ARKANSAS DEPARTMENT OF TRANSPORTATION

SUBSURFACE INVESTIGATION

STATE JOB NO		101124	
FEDERAL AID PROJEC	CT NO	BFP-1656(5)	
	HWY. 1	35 STRS. & APPRS. (S)	
STATE HIGHWAY	135	SECTION	1 & 2
IN	CRAI	GHEAD & POINSETT	COUNTY

The information contained herein was obtained by the Department for design and estimating purposes only. It is being furnished with the express understanding that said information does not constitute a part of the Proposal or Contract and represents only the best knowledge of the Department as to the location, character and depth of the materials encountered. The information is only included and made available so that bidders may have access to subsurface information obtained by the Department and is not intended to be a substitute for personal investigation, interpretation and judgment of the bidder. The bidder should be cognizant of the possibility that conditions affecting the cost and/or quantities of work to be performed may differ from those indicated herein.

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 13, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER DEAD TIMBER LAKE (SITE 1) ARDOT 101124 HWY. 135 STR. & APPRS. (S) POINSETT COUNTY, ARKANSAS

INTRODUCTION

Presented herein are the final results of the geotechnical investigation performed for the Hwy. 135 over Dead Timber Lake replacement bridge in Poinsett County, Arkansas. This bridge is Site 1 of the ARDOT 110124 Hwy. 135 Strs & Apprs (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on July 2, 2023. This revised report supersedes the previous submittal of September 10, 2023.

We understand the replacement bridge will be an integral prestressed concrete girder unit with four (4) bents, three (3) spans, and a total length of approximately 180 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed east of the existing bridge. Site grading will include about 12 ft of fill. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the Site 1 replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Site 1 replacement bridge alignment were explored by drilling four (4) sample borings to 110 ft each. The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset, ft		ordinates grees)	Approx Surf El, ft	Completion Depth, ft
		11	Latitude	Longitude	п	
A1	519+55	15 ft Lt	35.48416	-90.32248	219.1	110
A2	520+00	5 ft Lt	35.48435	-90.32248	213.4	110
A3	520+75	35 ft Lt	35.48451	-90.32249	212±	110
A4	521+50	20 ft Lt	35.48471	-90.32254	218.0	110

 Table 1: Summary of Site 1 Exploration Program

The boring logs, presenting descriptions of the soil strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 14. The centerline station and

offset of the boring locations and ground surface elevation, as surveyed, is also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 15.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profiles should be anticipated.

The borings were drilled with a truck-mounted CME-55 HTX rotary-drilling rig and a track-mounted Diedrich D-50 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.-diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 46 natural water content determinations were performed to develop data on in-situ soil water content for each boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 10 liquid and plastic (Atterberg) limit determinations and 30 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

The laboratory testing program also included one (1) consolidation test performed in general accordance with ASTM D 2435. In this test, an undisturbed soil sample was placed in a cell, inundated with water, and incrementally loaded. The deflection was measured with time until vertical movement had essentially stopped. At that point, another load increment was applied. After the completion of all loading cycles, the load was removed incrementally and rebound was measured. The consolidation test results are presented graphically in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The Site 1 location is on Hwy. 135 where the Dead Timber Lake drainage channel crosses the highway approximately 480 ft north of Howard Road in Poinsett County. The existing bridge is a two-lane structure with a concrete deck, steel girders, and a concrete pile foundation system. Dead Timber Lake is located just east of the bridge site. The drainage channel at the bridge is broad with shallow to steep banks. The area around the bridge is low-lying and swampy, with standing water, thick underbrush, and numerous trees. The project locale is primarily agricultural land consisting of open flat fields. Grain storage bins are located southeast of the proposed bridge. The existing two-lane roadway is on embankment, and the existing pavements are in poor condition. Surface drainage along the roadway is poor and standing water is common after rain events.

Site Geology

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent Alluvium and variable Tertiary sediments. The <u>Geologic</u> <u>Map of Arkansas¹</u> indicates the alignment extends through exposures of Quaternary Terrace Deposits. The Terrace deposits are comprised of a complex sequence of unconsolidated gravel, sand, silt and clay. Individual Terrace deposits are often lenticular and discontinuous. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

Seismic Conditions

In light of the results of the borings and the surface geology, a Seismic Site Class D (stiff soil profile) is considered applicable to the bridge location at Site 1 with respect to the criteria of the <u>AASHTO LRFD Bridge Design Specifications Seventh Edition 2014</u>². Given the location and AASHTO code-based values, recommended seismic parameters are summarized below.

- Seismic Site Class D
- 1.0-sec period spectral acceleration coefficient $(S_1) = 0.442$
- Site amplification factor at 1.0 second (F_v) = 1.558
- 1.0-sec period spectral acceleration coefficient $(S_{D1}) = 0.689$
- Acceleration for a short (0.2 sec) period (S_s) = 1.689
- Site amplification factor for short period (F_a) = 1.0
- Peak ground acceleration (PGA) = 0.954
- Site amplification factor at PGA (F_{PGA}) = 1.0
- $A_s = 0.954$

Utilizing these parameters, AASHTO LRFD Seismic Bridge Design Specifications indicate that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Site 3 location of the Hwy. 135 bridge over Dead Timber Lake.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 0.954 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Appendix D as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

² <u>AASHTO LRFD Bridge Design Specifications</u>, 7th Edition; AASHTO; 2014.

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

analyses results are shown on the generalized subsurface profile also provided in Appendix D. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix D.

Subsurface Conditions

Based on the results of the borings, the surface soils to 4- to 6-ft depth are locally comprised of soft to firm brown clay and fine sandy clay <u>fill</u> (see Borings A1 and A4). The fill contains fine gravel, crushed stone, and asphalt fragments. The fill has poor compaction and exhibits low shear strength and high compressibility. The fill typically classifies as A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with very poor subgrade support for pavement structures.

Below the fill or at the surface is natural soft to stiff gray, brown, tan, and reddish tan clay extending to 23 to 38 ft below existing grades. The clay has a blocky structure at depth and contains ferrous stains and nodules, calcareous nodules, decayed organics, and occasional silty sand and clayey silt seams and layers. The clay exhibits low shear strength, moderate to high plasticity, and high to low compressibility. The shear strength increases, and compressibility decreases below 13-to 23-ft. The clay typically classifies as A-6, A-7-5, and A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to very poor subgrade support for pavement structures.

The clayey soil units are underlain below 23 to 38 ft by medium dense to dense brown, gray, dark gray, grayish brown, grayish tan, and brownish gray silty fine sand and fine to medium sand units. Some coarse sand and fine gravel are present at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth.

Groundwater Conditions

Groundwater was encountered in the borings at 23.7- to 29.2-ft depth in June 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the ditch and other surface water features.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 1 – DEAD TIMBER LAKE

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 1 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors, such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

Piling

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 16-in.-diameter steel shell piles are planned for bridge ends and 24-in.-diameter steel shell piles are planned for the interior bents. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix E. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength is mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (φ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (φ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects. The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical.

We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix F. End Slope Stability

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 4) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 12 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020⁴ and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.477. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 215 to El 213 was assumed.

Stability analyses results are summarized and presented graphically in Appendix G. As shown in the results, the analyses of the seismic stability of the plan 2H:1V Bent 1 end slope

⁴ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

indicates a calculated minimum factor of safety significantly less than 1.05. However, a simplified Newmark block analysis indicates that a maximum permanent displacement of 2.1 inches is expected for the south embankment. We understand that a Newmark displacement of less than 6 inches is typically acceptable for bridges designated as "Other."

The results of slope stability analyses utilizing residual strengths in soil zones susceptible to liquefaction triggering indicate a calculated minimum factor of safety against sliding in excess of 1.0. Consequently, the potential for flow slide instability is considered low. Given the results of the stability analyses and Newmark block analysis, the stabilities of the slope configurations are considered acceptable.

Subgrade Support

It is understood that pavement sections for the approach roads will be developed by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-3 and A-4. These classifications correlate with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, undercuts or improvement depths on the order of 2 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. for cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, undercutting is expected to be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 13 to 23 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix H. Where embankment heights are less than about 4 ft,

undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

Maximum embankment heights on the order of 12 ft are anticipated. Given the predominance of cohesive soils in the embankment foundations, some consolidation settlement will occur. Based on the results of the borings and the anticipated maximum embankment height, total settlement of the natural foundation soils below the embankments is estimated to be on the order of 2 to 3 inches. Settlement of cohesive fill in the embankments is expected to be on the

order of 1 to 2 in. with 40 to 60 percent of the settlement occurring during construction. We recommend that embankment fill be placed as early in the construction sequence as possible to limit post-construction settlement after foundation construction.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow within about 100 ft of the bridge ends. An example special provision for cohesive embankment fill is provided in Appendix I.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Density and water content of all earthwork should be maintained until embankments and bridge work are completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Groundwater was encountered between 23- to 29-ft in June 2023. Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

Piling

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered. Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁵. In the driveability analyses, the steel shell piles were assumed to be driven from the plan cap bottom elevation or existing grade. Graphical and tabulated results of these analyses are provided in Appendix J.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 91 ft-kips per blow for driving the steel shell piles at the end bents and at interior Bent 2. For intermediate Bent 3, we recommend a hammer system capable of delivering at least 125 ft-kips per blow for driving the steel shell piles. A specific review and analysis of the pile-hammer system proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be

⁵ <u>GRLWEAP 2014</u>; Pile Dynamics, Inc.

available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

The following illustrations are attached and complete this submittal.

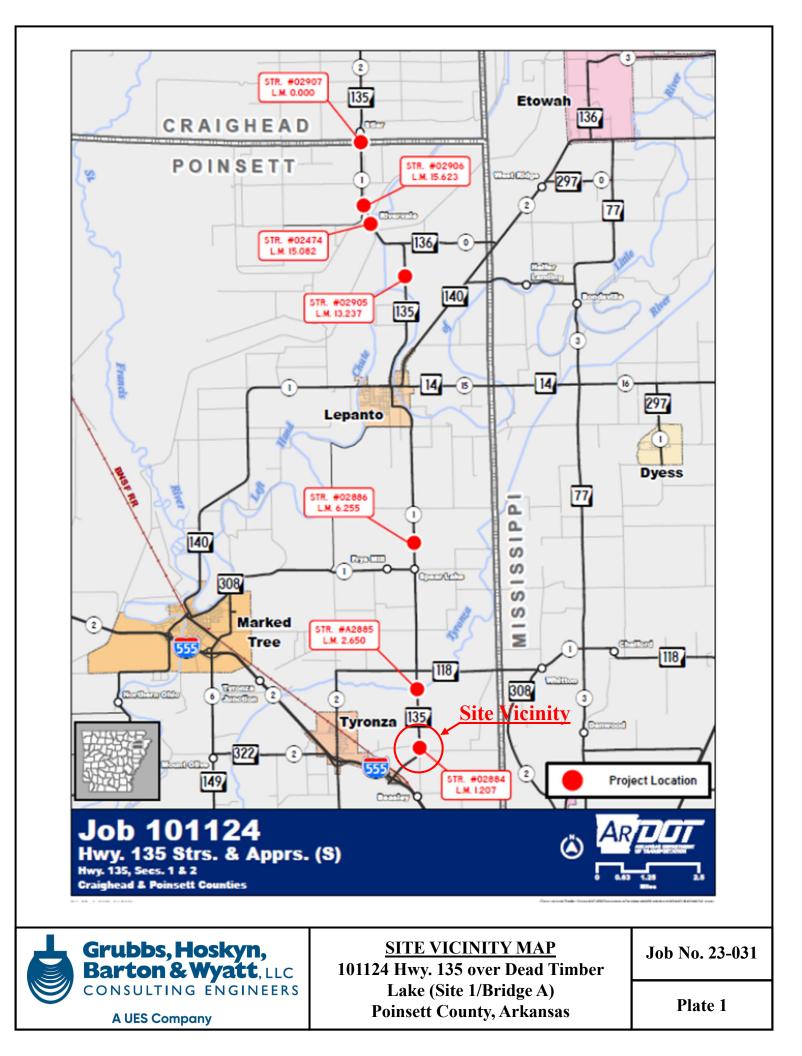
Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 14	Boring Logs
Plate 15	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Liquefaction Analysis Results
Appendix E	Nominal Pile Capacity Curves
Appendix F	Lateral Load Parameters
Appendix G	Results of Stability Analyses
Appendix H	Example SP – Woven Geotextile
Appendix I	Example SP - Cohesive Embankment Fill Special
	Provision
Appendix J	Driveability Analysis Results

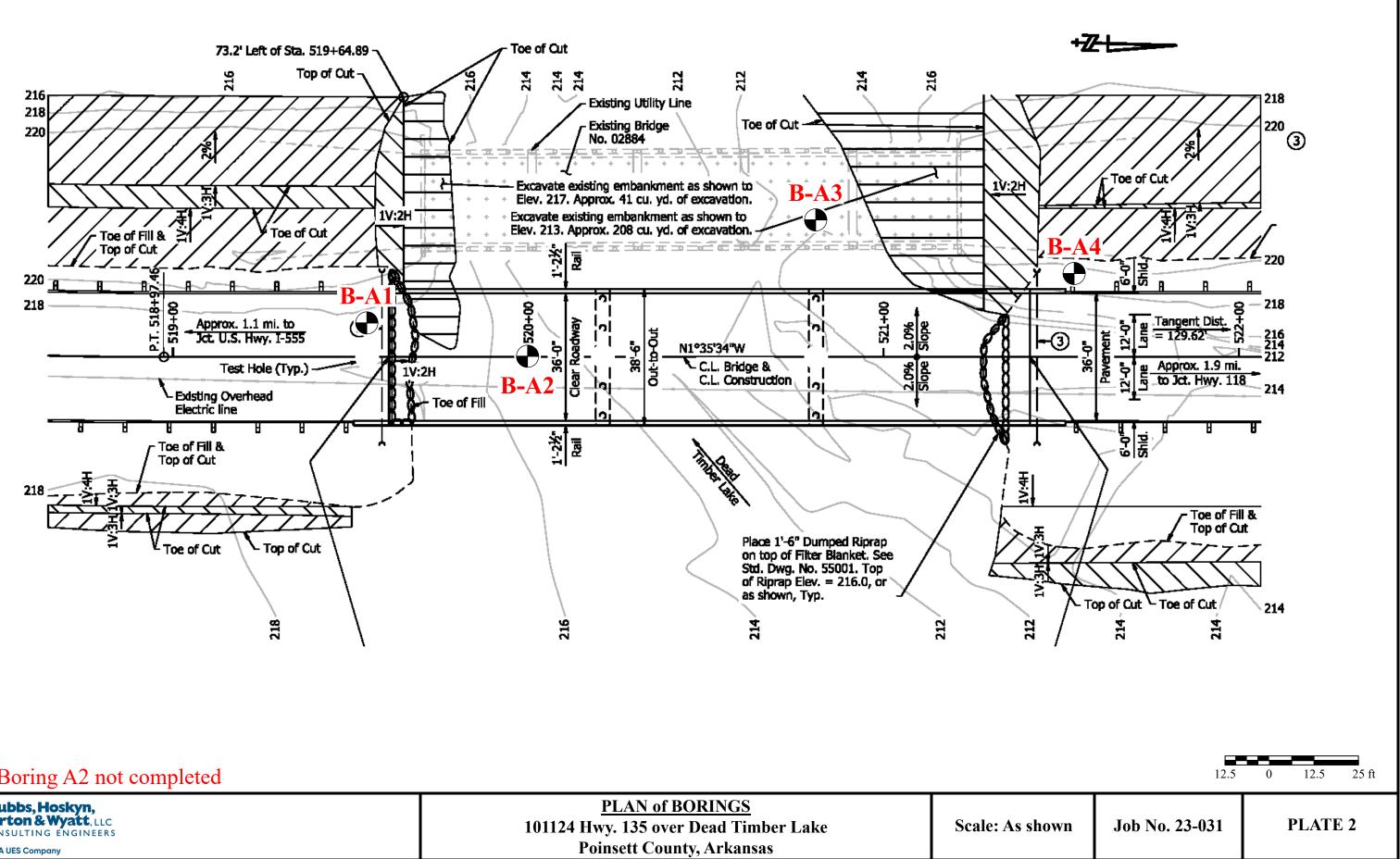
* * * *

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,


GRUBBS, HOSKYN, BARTON &WYATT, LLC


Vellets M. Sett

Velleta M. Scott, P.E. Sr. Project Engineer ARMANSAS REGISTERED PROFESSIONAL Mark E. Wyatt, P.E. ENGINEER President No. 7791

