Depth, ft: 23.8-33.8

Rock Core Unconfined Compression Test Summary

Project Number: 061439

Project Name: Hwy. 7 - Deerpark Rd. (Safety Impts.)(S)

Date Tested: 9-13-2021

Station	Location	Sample No.	Depth (ft)	Diameter (in)	Height (in)	Total Load (lbs)	Correction Factor	Stress (psi)	Remarks
165+99	11' Lt CL	1	23.8	1.74	3.52	5,920		2,489	
165+99	11' Lt CL	2	25.4	1.76	3.51	10,420		4,283	
166+14	13' Rt CL	3	28.4	1.76	3.45	5,090		2092	
166+88	25' Lt CL	4	22.3	1.75	3.52	8,440		3549	
166+89	25' Lt CL	5	23.3	1.74	3.55	7,880		3313	
167+16	30' Rt CL	6	13.4	1.74	3.45	3,730		1568	
167+16	30' Rt CL	7	14.1	1.74	3.45	3,220		1354	
167+16	30' Rt CL	8	20.5	1.75	3.15	5,240		2308	
167+90	12' Lt CL	9	22.5						Broke
167+90	12' Lt CL	10	27.1	1.76	3.50	15,930		6547	
168+05	13' Rt CL	11	29.4						Broke
168+06	13' Rt CL	12	32.4	1.76	3.49	10,400		4274	

^{*} Please note any broken samples, fractures or other characteristics of sample in Remarks.

ROCK MASS RATING SUMMARY JOB # 61439

GSI 80

SAMPLE #1

165+99, 11' LT CL Station/Location Depth (ft) 23.8 Relative Rating Uniaxial Compressive Strength RQD 2 17 Spacing of Joints Condition of Joints 20 **Groundwater Conditions** Sum 52 Class Number Ш Description FAIR ROCK

SAMPLE #2

Station/Location Depth (ft)	165+99, 11' LT CL 25.4	
	Relative Rating	
Uniaxial Compressive Strength	4	
RQD	13	
Spacing of Joints	20	
Condition of Joints	6	
Groundwater Conditions	7	
Sum	50	
Class Number	III	
Description	FAIR ROCK	

SAMPLE #3

Station/Location 1 Depth (ft)	166+14, 13' RT CL 28.4
Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number	Relative Rating 2 17 20 25 7 71 II GOOD ROCK

SAMPLE #4

Station/Location Depth (ft)	166+88, 25' LT CL 22.3	
	Relative Rating	
Uniaxial Compressive Strength	2	
RQD	13	
Spacing of Joints	20	
Condition of Joints	20	
Groundwater Conditions	7	
Sum	62	
Class Number	II	
Description	GOOD ROCK	

SAMPLE #5

Station/Location Depth (ft)	166+88, 25' LT CL 23.3
	Relative Rating
Uniaxial Compressive Strength	2
RQD	13
Spacing of Joints	20
Condition of Joints	20
Groundwater Conditions	7
Sum	62
Class Number	II
Description	GOOD ROCK

SAMPLE #6

Station/Location Depth (ft)	167+16, 30' RT CL 13.4
Uniaxial Compressive Strength RQD	Relative Rating 2 17
Spacing of Joints Condition of Joints Groundwater Conditions	20 25 7
Sum Class Number	71
Description	GOOD ROCK