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

Note: Boring A2 not completed

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS A UES Company	<u>PLAN of BORINGS</u> 101124 Hwy. 135 over Dead Timber Lake Poinsett County, Arkansas	Scale: As sl
---	--	--------------

	23-031											
	Bart	bbs, Hoskyn, on & Wyatt, Inc. Ing Engineers LOGOFB 101124 Hwy. 135 Poinsett Co	over	Dead	Timbe							
	TYPF	: Auger to 35 ft /Wash	IC)CATI(ON∙ A	pprox \$	Sta 519	9+55, 15	ftlt			
								DN, TON		Г		
Ē	σ	ES	BPF	× F −	0.2		0.6	-0			.4	% 0
DEPTH,	SYMBOL		N ₆₀ , BI	UNIT DRY WT LB/CU FT	PLAS				1	LIQU		- No. 200 %
B	Ś		z			літ Н - —	C	WATER ONTENT			T	Ž
		SURF. EL: 219.1			10	20	30	40	50 6	50 7 	0	
		Soft brown clay, slightly sandy (CH) w/silty clay seams, trace fine gravel and occasional organics (fill)	9									
			11				++		+	-+		96
- 5 -		Soft gray, tan and reddish tan clay (CH) w/ferrous stains and occasional decayed organics	7				•					
		occasional decayed organics	9									
		- firm at 8 to 18 ft	9									
10			13				┣╴┥─╵		+	+		99
								G _s = 2.7	3			
		a	10				•					
- 15 -												
		7	13									
- 20 -			13									
		- stiff, slightly blocky below 23 ft									102 - ++	
25			19					•	+		- ++	91
- 30 -		9	24					•				
		Dense brownish gray silty fine sand										
- 35 -		(SM)	49									17
Ĕ												
-23		Donoo grovich brown fing to										
LGBNEW 23-031 BRIDGE A.GPJ 7-28-23		Dense grayish brown fine to medium sand, slightly silty (SM-SP)	70				•					6
10. 40 .												
BRIDG												
3-031		d	79									6
NEW X			PTH			1		<u> </u>	-		(a)	
LGB	DATE	6-2-23 IN	BORI	NG: 2	9.2 ft				DA	TE: 6	/2/202	:3

	23-031												
	Grub Bartc Consultin	bs, Hoskyn, on & Wyatt, Inc. Ing Engineers LOG OF B 101124 Hwy. 135 Poinsett C	over	Dead	Tim	ber L							
	TYPE:	Auger to 35 ft /Wash	LC		ON:	Appro	ox Sta	a 519+	55, 15 f	't Lt			
				F			сон	ESION	I, TON/	SQ F1	Г		. 0
Ť L	I ES		ЪF	N K	C).2 ().4	0.6	0.8 1	.0 1	.2 1	.4	% OC
DEPTH,	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	ΡĻ	ASTIC		W			LIQU	ΪĎ	No. 200 %
		(continued)		UN U		+ -			•		·#	•	-
- 50		- with organic inclusions below 48 ft	63				20	30	40 5	0 6	0 7		-
- 55			64										-
- 60 -	- - - - -		49										-
- 65	- - - -	- with more medium sand below 63 ft	57										-
- 70	- - X - X		53										5
- 75	X		61										-
- 80			54										-
- 8 5 - 28 -33			51										-
23-031 BRIDGE A.GPJ			53										
-GBNEW 2			EPTH	TO WA			1					<u>.</u>	
LGBI	DATE:	6-2-23 IN	BORI	NG: 2	9.2 ft					DA		6/2/202	
												PLAT	

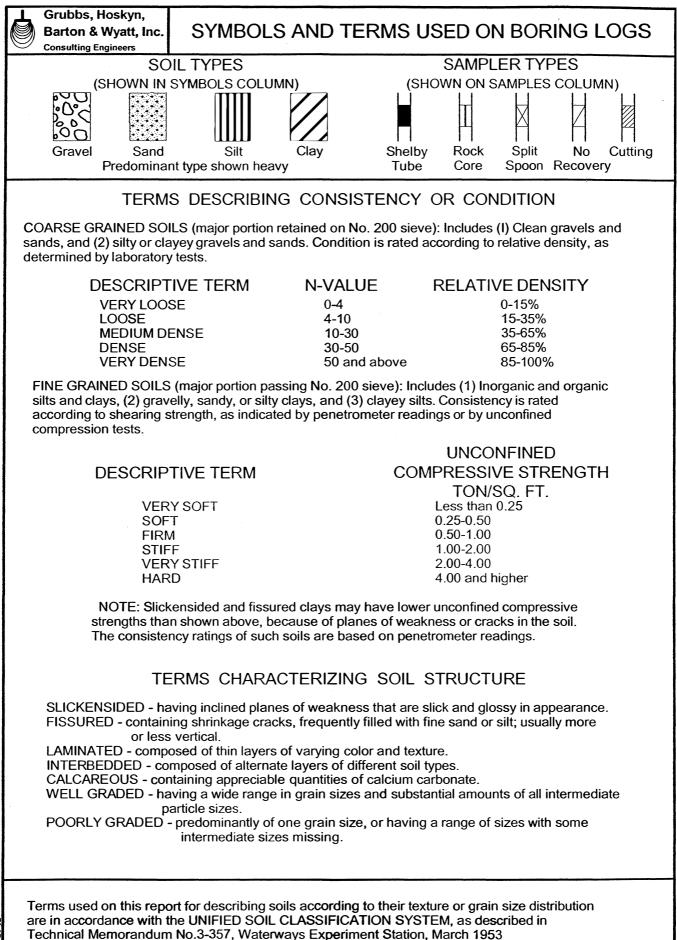
	23-03 Gru Bar Consu	bb	s, Hoskyn, & Wyatt, Inc. Engineers Discrete Logineers LOGOF 101124 Hwy. 13 Poinsett	35 over	Dead	Timbe							
			Auger to 35 ft /Wash			ON: A			9+55, 1 ON, TC				%
DEPTH, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.2 PLAS		0.6	0.8 WATEF	1.0 	LIQ	1.4 UID VIT	- No. 200 %
			(continued)		U C C	LIM + 10	20	30		50		70	
- 95 -		X		56									-
-105-		X	Dense to very dense tan fine to medium sand, slightly silty (SM-SI w/trace coarse sand and fine to coarse gravel	P)			•						10
-115-			NOTE: Drilled with Diedrich D-50 ECF= 1.43.										-
-125-													
	COMI DATE		TION DEPTH: 110.0 ft	DEPTH T							DATE:	6/2/20	23
			-									PLA	

	// Consul	ting	& Wyatt, Inc. LOGOFB Engineers 101124 Hwy. 135 Poinsett C					Lak	e							
	TYPE	: .	Auger to 30 ft /Wash	LC	CATIO	ON:	Арр	orox S	Sta 5	20+0	0, 5 f	t Lt				
Ħ		6			۲× ۲			CC	HE	SION,		I/SQ	FT			24
DEPTH , F	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	, BPF	UNIT DRY WT LB/CU FT		0.2	0.4	0.			1.0	1.2	1.4		
DEF	SΥ	SA		N ₆₀ ,	UNIT LB/	PI		IC 		WA CON	TER TENT		ا 		D T	
			SURF. EL: 213.4 Soft brown and grav clav (CH)				10	20	30) 4	0	50	60	70)	┝
			Soft brown and gray clay (CH) w/occasional decayed organics	9						•						
		X		7							•					
5 -		X		7						•						
		X		9						•						
10 -		4	- firm at 8 to 18 ft - with ferrous nodules and stains and occasional calcareous nodules	11						•						
			below 8 ft													
			- slightly blocky below 13 ft												96	
15 -		X		11						+•)	+	-+-		- 4 →	9
			- firm to stiff below 18 ft	14												
20 -		Δ		14												
25 -		X	Stiff gray silty clay, slightly sandy, wet (CL)	19				+								8
20																
	КĶ		Medium dense grav fine sand				_									
30 -		X	Medium dense gray fine sand, slightly silty (SM-SP)	24												
			- dense, grayish tan below 33 ft													
35 -		X		54				•						-+		
4.0		X		60												
40 -																
		X		54												

	23-031												
	Grut Bart Consult	bs, Hoskyn, on & Wyatt, Inc. Ing Engineers LOGOFB 101124 Hwy. 135 Poinsett C	over	Dead	Tim	ber L		•					
	TYPE	Auger to 30 ft /Wash	L		ON:	Appr	ox St	a 520-	+00, 5	ft Lt			
				5			COF	IESIO	N, TO	N/SQ	FT		
H, FT	SYMBOL		N ₆₀ , BPF	RY V U FT	().2	0.4	0.6	0.8	1.0	1.2	1.4	200 %
DEPTH,	SYN		N ₆₀ ,	UNIT DRY WT LB/CU FT	PL L		;	C		Т	LI 		- No. 200 %
		(continued)		-		10	20	30	40	50	60	70	
- 50		- with occasional organic inclusions below 48 ft	49										
- 55			50										_
- 60		Dense grayish tan fine to medium sand, slightly silty (SM-SW)	46				•						5
- 65			60										_
- 70		- with organic inclusions below 68 ft	53										_
- 75		Dense grayish tan fine sand, slightly silty (SM-SP) w/organic inclusions	47				•						8
- 80			49										_
- 85			54										_
100-07		Dense grayish tan fine to coarse sand, slightly silty (SM-SW) w/trace	50			•							5
GDINEW		ETION DEPTH: 110.0 ft DE		TO WA NG: 2							DATE	: 6/26/2	2023
-												PI A	

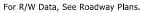
	Bar	ıbb tor	ps, Hoskyn, n & Wyatt, Inc. ^{g Engineers} LOGOFE 101124 Hwy. 13 Poinsett	5 over	Dead	Timb	er L							
	TYP	E:	Auger to 30 ft /Wash	LC	CATIO	DN: /	Appro	ox Sta	a 520+	00, 5	ft Lt			
⊢	.	0			۲ ۲			СОН	ESIO	N, TO 	N/SQ	FT		%
.н, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.	2 ().4 I	0.6	0.8	1.0	1.2	1.4	- No. 200 %
ОЕРТН,	SYN	SAM		N ₆₀ ,	NIT D	PLA LI	STIC		W CO	ATER NTEN	т	L	iquid Limit	°. N
			(continued)		۲,		╋╴─	 20	30	40	50	 60	- + 70	
- 95		X	fine gravel Dense grayish tan fine sand, slightly silty (SM-SP)	50										7
-100 -105 -110				67										_
-115 -120 -125 -130			NOTE: Drilled with Diedrich D-50 ECF= 1.43											
	COM	 PLE	TION DEPTH: 110.0 ft	DEPTH ⁻	L TO WA	TER								
				IN BORI							I	DATE	: 6/26/	2023

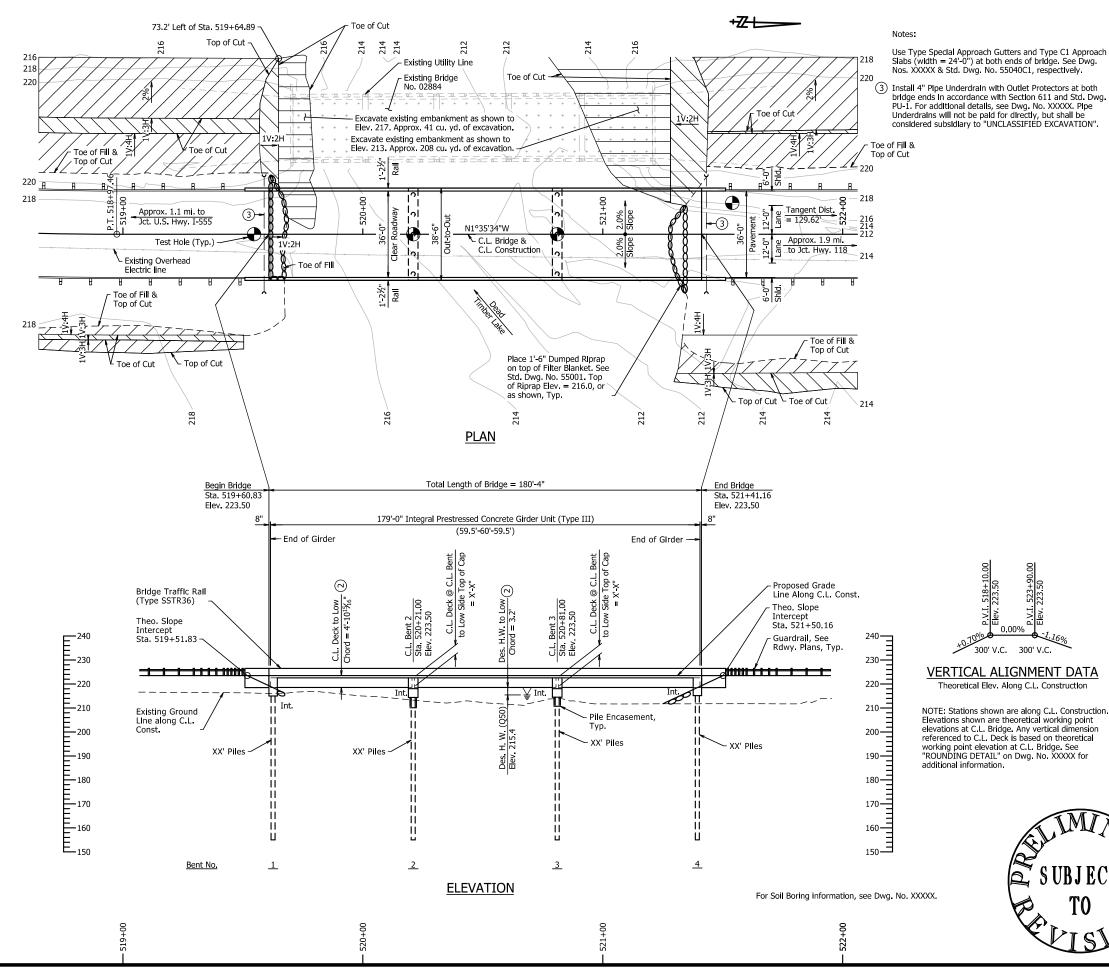
TYPE: Wash LOCATION: Appros Sta 520+75, 35 ft Lt Line Line Collesion TON/SQ FT Collesion TON/SQ FT User DESCRIPTION OF MATERIAL Image: College of College o		Bar	bb tor	os, Hoskyn, n & Wyatt, Inc. g Engineers LOGOFBC 101124 Hwy. 135 o Poinsett Co	over	Dead	Timber Lake
L L L COHESION TON/SQ FT COHESION TON/SQ FT SQ		ТҮРГ	=.				
Firm gray clay (CH) w/organics and ferrous stains 10 87 A Stains 96 - very soft to soft at 8 to 13 ft 5 - <td></td> <td></td> <td></td> <td>DESCRIPTION OF MATERIAL</td> <td>BPF</td> <td></td> <td>COHESION, TON/SQ FT 0.2 0.4 0.6 0.8 1.0 1.2 1.4 00 PLASTIC WATER LIQUID 2 LIMIT CONTENT LIMIT 4</td>				DESCRIPTION OF MATERIAL	BPF		COHESION, TON/SQ FT 0.2 0.4 0.6 0.8 1.0 1.2 1.4 00 PLASTIC WATER LIQUID 2 LIMIT CONTENT LIMIT 4
10 5 - very soft at 13 to 18 ft 4 15 - soft below 18 ft 6 + 99 20 2 2 30 41 + 99 111 Medium dense gray silty fine sand, slightly clayey (SM) 41 + 99 25 Firm to stiff gray claye (CH) w/silty fine sand, sand seams 13 + 99 300 X 13 + 99 + 99 30 X 13 + 99 + 99 31 + 99 + 99 + 99 30 X 13 + 99 + 99 330 X 13 + 99 + 99 35 Very dense brownish gray fine to coarse sand (SW) w/organics 70	- 5 -		X	Firm gray clay (CH) w/organics and ferrous stains	10	87	
15 4 - soft below 18 ft 6 20 - soft below 18 ft 6 + + 99 111 Medium dense gray silty fine sand, slightly clayey (SM) 25 Firm to stiff gray clay (CH) w/silty fine sand seams 13 13 300 13 35 Very dense brownish gray fine to coarse sand (SW) w/organics 70 Stiff gray clayey silt (CL-ML) 40 Medium dense gray silty fine sand (SM) w/organics 17 • 40 Medium dense gray silty fine sand (SM) w/organics 17 • 40 Medium dense gray silty fine sand (SM) w/organics 17 • 40 Medium dense gray silty fine sand (SM) w/organics 17 •	- 10 -		X	- very soft to soft at 8 to 13 ft	5		
20 A 6 + • • • + 99 21 Medium dense gray silty fine sand, slightly clayey (SM) 41 41 41 41 25 Firm to stiff gray clay (CH) w/silty fine sand seams 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 14 15 15 15 16	- 15 -		X	- very soft at 13 to 18 ft	4		
23 Firm to stiff gray clay (CH) w/silty fine sand seams 13 13 30 X 13 13 13 30 X Very dense brownish gray fine to coarse sand (SW) w/organics 70 13 35 Stiff gray clayey silt (CL-ML) 13 14 14 40 X Medium dense gray silty fine sand (SM) w/organics 17 17 17 40 X Dense grayish brown fine to medium sand (SP) 45 17 17 14	- 20 -		X	- soft below 18 ft	6		+ - ● +99
30 30 <td< td=""><td>- 25 -</td><td></td><td>X</td><td>Medium dense gray silty fine sand, slightly clayey (SM) Firm to stiff gray clay (CH) w/silty fine sand seams</td><td>41</td><td></td><td></td></td<>	- 25 -		X	Medium dense gray silty fine sand, slightly clayey (SM) Firm to stiff gray clay (CH) w/silty fine sand seams	41		
35 Stiff gray clayey silt (CL-ML) Image: Stiff gray clayey silt (- 30 -		X		13		
40 - 111 A (and a share a shar					70		
Dense grayish brown fine to medium sand (SP) 45 COMPLETION DEPTH: 110.0 ft DEPTH TO WATER	8RIDGE A.GPJ 7-28-23				17		• 34
	23-031 B	COMF				TO W4	


70		Bar	ibb toi	s, Hoskyn, & Wyatt, Inc. Engineers 101124 Hwy. 1 Poinse		Dead	Tim	ber									
Li Li <td< th=""><th></th><th>TYPE</th><th><u>=:</u></th><th>Wash</th><th>LC</th><th></th><th>DN:</th><th>Арр</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		TYPE	<u>=:</u>	Wash	LC		DN:	Арр									
10 20 30 40 50 60 70 50 47 <t< td=""><td>l ⊢</td><td></td><td>S</td><td></td><td></td><td>⊢∧⊢</td><td></td><td></td><td>CC</td><td>HES</td><td></td><td>, то Э—</td><td>N/SQ</td><td>FT</td><td></td><td></td><td>%</td></t<>	l ⊢		S			⊢∧⊢			CC	HES		, то Э—	N/SQ	FT			%
10 20 30 40 50 60 70 50 47 <t< td=""><td></td><td>1BOI</td><td>ЫШ</td><td>DESCRIPTION OF MATERIAL</td><td>BPI</td><td>NR L</td><td></td><td>0.2</td><td>0.4</td><td>0.</td><td>6 (</td><td>).8 I</td><td>1.0</td><td>1.2</td><td>1.4</td><td>1</td><td>200</td></t<>		1BOI	ЫШ	DESCRIPTION OF MATERIAL	BPI	NR L		0.2	0.4	0.	6 ().8 I	1.0	1.2	1.4	1	200
10 20 30 40 50 60 70 50 47 <t< td=""><td>E -</td><td>SYN</td><td>SAM</td><td></td><td>N₆₀,</td><td>LB/0</td><td>PL I</td><td>_ASTI</td><td>С</td><td></td><td>WA CON</td><td></td><td>г</td><td>I</td><td></td><td></td><td>°. Ž</td></t<>	E -	SYN	SAM		N ₆₀ ,	LB/0	PL I	_ASTI	С		WA CON		г	I			°. Ž
50 55 -55 55 - medium dense with trace fine gravel from 58 to 63 ft 33 - dense, brown and dark gray with trace fine gravel from 63 to 68 ft 47 - slightly silty (SM-SP) below 68 ft 36 - dense below 73 ft 36 - dense below 73 ft 97 - d				(continued)		5		+ - 10	20			●- — 40	 50	60	+ 70)	
60 33 - dense, brown and dark gray with trace fine gravel from 63 to 68 ft - slightly silty (SM-SP) below 68 ft - medium dense from 68 to 73 ft - dense below 73 ft 97 61			X						•								4
- slightly silty (SM-SP) below 68 ft - medium dense from 68 to 73 ft - dense below 73 ft - dense below 73 ft - 61 - 80	- 60 -		X	- medium dense with trace fine gravel from 58 to 63 ft	33												-
70 - -	65		X	- dense, brown and dark gray wit trace fine gravel from 63 to 68 ft	th 47												-
97 97 0 0 0 0 80 0 0 0 0 0 0	- 70 -		X	- slightly silty (SM-SP) below 68 - medium dense from 68 to 73 ft	ft 36				•								6
	- 75 -		X	- dense below 73 ft	97												-
85 - with trace coarse sand below 84 ft 63 6			X		61												-
COMPLETION DEPTH: 110.0 ft DEPTH TO WATER DATE: 6-14-23 IN BORING: NA DATE: 6/14/2023	85		X	ft													
DATE: 6-14-23 IN BORING: NA DATE: 6/14/2023		COMI	₩ PLE			TO WA	TER	2									9
													[DATI	E: 6/	14/20)23

	23-03 Gru Bar Consu	ıbk	os, Hoskyn, n & Wyatt, Inc. g Engineers LOGOFBO 101124 Hwy. 135 o Poinsett Co	over	Dead	Tim	ber L						
	TYP	E:	Wash	LC	CATIO	ON:	Appro	os Sta	520+7	5, 35 f	t Lt		
Ŀ		0 0			T ∧ T				ESION,		SQ FT		%
DEPTH, F	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	₀ , BPF	UNIT DRY WT LB/CU FT		1	1		.8 1.			No. 200 %
DEI	S	SA	(continued)	N ₆₀ ,	UNIT		ASTIC						N N
			coarse sand, slightly silty (SM-SW) w/decayed organics and a little fine gravel			1		20	30 4	0 50	0 60	70	
- 95		X	- brown and gray below 94 ft	96									_
-100		X	Dense gray fine sand, slightly silty (SM-SP)	58									7
-105													
-110	 	X	- brownish gray below 108 ft	86									
-115			NOTE 1: Drilled from bridge deck with 20 ft HDX casing. NOTE 2: Deck to water: 7.6 ft NOTE 3: Deck to mudline: 9.8 ft NOTE 4: Drilled with CME-55 HTX ECF= 1.28										
-120	- -)-												
1.25	-												
-125													
23-031 BRIDGE A.GPJ 7-2													
LGBNEW 2					FO WA NG: N		I				DAT	E: 6/14/	2023

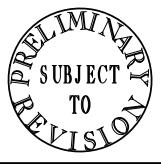
				-		ansa	-								
	TYPI	:	Auger to 35 ft /Wash	LC		DN:									
ЕT		S			ТVТ				ESION	I, TON	I/SQ	FT		2	
DEPTH, F		SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL	ASTIC	STIC WATER				1.0 1.2 1.4 LIQUID			
Ш			SURF. EL: 218.0				+	— — — 20		•	 50	 60	+ 70		
		X	Firm brown clay, sandy (CH) w/occasional crushed stone and asphalt fragments (fill)	11			•								
		A		10					+	+	÷			7	
5 -		X	- soft, with less sand below 4 ft	9											
		X	Soft gray and reddish tan clay (CH) w/ferrous stains and decayed organics - stiff at 8 to 18 ft	9									•		
10 -			- stiff at 8 to 18 ft		47				8	+	+-			• {	
													Ű,		
													85		
15 -		X		33									<u> </u>		
			- soft below 18 ft												
20 -					87		8	+	+•-	+			<u>-</u>	-	
		M	Dense grayish tan fine to medium sand, slightly silty (SP-SM)	67		•									
25 -															
30 -		X	Dense dark gray silty fine to medium sand (SM) w/occasional clayey sand pockets	47											
30			clayey sand pockets												
35 -		X		44											
			Dense gravish tan fine to medium									_		-	
40 -		Ø	Dense grayish tan fine to medium sand (SP) w/organic inclusions	46								_			


a (continued) b 10 20 30 40 50 60 70 50 - - medium dense from 53 to 58 ft 37 -		Bar Consu	bb tor	bs, Hoskyn, h & Wyatt, Inc. g Engineers L O G O F B 101124 Hwy. 135 Poinsett Co	over ounty	Dead ⁄, Arka	Tim ansa	nber as	Lak	e							
L 000 00 0.2 0.4 0.0 0.0 1.0 1.2 1.4 0.2 DESCRIPTION OF MATERIAL 2 2 0.4 0.0 0.0 1.0 1.2 1.4 0.2 Continued) 10 20 30 40 50 00 70 50 - - medium dense from 53 to 58 ft 37 - <th></th> <th>TYPE</th> <th><u></u>: ⊺</th> <th>Auger to 35 ft /Wash</th> <th></th> <th></th> <th>ON:</th> <th>Арр</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		TYPE	<u></u> : ⊺	Auger to 35 ft /Wash			ON:	Арр									
- medium dense from 53 to 58 ft 37 - medium dense from 53 to 58 ft 37 - dense below 58 ft 51 - dense below 58 ft 63 - with clayey sand pockets below 57 - with clayey sand pockets below 57 - dense gravish tan fine to medium sand, slightly slity (SW-SM) w/trace coarse sand 54 - dense to very dense below 83 ft 67 - dense to very dense below 88 ft 107 - with organic inclusions below 88 ft 107 - with organic inclusions below 88 ft 107	F		S			⊢∧∟			CC	HES	SION	I, ТС О—	N/SQ	9 FT			%
- medium dense from 53 to 58 ft 37 - medium dense from 53 to 58 ft 37 - dense below 58 ft 51 - dense below 58 ft 63 - with clayey sand pockets below 57 - with clayey sand pockets below 57 - dense gravish tan fine to medium sand, slightly slity (SW-SM) w/trace coarse sand 54 - dense to very dense below 83 ft 67 - dense to very dense below 88 ft 107 - with organic inclusions below 88 ft 107 - with organic inclusions below 88 ft 107		BOI	L L L	DESCRIPTION OF MATERIAL	BPF	Я Ч Ч		0.2	0.4	0.6	6 (0.8	1.0	1.2	1.4	4	200
- medium dense from 53 to 58 ft 37 - medium dense from 53 to 58 ft 37 - dense below 58 ft 51 - dense below 58 ft 63 - with clayey sand pockets below 57 - with clayey sand pockets below 57 - dense gravish tan fine to medium sand, slightly slity (SW-SM) w/trace coarse sand 54 - dense to very dense below 83 ft 67 - dense to very dense below 88 ft 107 - with organic inclusions below 88 ft 107 - with organic inclusions below 88 ft 107	EPI	SYN	SAM		N ₆₀ ,		PI	LAST	С		WA		T	I			° N
50 49 50 - medium dense from 53 to 58 ft 55 - dense below 58 ft 60 - dense below 58 ft 61 - dense below 58 ft 62 - with clayey sand pockets below 63 - with clayey sand pockets below 65 - with clayey sand pockets below 67				(continued)		5		+				•			+		1
60 51 51 63 64 <td< td=""><td></td><td></td><td>X</td><td>- medium dense from 53 to 58 ft</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			X	- medium dense from 53 to 58 ft													-
- with clayey sand pockets below 68 ft - with clayey sand pockets below 57 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0			X	- dense below 58 ft													
B0 Dense tan fine to medium sand, slightly silty (SP-SM) 67			X	68 ft	57												-
- dense to very dense below 83 ft - dense to very dense below 83 ft - with organic inclusions below 88 ft COMPLETION DEPTH: 110.0 ft DEPTH TO WATER	- 75 -		X	Dense grayish tan fine to medium sand, slightly silty (SW-SM) w/trace coarse sand	54				•								7
85 107 •	- 80 -		X	Dense tan fine to medium sand, slightly silty (SP-SM)	67												-
Image: Completion depth: 107 <td>- 85 -</td> <td></td> <td>X</td> <td>- dense to very dense below 83 ft</td> <td>107</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td>	- 85 -		X	- dense to very dense below 83 ft	107				•								6
COMPLETION DEPTH: 110.0 ft DEPTH TO WATER	- 85 -		X	- with organic inclusions below 88 ft	107												
					PTH							_1		ידעח	=. 6/	15/201	22


	23-03 Gru Bar Consu		s, Hoskyn, & Wyatt, Inc. Engineers Engineers LOGOF 101124 Hwy. 1 Poinse		Dead	Timb	ber L							
	TYPI	<u>:</u>	Auger to 35 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	a 521	+50, 2	20 ft Lt			
					5			сон	ESIO	N, TC	DN/SQ	FT		
Т Т	BOL	LES		3PF	J FT	0.	.2 ().4	0.6	0.8	1.0	1.2	1.4	00 %
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/ LI	ASTIC IMIT + -		۷ CC		R NT 	LI 	IQUID LIMIT	- No. 200 %
		$\left \right $	(continued)			1	0 2	20	30	40	50	60	70	
- 95 - -100- -105-		X	- tan and gray below 98 ft	86										
110		Д_		107_					_				_	_
-115- -120- -125- 			NOTE: Drilled with Diedrich D-50)										
73-031														
	COMI DATE		TION DEPTH: 110.0 ft 5-23	DEPTH IN BORI								DATE	: 6/5/20)23
													PLAT	

(EY 9-26-02

APPENDIX A



VI 518+10.00 ev 223.50 V I 523+90.0 0.00%

VERTICAL ALIGNMENT DATA Theoretical Elev. Along C.L. Construction

NOTE: Stations shown are along C.L. Construction. Elevations shown are theoretical working point elevations at C.L. Bridge. Any vertical dimension referenced to C.L. Deck is based on theoretical working point elevation at C.L. Bridge. See "ROUNDING DETAIL" on Dwg. No. XXXXX for additional information

ċ SCALE: ₽ 8 10:37 ö CTAUSER 3/7/ ران ۲ED: -JSER:

DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
		6	ARK.	101124	28	31
		XXXXX		LAYOUT		XXXXX

GENERAL NOTES

BENCH MARK: Vertical Control Data are shown on Survey Control Sheets.

CONSTRUCTION SPECIFICATIONS: Arkansas State Highway and Transportation Department Standard Specifications for Highway Construction (2014 edition) with applicable Supplemental Specifications and Special Provisions. Section and Subsection refer to the Standard Construction Specifications unless otherwise noted in the Plans.

DESIGN SPECIFICATIONS: AASHTO LRFD Bridge Design Specifications, 9th Edition (2020).

LIVE LOADING: HL-93

SEISMIC ZONE: X S_{D1}:X.XXX SITE CLASS: X SEISMIC OPERATIONAL CLASS: OTHER

MATERIALS AND STRENGTHS: Class S(AE) Concrete (superstructure) Class S Concrete (prestressed concrete girders) Prestressing Strands (AASHTO M 203, Gr. 270) Class S Concrete (substructure) Reinforcing Steel (AASHTO M 31 or M 322, Type A) Structural Steel (ASTM A709, Gr. 50) Structural Steel (ASTM A709, Gr. 50W) Structural Steel (ASTM A709, Gr. 36)

f'c = 4,000 psi f'c = 6,000 psi fpu = 270,000 psi f'c = 3,500 psi fy = 60,000 psi Fv = 50,000 psFy = 50,000 psFv = 36,000 ps

BORING LOGS: Boring logs may be obtained from the Construction Contract Development Section of the Program Management Division.

STEEL SHELL PILING: Piling in Bents 1 and 4 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. Plling In Bents 2 & 3 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. All piling shall be driven with an approved air, steam, or diesel hammer to a minimum tip elevation of _ or lower at Bents 1 and 4 and to a minimum tip elevation of ______ or lower at Bents 2 and 3. Piling in end bents shall be driven after embankment to bottom of cap is in place. Lengths of piling shown are assumed for estimating quantities only. Actual lengths are to be determined in the field. No additional payment will be made for cut-off or build-up. Test piles are not required but may be driven for the Contractor's information in accordance with Subsection 805.08(g)

Water jetting or other methods as approved by the Engineer may be required to achieve minimum penetration. This work shall not be paid for directly, but shall be considered incidental to the Item "Steel Shell Plling (__ " Dia.)".