SAMPLE #7

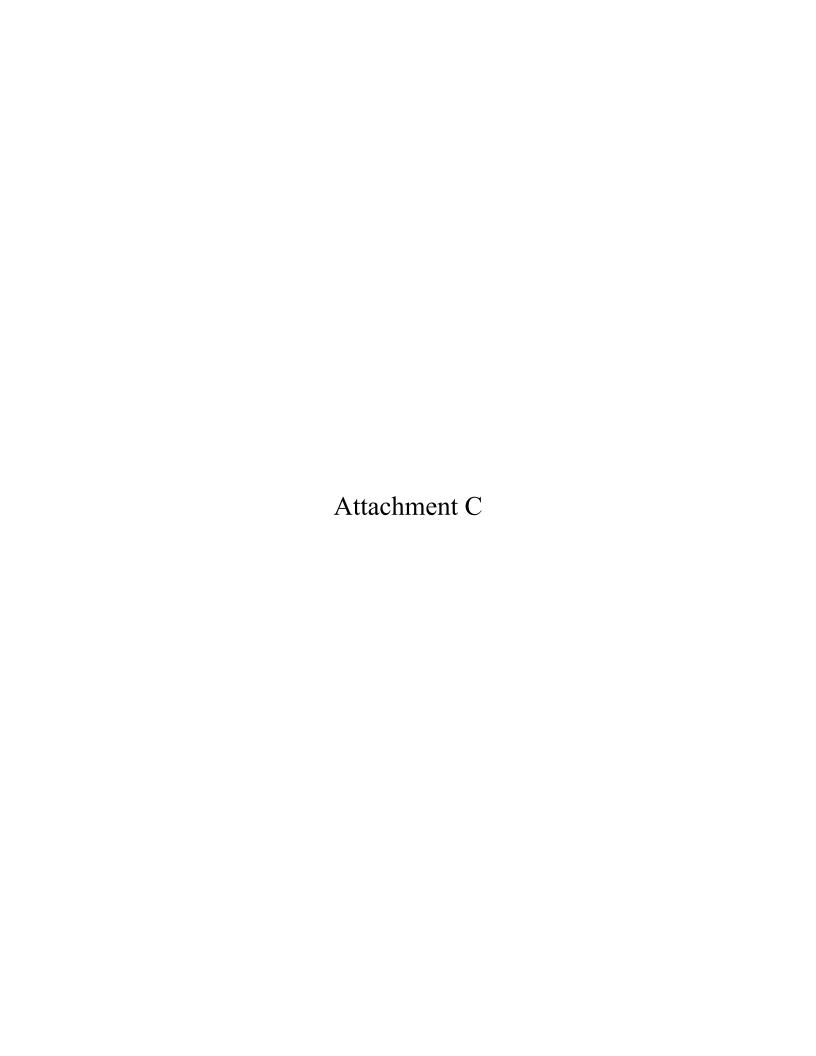
Station/Location	167+16, 30' RT CL
Depth (ft)	14.1
Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number Description	Relative Rating 1 17 20 25 7 70 II GOOD ROCK

SAMPLE #8

Station/Location Depth (ft) Relative Rating Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum 167+16, 30' RT CL 20.5 Relative Rating 2 13 20 20 25 67 67 Class Number	SAMPLE #8		
Uniaxial Compressive Strength RQD 13 Spacing of Joints 20 Condition of Joints 25 Groundwater Conditions 7 Sum 67 Class Number II			
	RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum	2 13 20 25 7 67	

ROCK MASS RATING SUMMARY JOB # 61439

GSI 80


SAMPLE #9 Station/Location Depth (ft) Relative Rating Uniaxial Compressive Strength RQD Spacing of Joints Condition of Joints Groundwater Conditions Sum Class Number Description

Station/Location 167+90, 12' LT CL Depth (ft) 27.1 Relative Rating Uniaxial Compressive Strength RQD 4 13 Spacing of Joints 20 Condition of Joints 20 Groundwater Conditions 7 Sum 64 Class Number П GOOD ROCK Description

SAMPLE #10

SAMPLE #11		
Station/Location Depth (ft)	168+05, 13' RT CL 29.4	
Uniaxial Compressive Strength	Relative Rating Broke	
RQD	Broke	
Spacing of Joints		
Condition of Joints Groundwater Conditions		
Sum		
Class Number		
Description		

SAMP	SAMPLE #12		
Station/Location Depth (ft)	168+05, 13' RT CL 32.4		
Relative Rating			
Uniaxial Compressive Strength	4		
RQD	20		
Spacing of Joints	25		
Condition of Joints	25		
Groundwater Conditions	7		
Sum	81		
Class Number Description	I VERY GOOD ROCK		