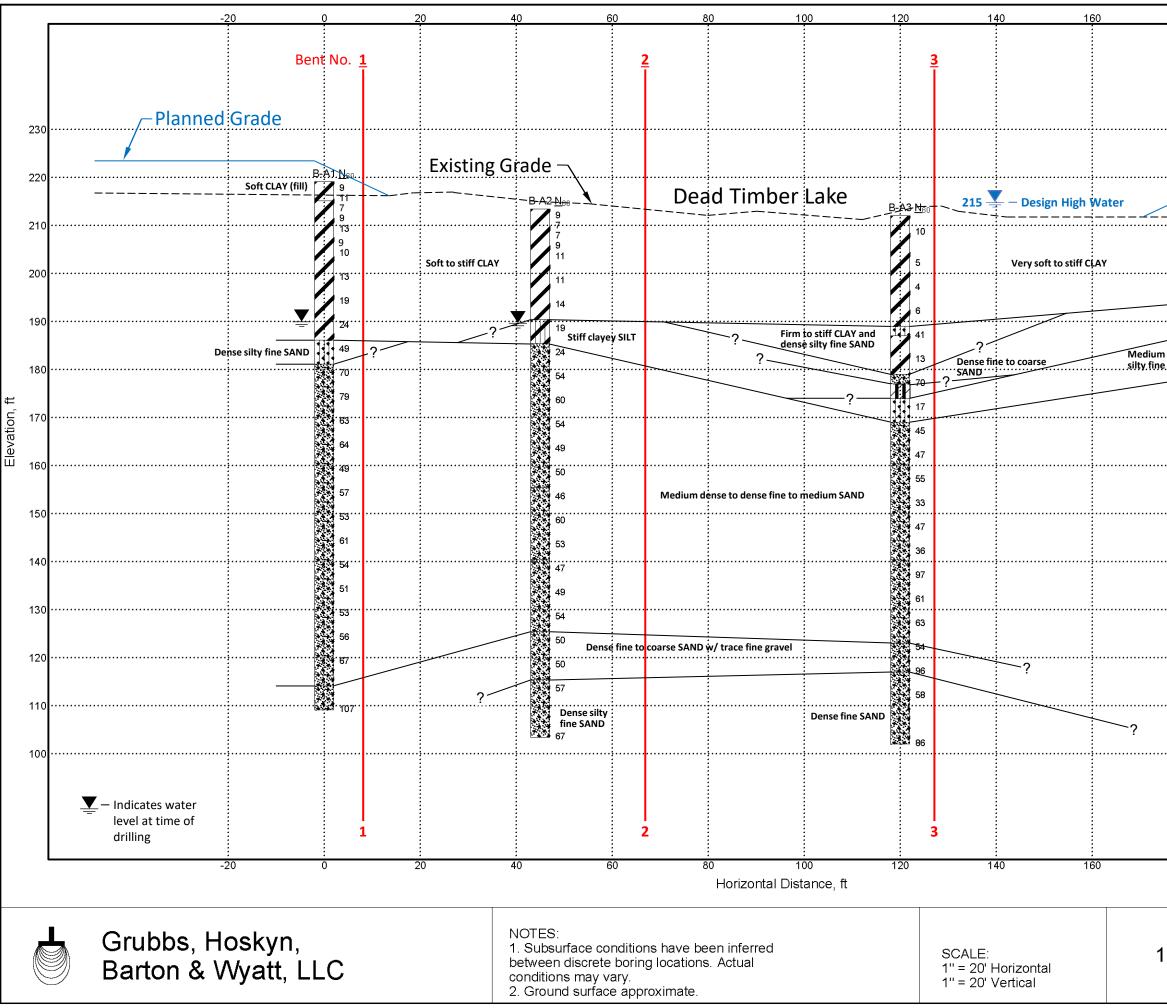
PREBORING: Preboring is required for all piling at Bents 1 and 4. Prebored holes shall have a diameter 6" greater than the diameter of the pile for a depth of 10' below the bottom of the cap. The void space around the pile after completion of driving shall be backfilled with sand or pea gravel. The Contractor shall be responsible for keeping prebored holes free of debris prior to backfilling which may require the use of temporary casings or other approved methods. Any related cost for backfilling and temporary casing will not be paid for directly, but shall be considered subsidiary to the item "Preboring"

DRIVING SYSTEM: The driving system approval and the ultimate bearing capacity deter-mination for piling shall be based on the requirements of Subsection 805.09(b), "Method B - Wave Equation Analysis (WEAP)". It is estimated that the minimum rated hammer energy required to obtain the ultimate bearing capacity for all piles will be _____foot pounds per blow

For Additional General Notes, see Dwg. No. XXXXX.

HYDRAULIC DATA

FLOOD DESCRIPTION	FREQUENCY	DISCHARGE	1 NATURAL W.S. ELEVATION	W.S. ELEVATION WITH BACKWATER
DESCRIPTION	YEARS	CFS	FEET	FEET
DESIGN	50	710	215.0	215.4
BASE	100	780	215.1	215.5
EXTREME	500	920	215.2	215.7
OVERTOPPING	>500			


 $(\widehat{1})$ Unconstricted water surface elevation without structure or roadway approaches.

(2) Proposed Low Bridge Chord Elev. = 218.59 feet at Station 519+60.83

100 yr. backwater elevation for existing structure = 215.7 feet Drainage Area = 5.2 sq. miles Historical H.W. Elev. = N/A

SHEET 1 OF 2 LAYOUT OF BRIDGE HWY. 135 OVER DEAD TIMBER LAKE HWY. 135 STRS. & APPRS. (S) **CRAIGHEAD & POINSETT COUNTIES** ROUTE 135 SECTIONS 1 & 2 ARKANSAS STATE HIGHWAY COMMISSION LITTLE ROCK, ARK. DRAWN BY: BWC ____ DATE: _____02-21-2023 FILENAME: ______0101124x1_l1.dgn CHECKED BY: CAW DATE: 02-24-2023 SCALE: <u>1" = 20'</u> DESIGNED BY: KRM DATE: 02-14-2023 BRIDGE NO. XXXXX DRAWING NO. XXXXX

APPENDIX B

180		2	20	1
4	1			
	İ			
:				
÷				
		•••••		230
:				
:				
	·····B	-A4 <u>N</u>		220
			Soft to firm CLAY, sandy (fill)	
÷		<u> 9</u> 9		
:		9.		210
		33		
				200
	-	6		400
		4		190
n dense to d e to mediun	ense SAND	4		
e. 10. (10, eq. (4), (4), (4), (4), (4), (4), (4), (4),	UNITE .	4	<u></u>	180
	3	5		. – .
		4	1	170
:		3		
· · · · · · · · · · · · · · · · · · ·		5		160
÷				
		6		
		5		150
:		5		
		6		140
:		10	7	
:		10	i7	130
		8		400
		8	•	120
:		.		
				140
		10	i7	110
				100
				100
÷				
÷				
4	1			
180		2	2 00	I
		_		
<u>_</u>	lonor	-ali-	rad Subsurface Drafile	
			zed Subsurface Profile	
0112	4 Hw	′ y . 1	135 over Dead Timber Lake	
			tt County, Arkansas	
	1 01	100	Project Number: 23-031	

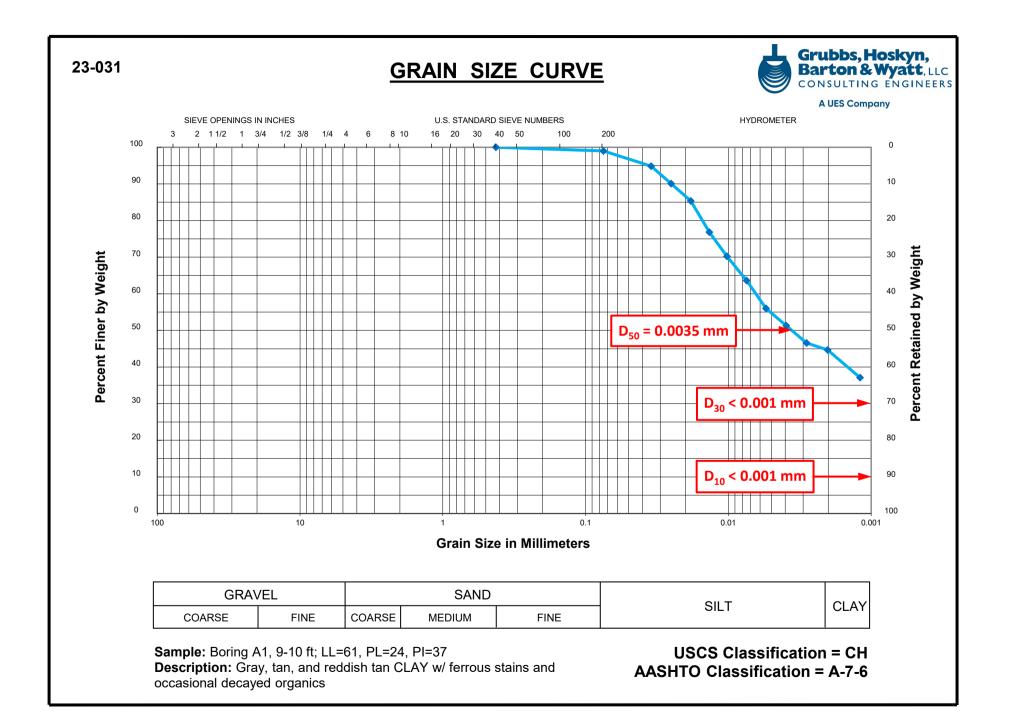
Project Number: 23-031

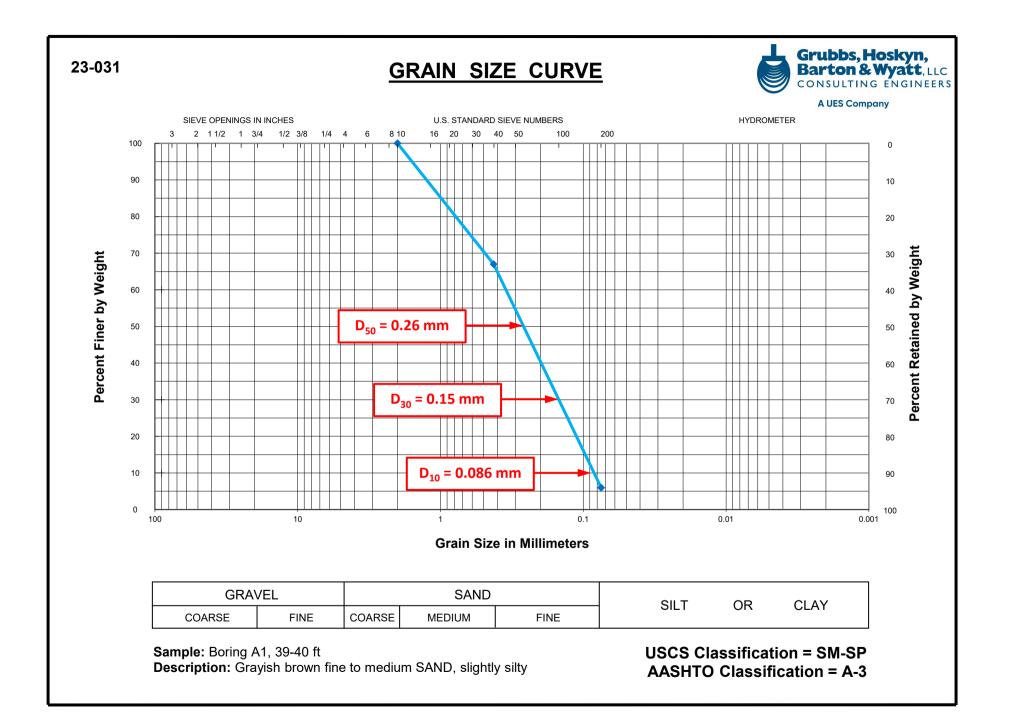
APPENDIX C

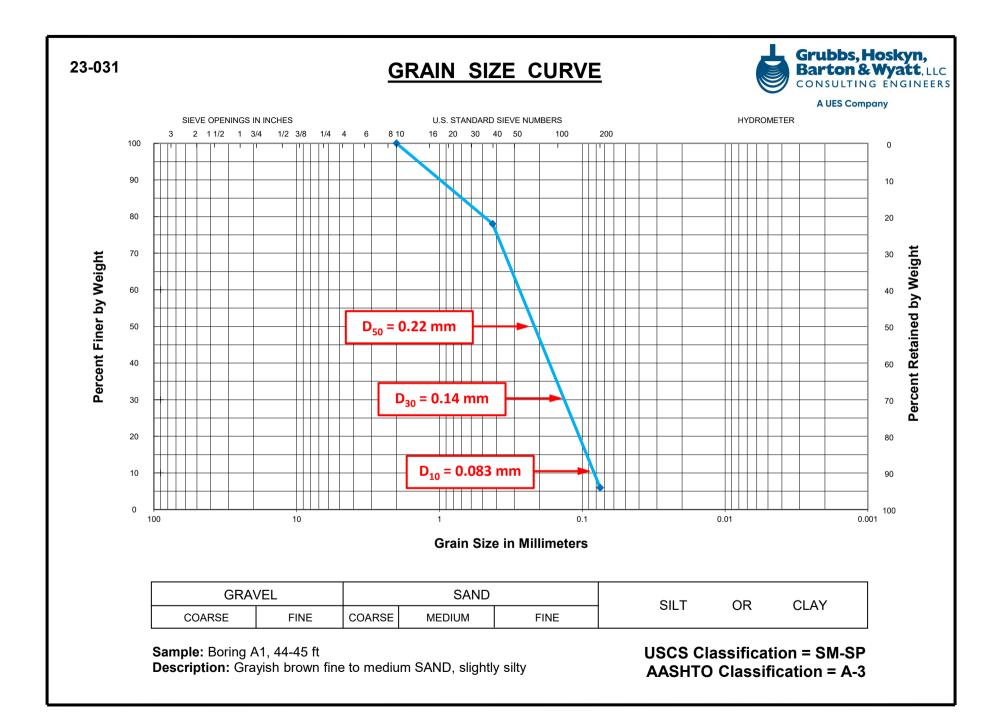
SUMMARY of CLASSIFICATION TEST RESULTS

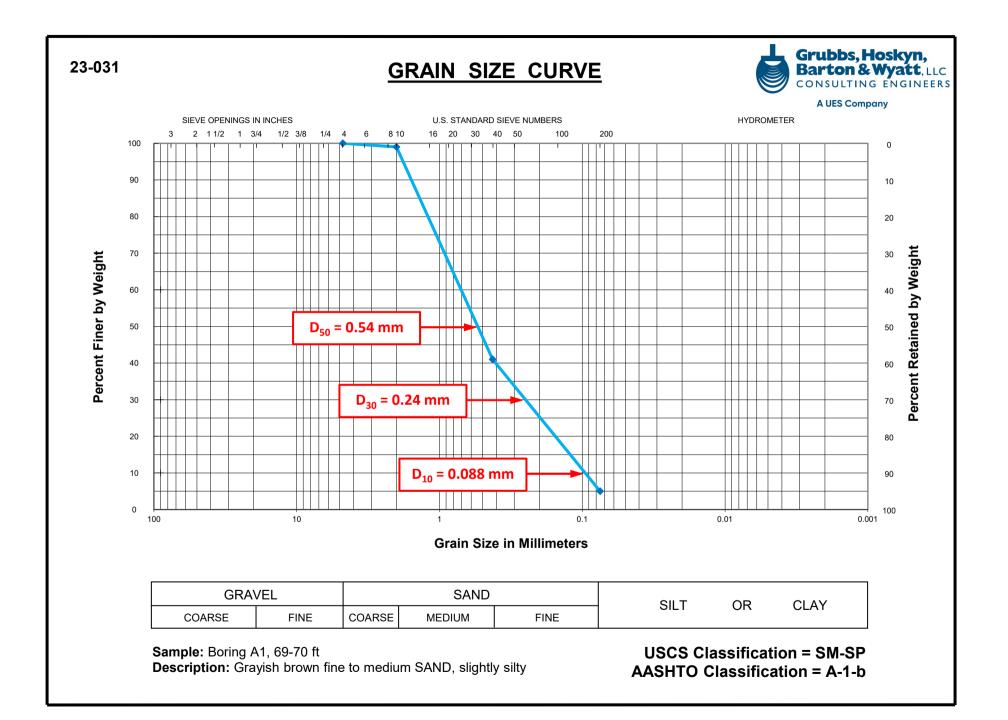
PROJECT: 101124 Hwy. 135 over Dead Timber Lake (Site 1) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