Job No.: 061439

East Side of Bridge (August 2021)
Looking South from the North

Job No.: 061439

East Side of Bridge (August 2021) Looking North from the South

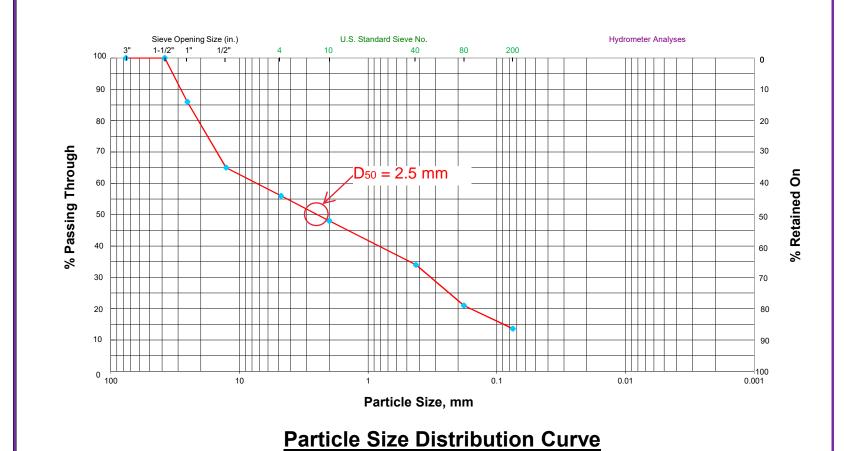
Job No.: 061439

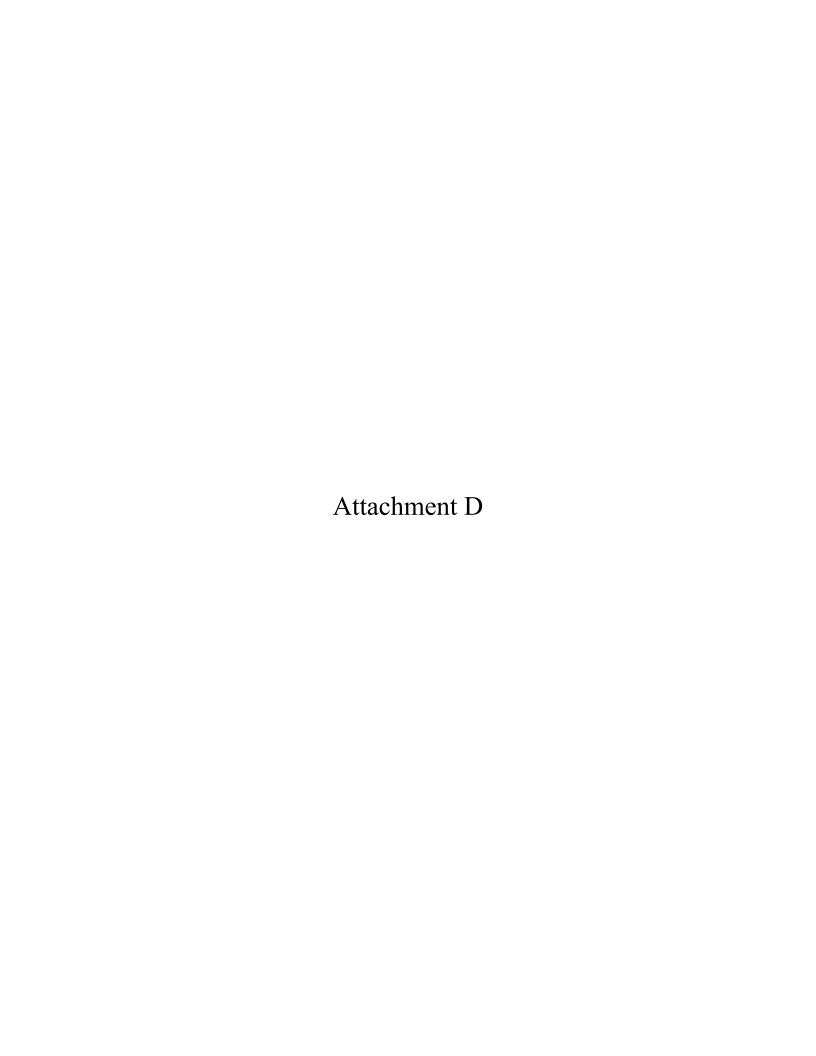
West Side of Bridge (August 2021) Looking South from the North