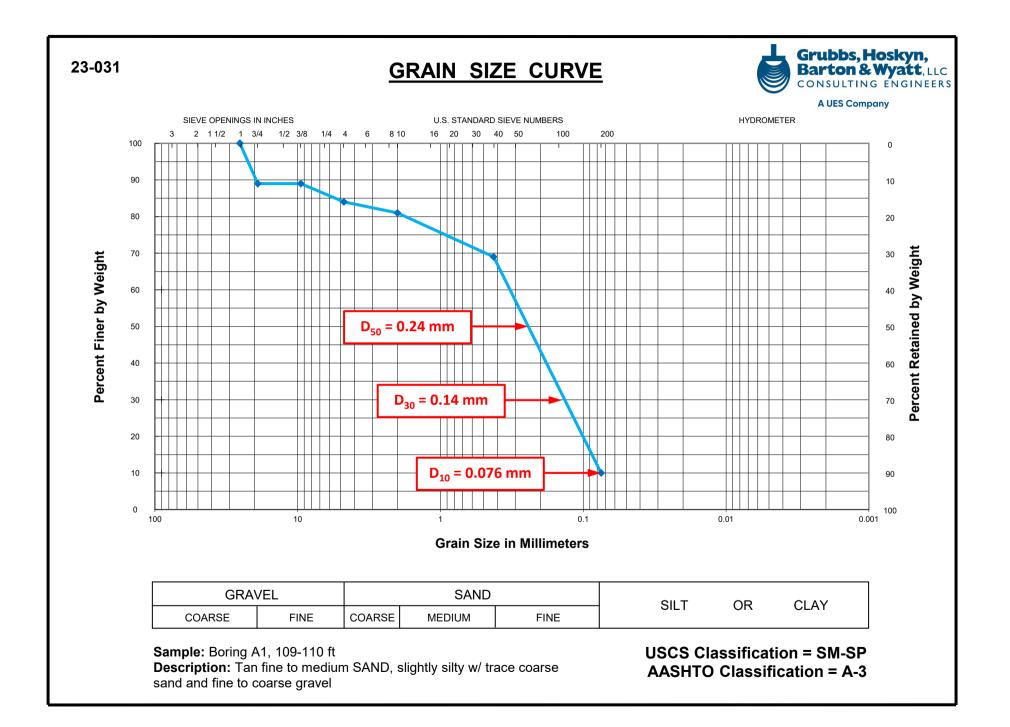
BORING NO.	SAMPLE	WATER CONTENT	ATTERBERG LIMITS			SIEVE ANALYSIS							USCS		
	DEPTH		LIQUID	PLASTIC	PLASTICITY	PERCENT PASSING							USCS CLASS.	AASHTO CLASS.	
	(ft)	(%)	LIMIT	LIMIT	INDEX	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200		
A1	2.5-3.5	30	66	27	39					100			96	CH	A-7-6
A1	9-10	23	61	24	37	100	100	100	100	100	100	100	99	CH	A-7-6
A1	24-25	37	102	30	72					100			91	СН	A-7-6
A1	34-35	24								100			17	SM	A-2-4
A1	39-40	26				100	100	100	100	100	100	67	6	SM-SP	A-3
A1	44-45	28				100	100	100	100	100	100	78	6	SM-SP	A-3
A1	69-70	19				100	100	100	100	100	99	41	5	SM-SP	A-1-b
A1	109-110	15				100	100	89	89	84	81	69	10	SM-SP	A-3
A2	14-15	39	96	34	62					98			96	CH	A-7-5
A2	24-25	40	40	20	20					100			87	CL	A-6
A2	34-35	21				100	100	100	100	100	100	79	5	SM-SP	A-3
A2	59-60	17				100	100	100	99	98	95	31	5	SM-SW	A-1-b
A2	74-75	23				100	100	100	100	99	97	80	8	SM-SP	A-3
A2	89-90	14				100	100	100	93	85	72	27	5	SM-SW	A-1-b
A2	99-100	20				100	100	100	100	100	100	96	7	SM-SP	A-3
A3	4.5-5	29	77	27	50	100	100	100	100	100	100	100	99	CH	A-7-6
A3	19-20	32	65	24	41					100			99	CH	A-7-6
A3	39-40	27								100			34	SM	A-2-4
A3	49-50	18				100	100	100	100	100	99	56	4	SP	A-3
A3	69-70	21				100	100	100	100	100	98	59	6	SM-SP	A-3
A3	89-90	28				100	100	100	91	83	72	23	9	SM-SW	A-1-b
A3	99-100	19				100	100	100	99	98	97	84	7	SM-SP	A-3

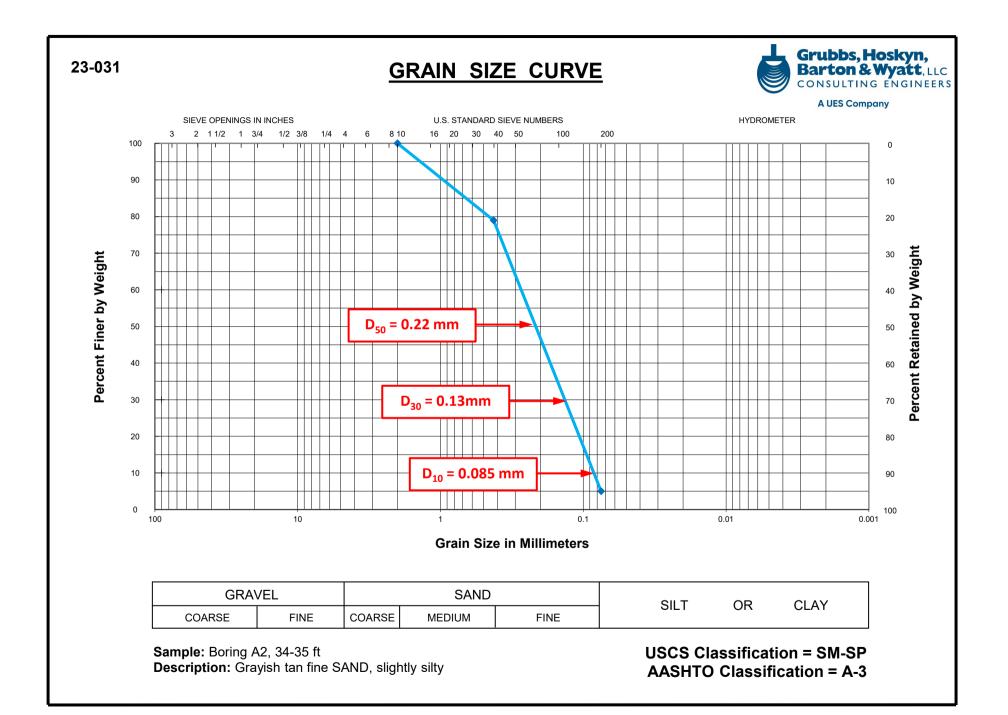

Grubbs, Hoskyn,

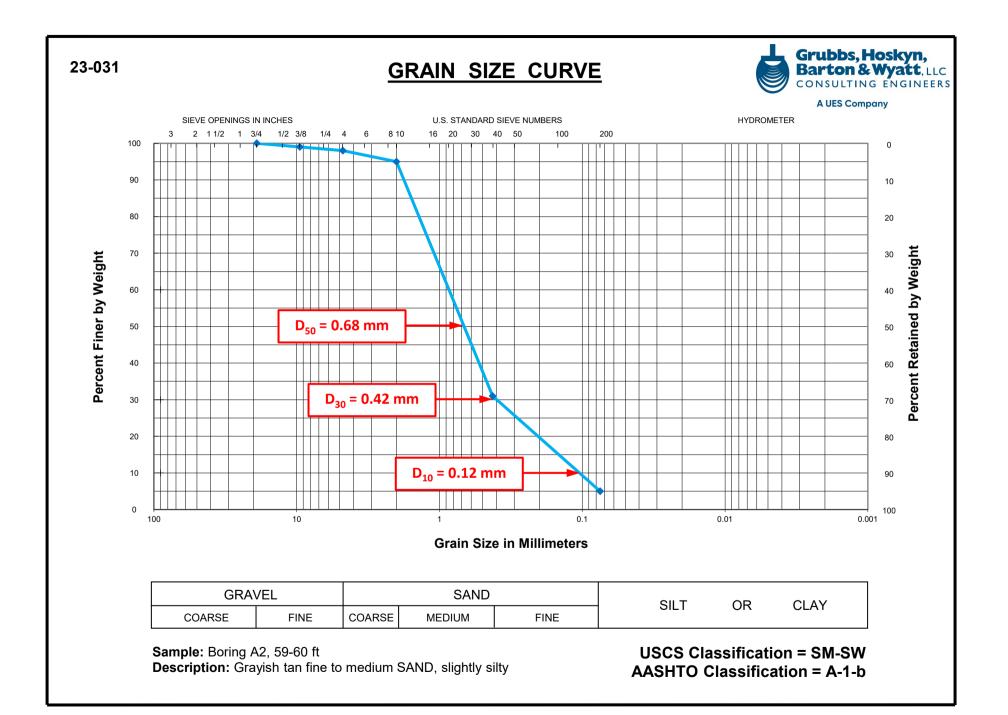

Barton & Wyatt, LLC CONSULTING ENGINEERS

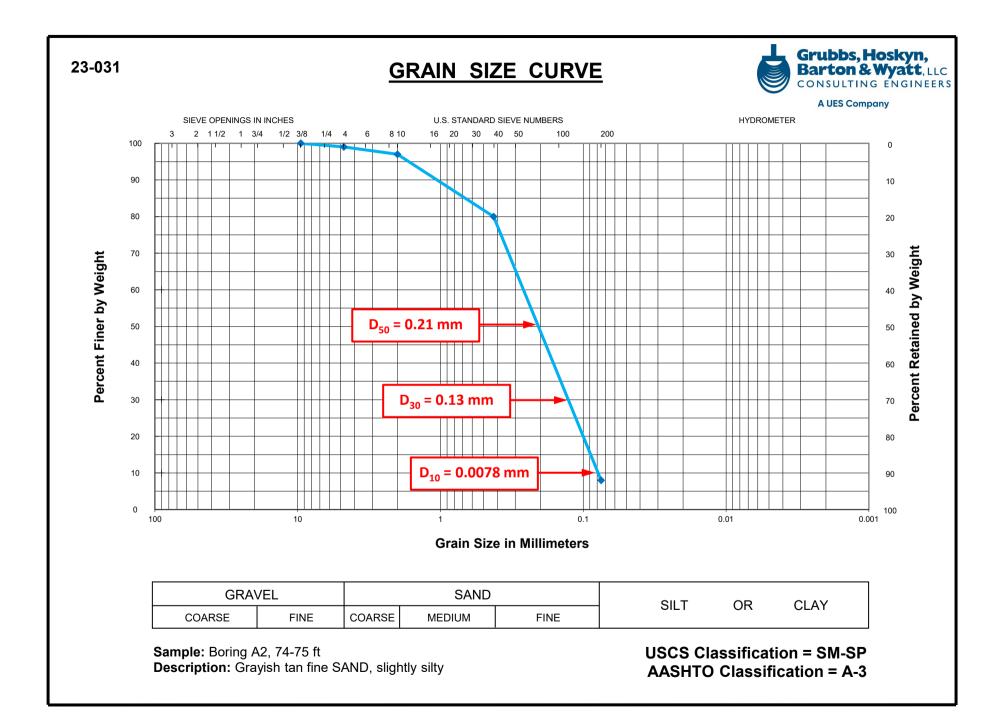

SUMMARY of CLASSIFICATION TEST RESULTS

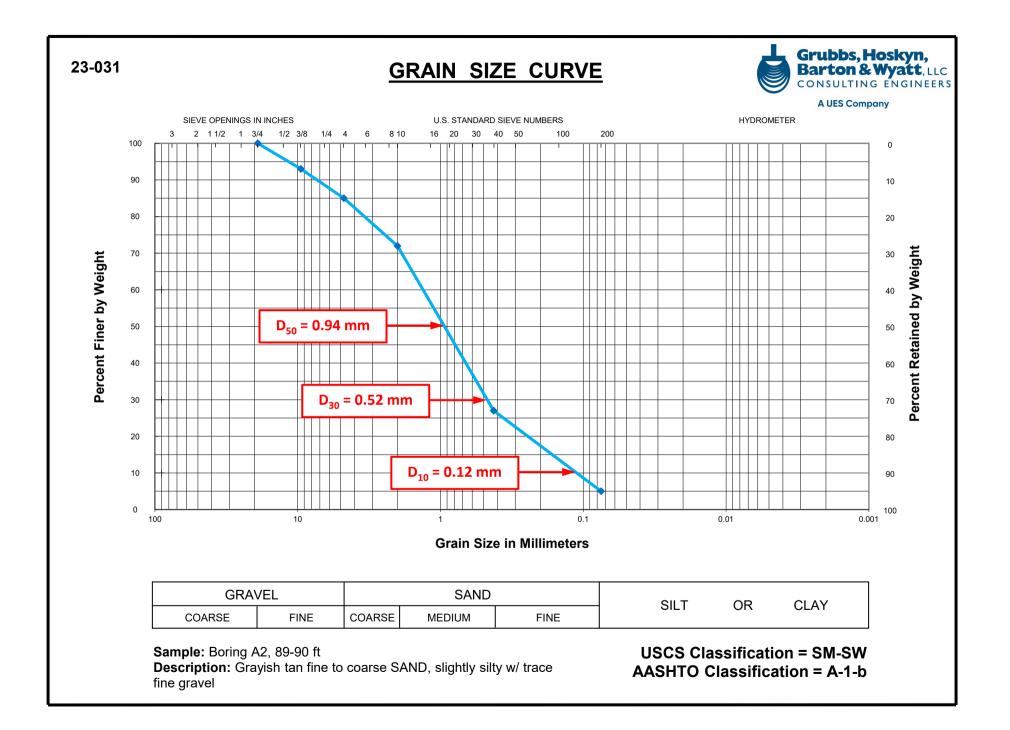

PROJECT: 101124 Hwy. 135 over Dead Timber Lake (Site 1) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

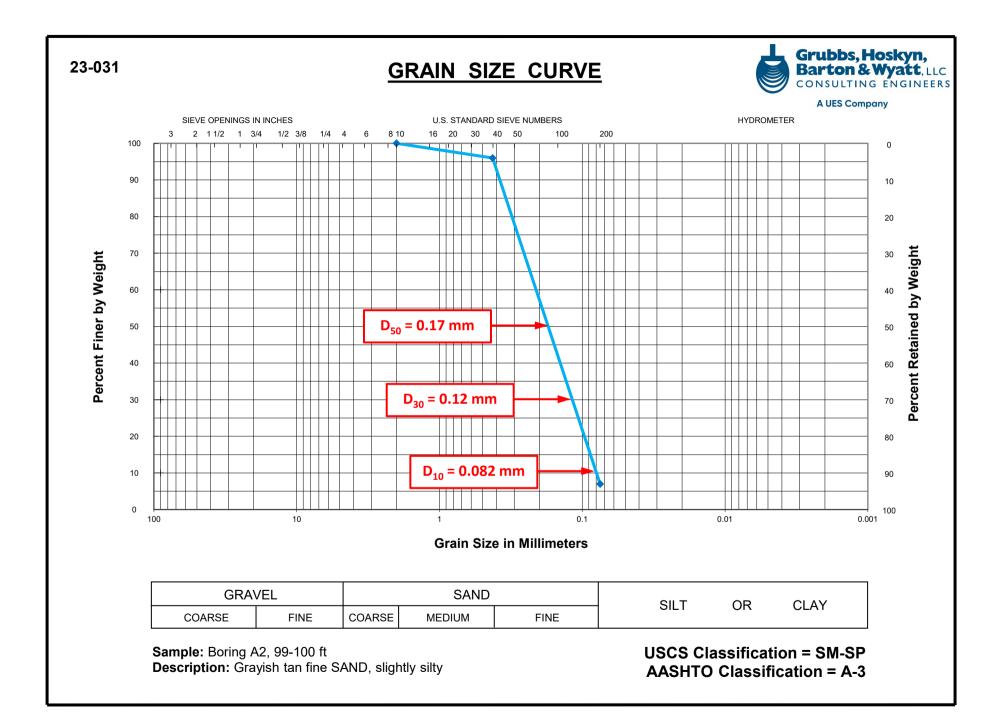

BORING NO.	SAMPLE DEPTH (ft)	WATER CONTENT (%)	ATTERBERG LIMITS			SIEVE ANALYSIS							USCS		
			LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PERCENT PASSING							USCS CLASS.	AASHTO CLASS.	
						2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	CLINDD.	
A4	2.5-3.5	23	50	21	29					94			75	СН	A-7-6
A4	9-9.5	92	77	42	35					100			85	MH	A-7-5
A4	19-19.5	33	67	25	42					100			99	CH	A-7-6
A4	24-25	5				100	100	100	100	100	100	67	6	SM-SP	A-3
A4	29-30	28				100	100	100	94	94	93	69	14	SM	A-2-4
A4	44-45	20				100	100	100	100	100	99	59	4	SP	A-3
A4	74-75	15				100	100	100	100	99	93	26	7	SM-SW	A-1-b
A4	84-85	20				100	100	100	100	100	100	67	6	SM-SP	A-3

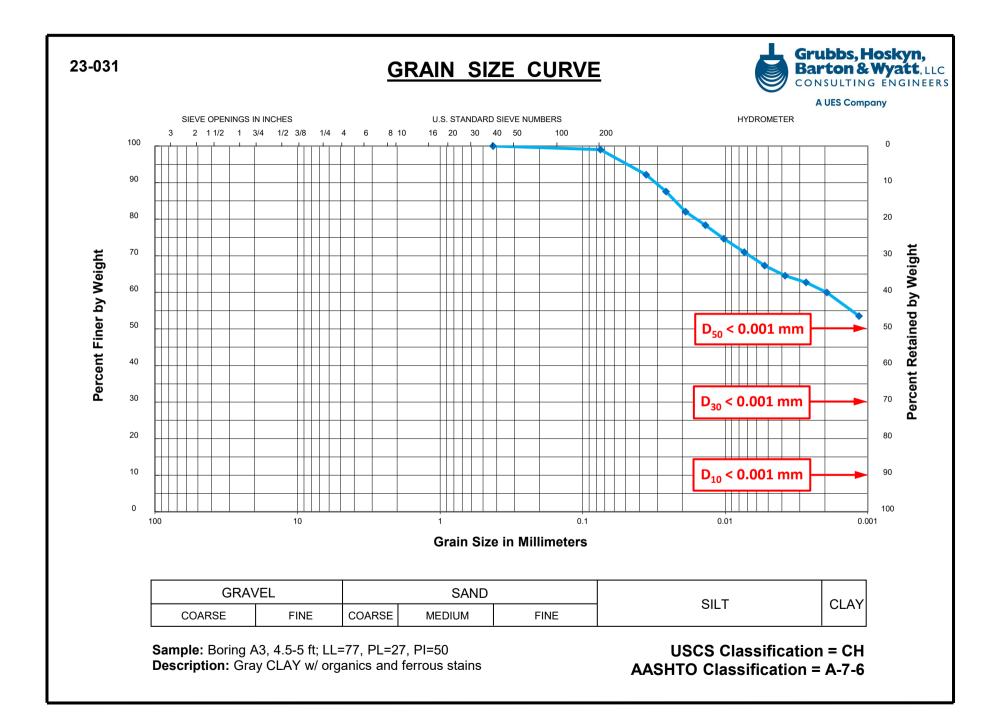


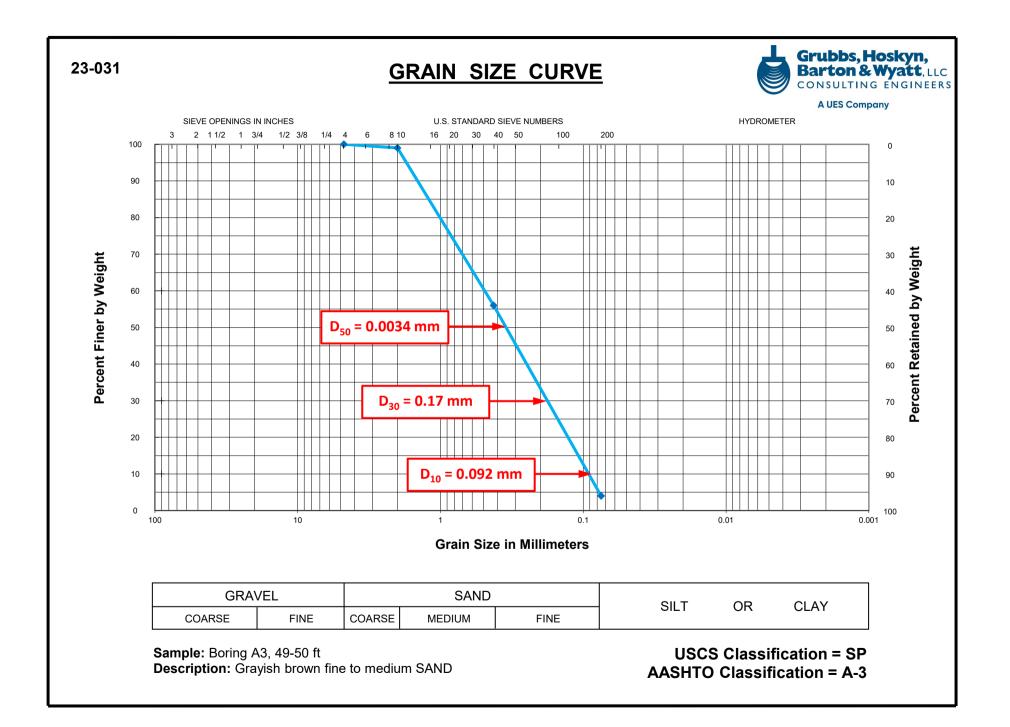


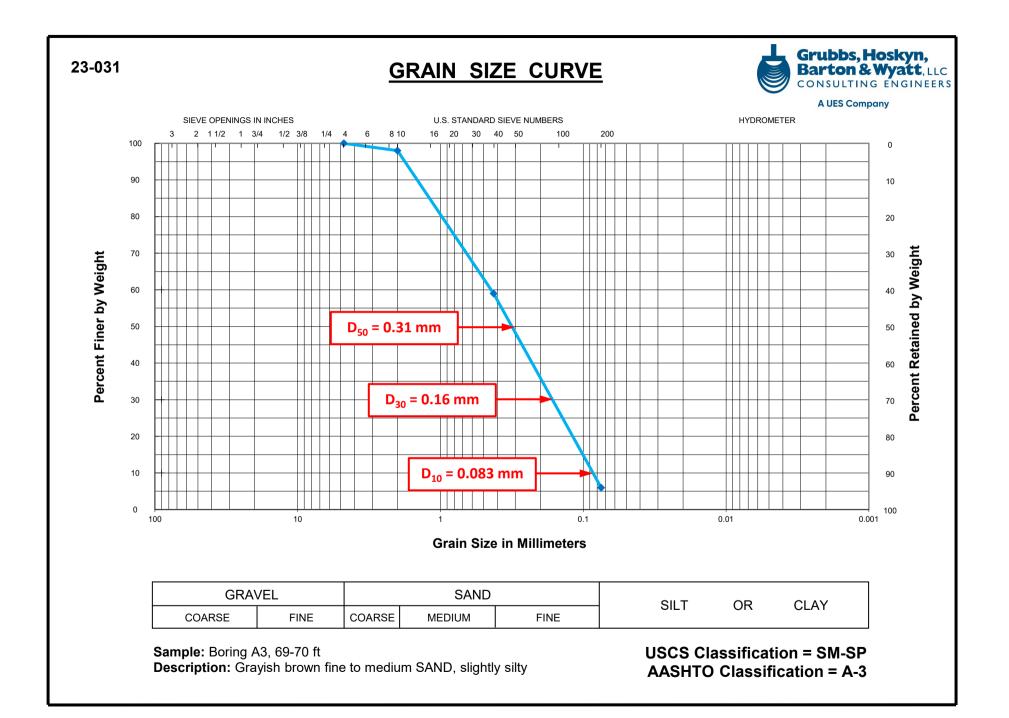


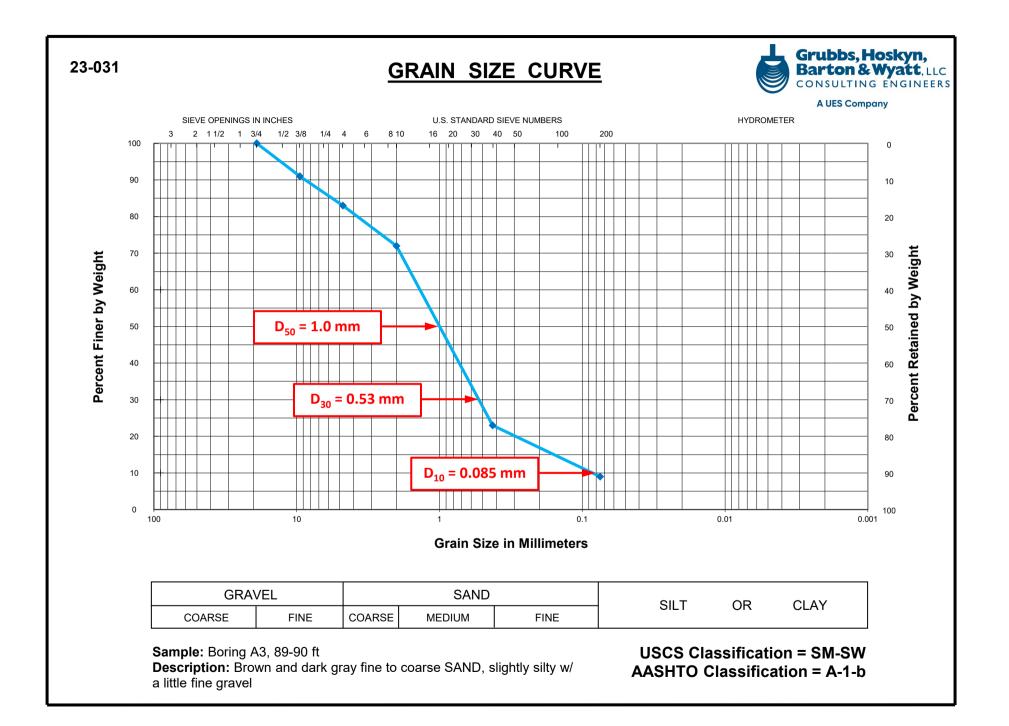


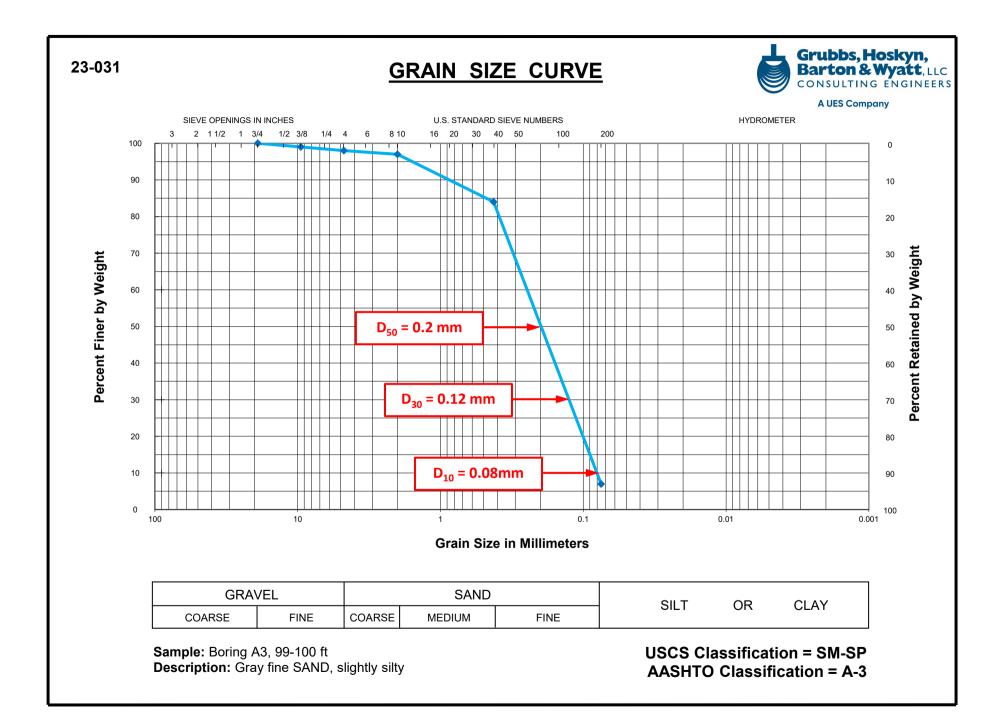


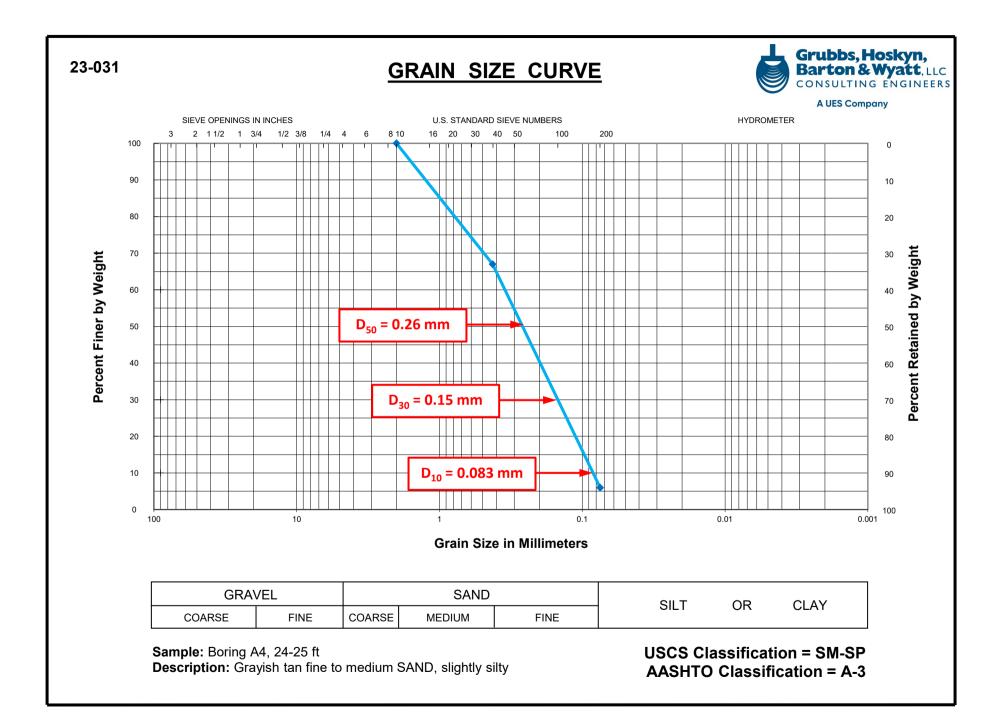


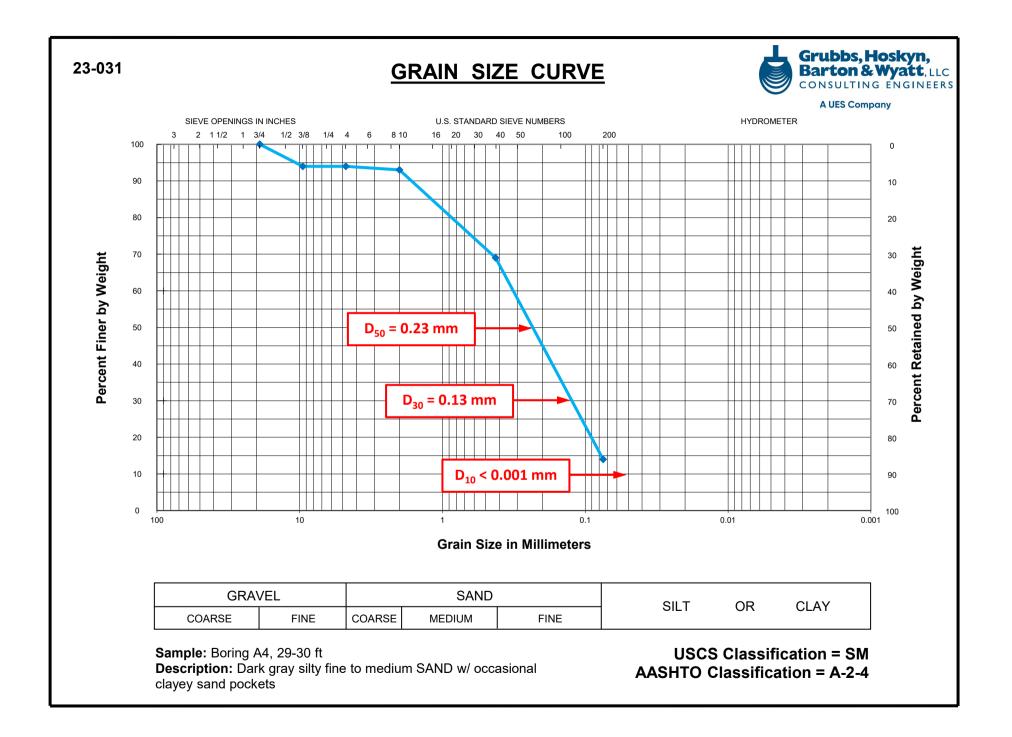


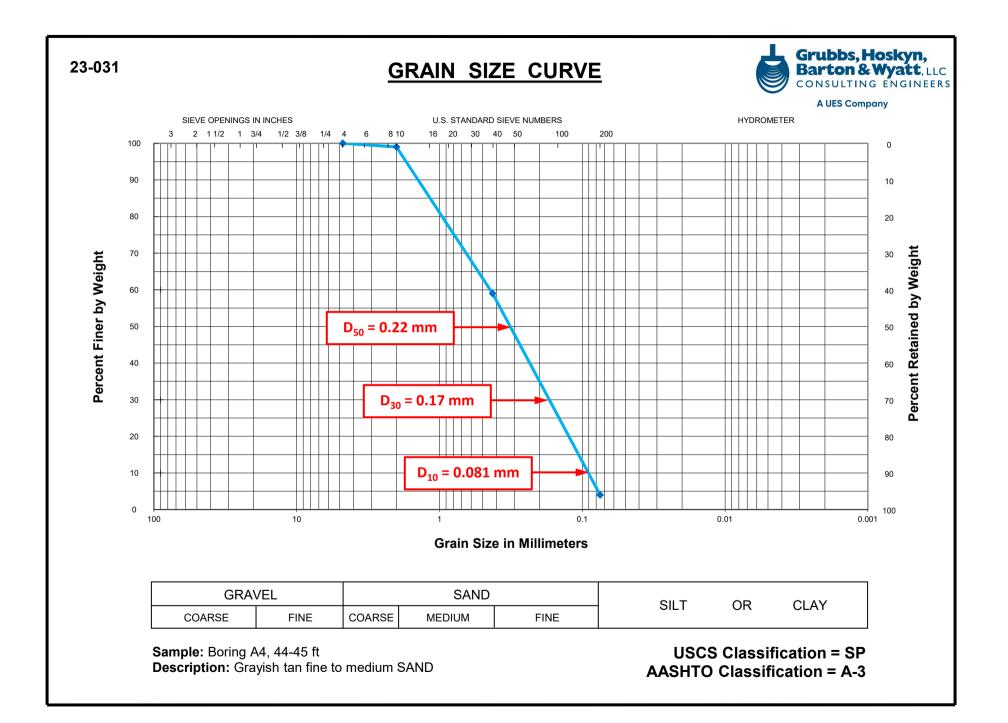