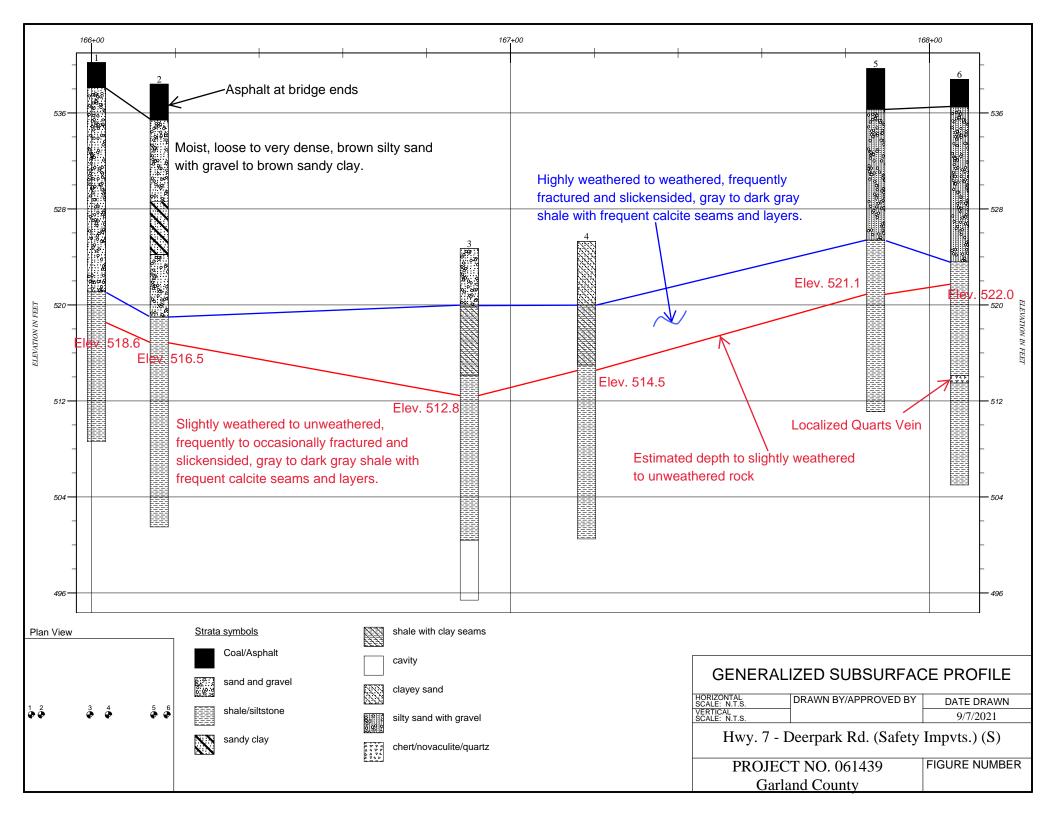
Job No.: 061439

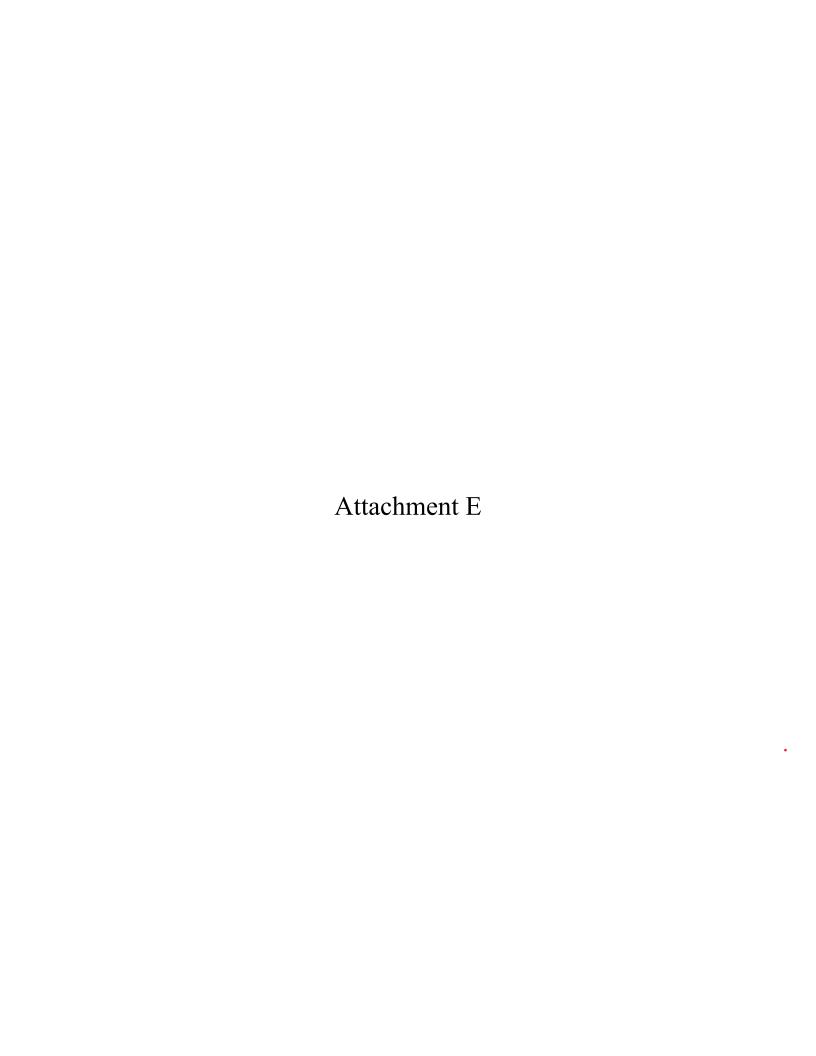
West Side of Bridge (August 2021) Looking South from the North

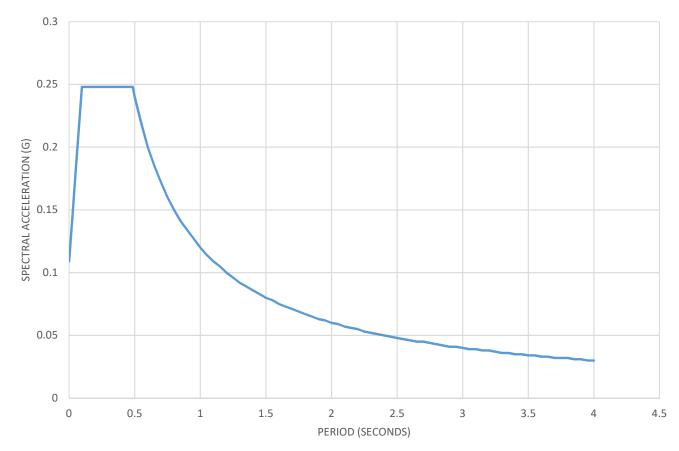
Job No.: 061439


Bents 1 through 5 (August 2021) Looking South from the North


Job No.: 061439




Scour around Footing and Exposed Shale (June 2021) Left Column – Bent 5



PGA:	0.091
F _{PGA} :	1.2
A _s :	0.109
S _s :	0.207
F _A :	1.2
S _{DS} :	0.248
S ₁ :	0.071
F _V :	1.7
S _{D1} :	0.12
S _{Dc} :	Α
T _S :	0.485
T ₀ :	0.097

061439 DESIGN RESPONSE SPECTRUM