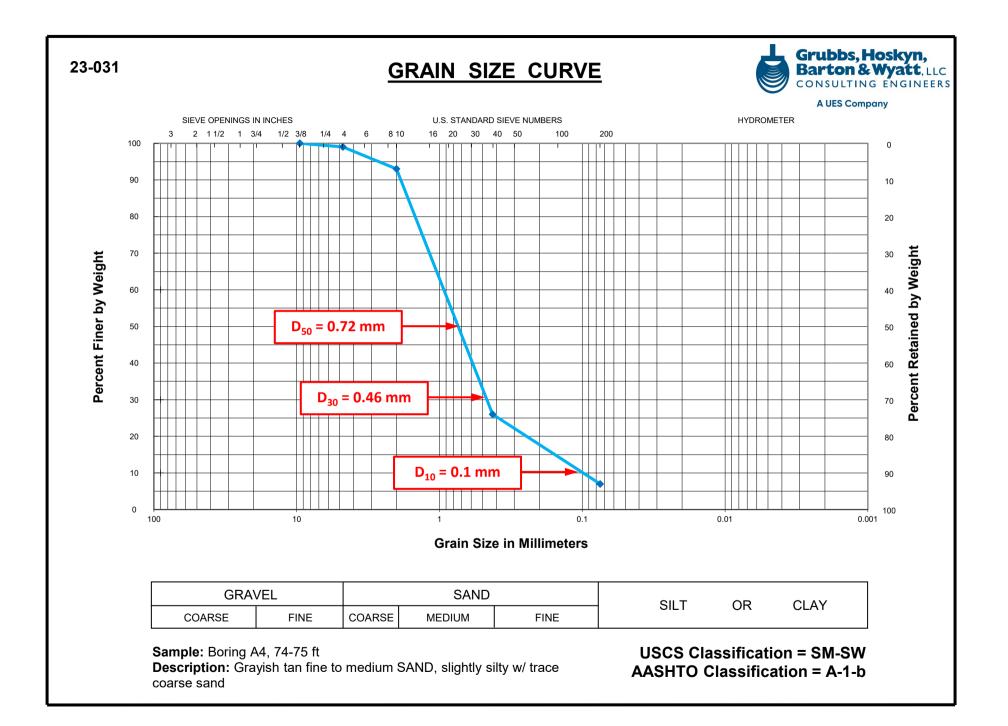


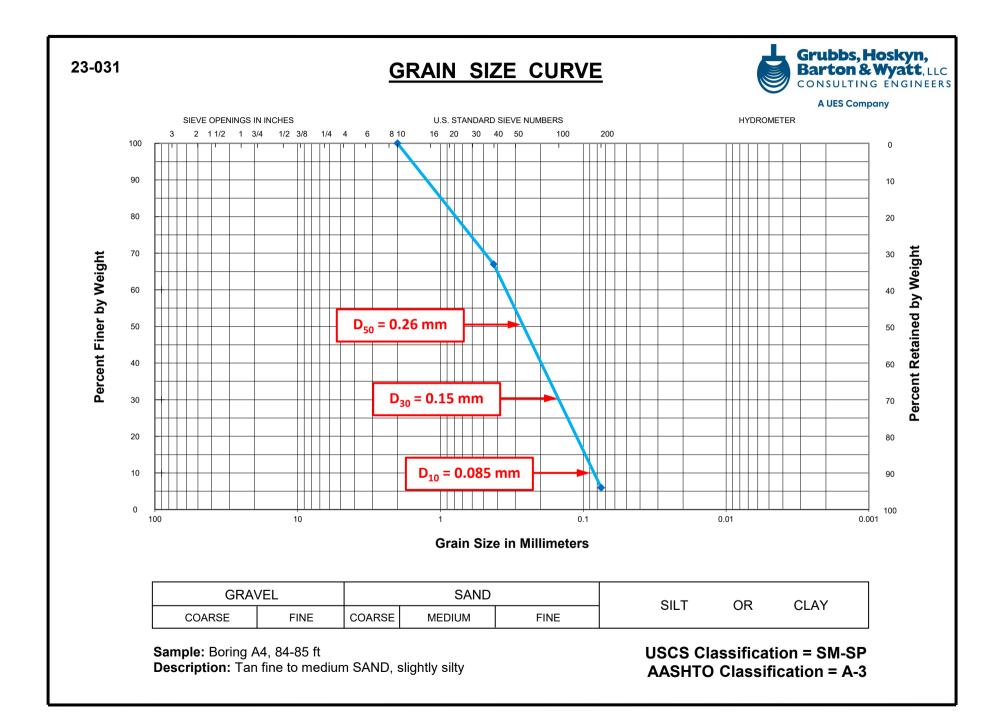


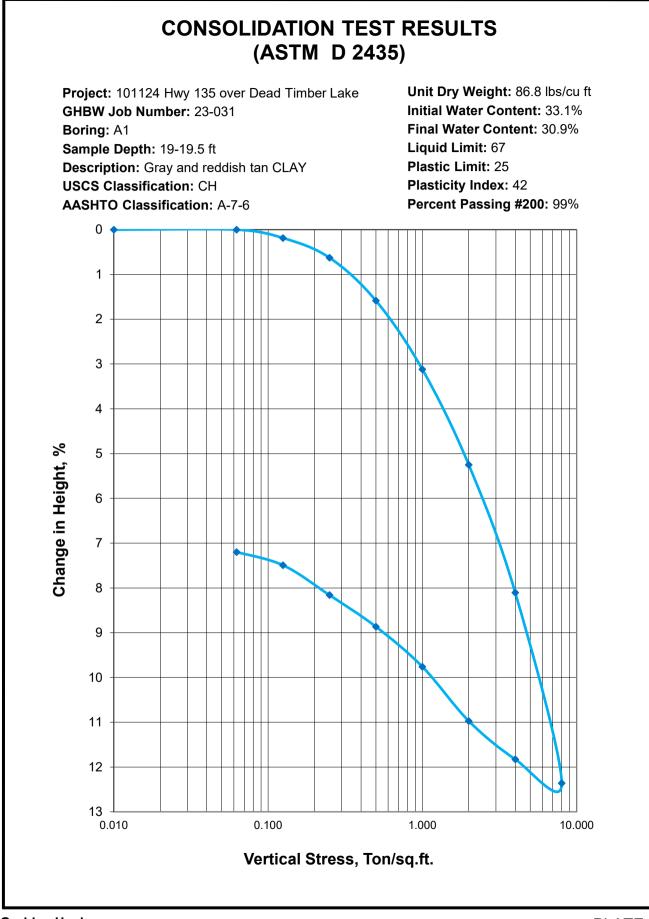


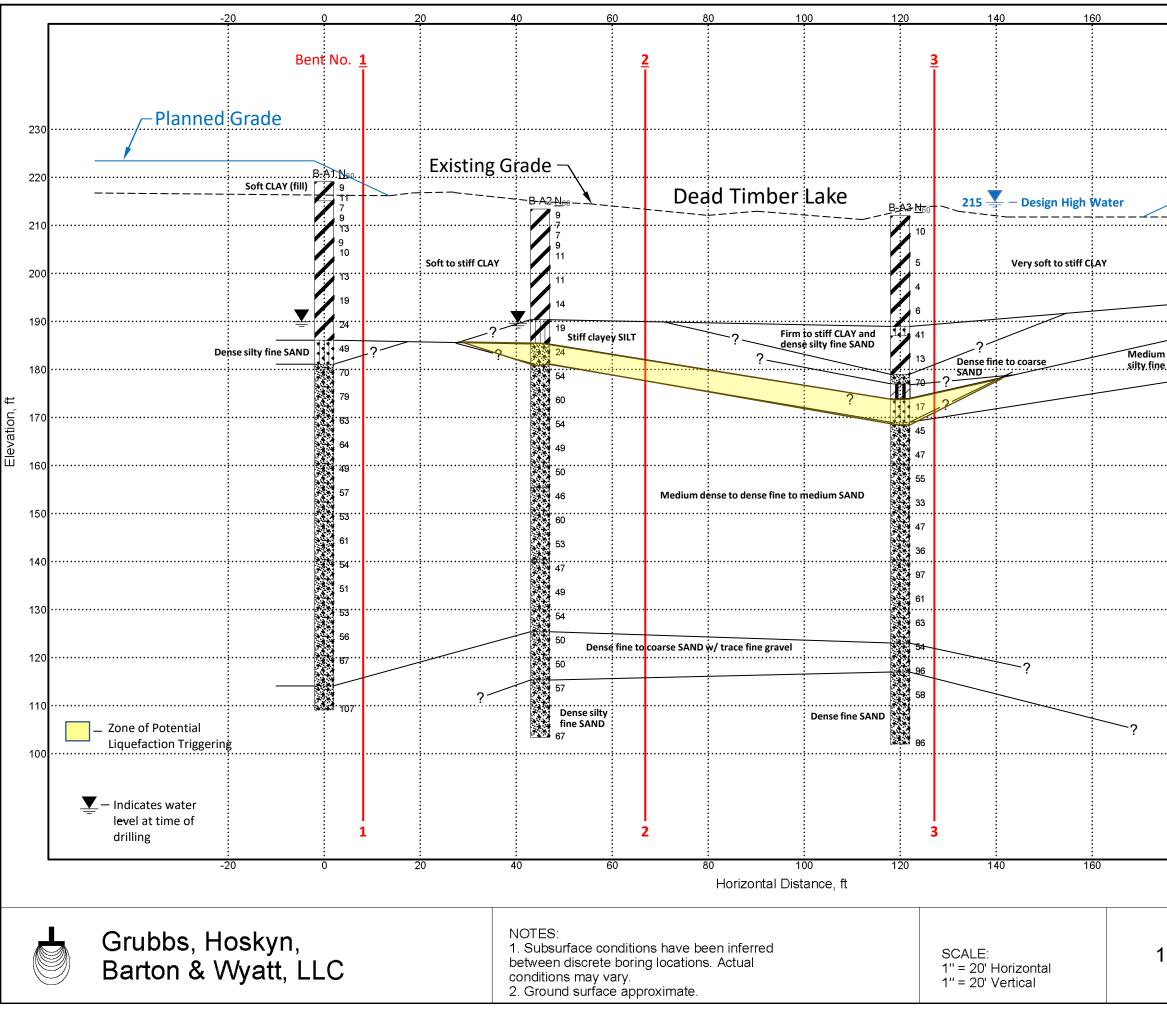




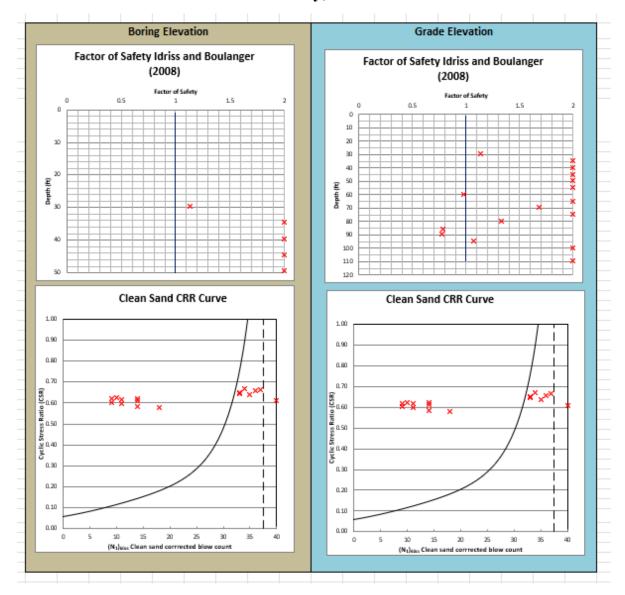






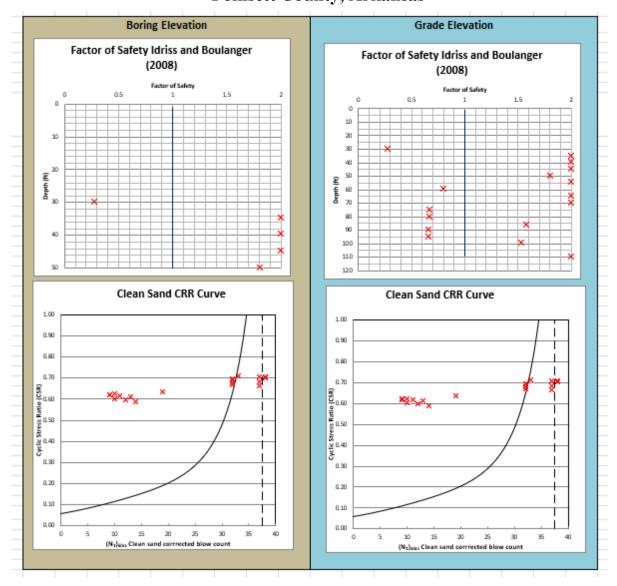


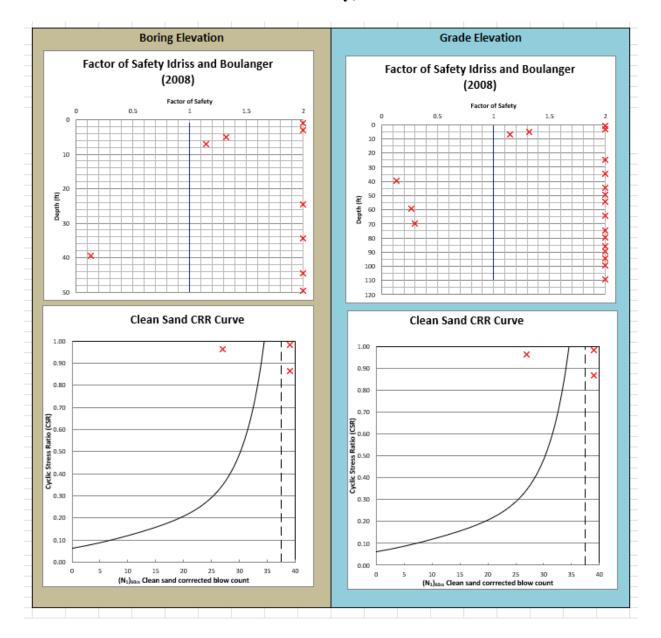
Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS


APPENDIX D

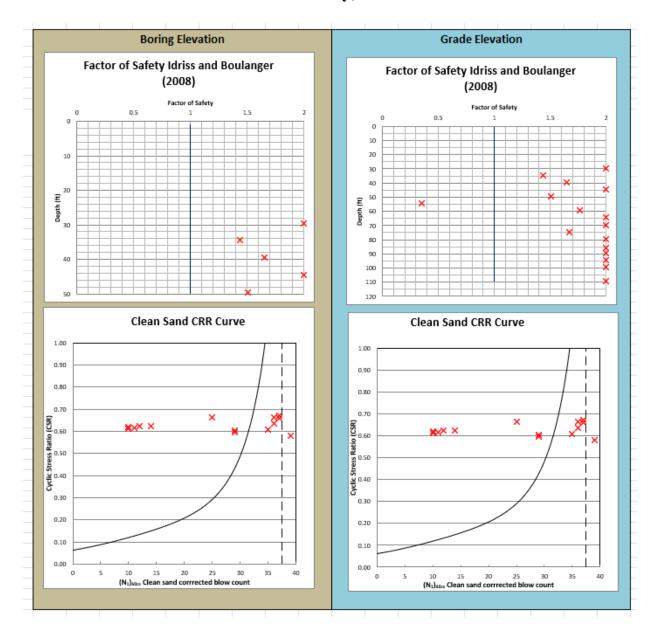
180			20	0	_
-			-		
4	4		:		
	Ī		-		
			:		
			-		
	••••••	•••••	···•		230
			-		
		_			
		B-A4	·Nå		220
			10	Soft to firm CLAY, sandy (fill)	
÷		-5	9:	^	210
:					210
			33		
	* ******		····}		200
			67		
			<u></u>		190
			47		
n dense to d	ense		44		
e to mediun	SAND	Į.	;		180
			46		
			: 59		
					170
			49		170
		20			
			37.		
	•••••		····; 51		160
-		х ж.			
			63		
·····	••••••		· <u></u>		150
			57		
÷			54 54		
			;		140
		20	67		
-		20	100	·	
					130
÷			107	,	130
			_		
			86		
	••••••		j 86		120
			-		
	••••••			7	110
		#	107		
			1		
			;		100
			-		
			-		
			-		
			÷		
	•				
			:		J
180			20	J	
C.	Sene	ral	iz	ed Subsurface Profile	
10112	4 HV	٧Y.	1	35 over Dead Timber Lake	
	Poi	ins	et	t County, Arkansas	
			- •	Project Number: 23-031	

Project Number: 23-031

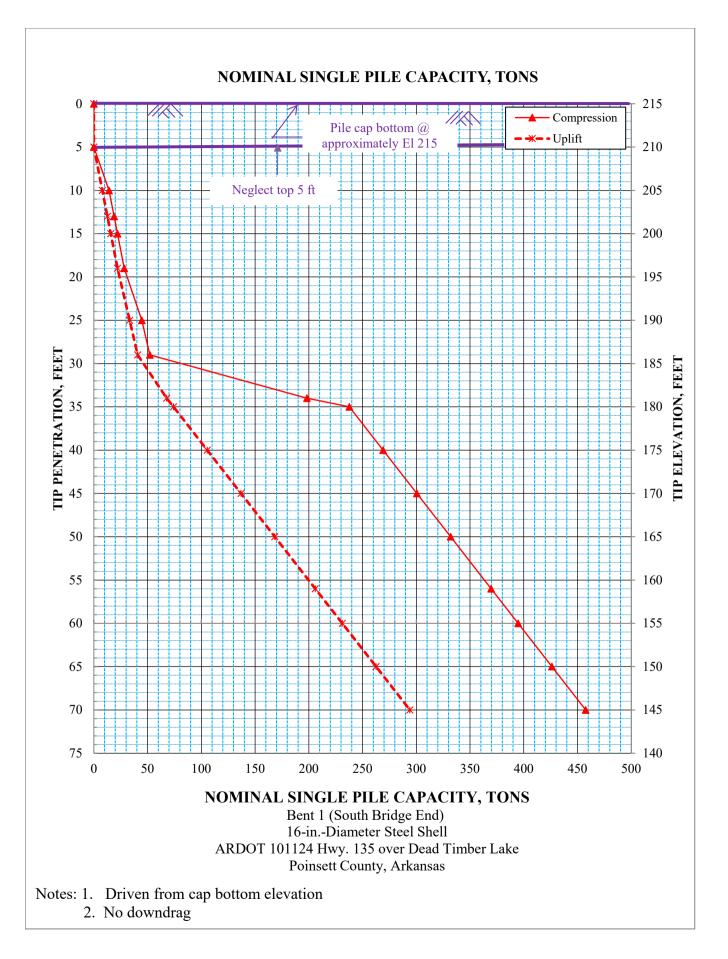

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Dead Timber Lake Bent 1 / Boring A1 GHBW Job No. 23-031 Poinsett County, Arkansas

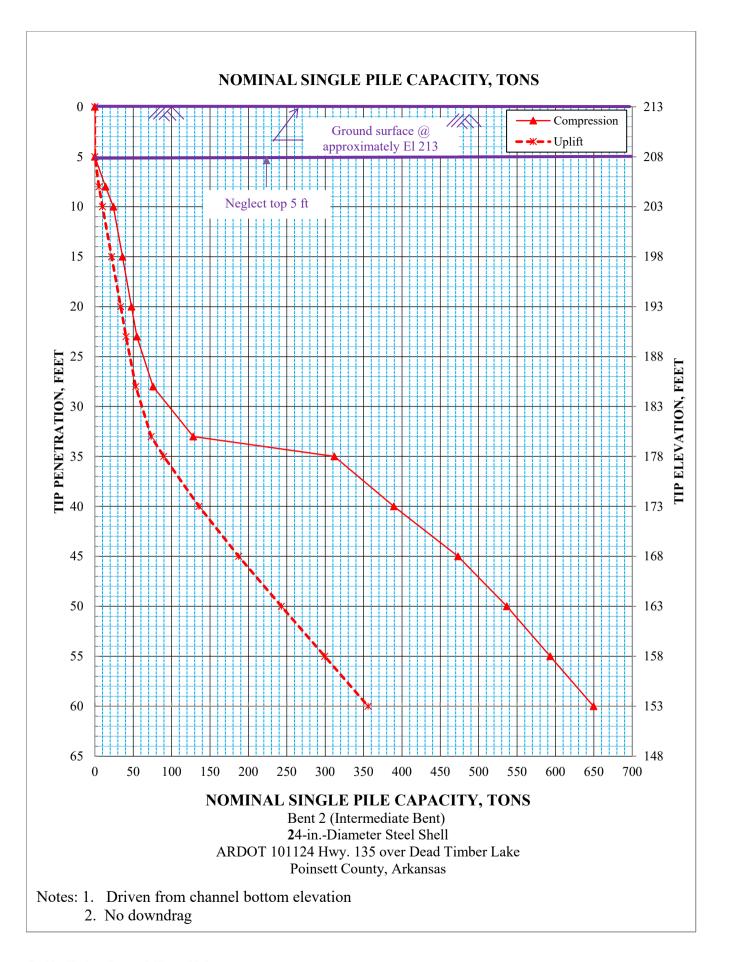

A UES Company

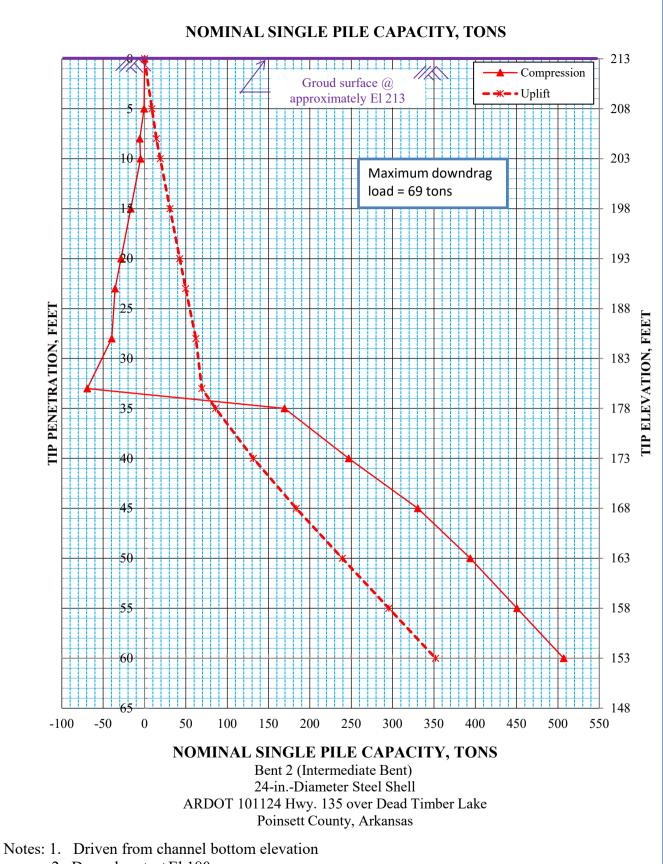
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Dead Timber Lake Bent 2 / Boring A2 GHBW Job No. 23-031 Poinsett County, Arkansas


Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Dead Timber Lake Bent 3 / Boring A3 GHBW Job No. 23-031 Poinsett County, Arkansas

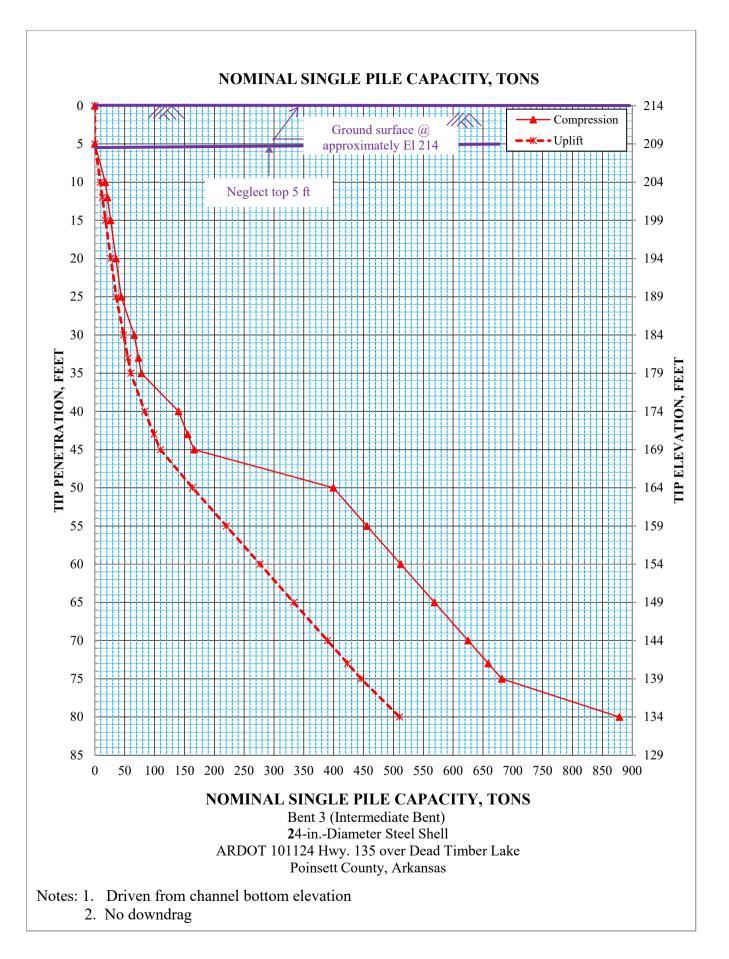
A UES Company

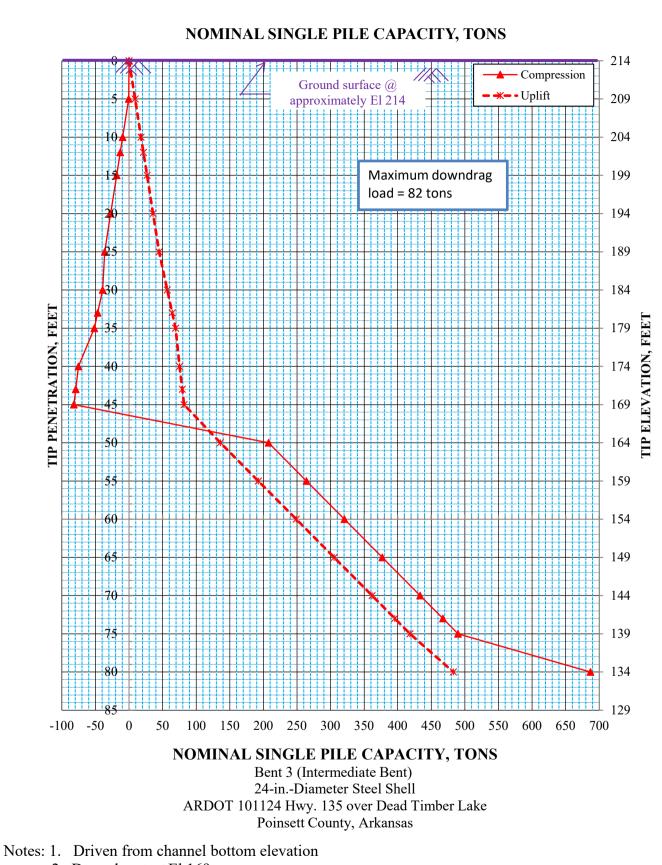

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Dead Timber Lake Bent 4 / Boring A4 GHBW Job No. 23-031 Poinsett County, Arkansas

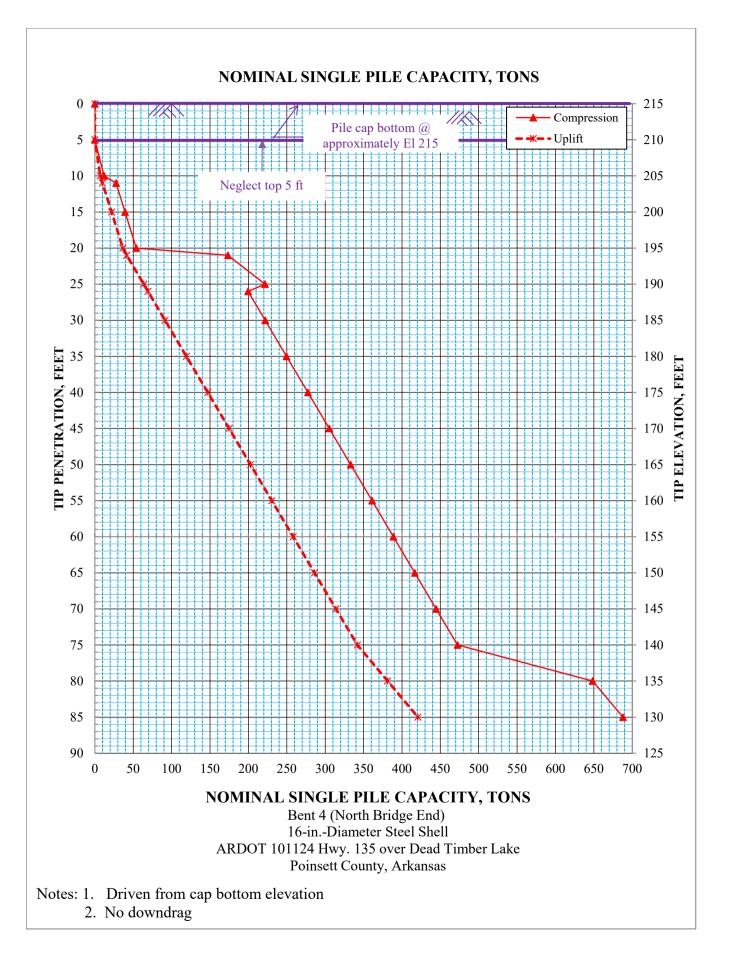




A UES Company


APPENDIX E





2. Downdrag to \pm El 180

2. Downdrag to ±El 169

APPENDIX F

SUMMARY OF LATERAL LOAD PARAMETERS ARDOT 101124 Hwy. 135 over Dead Timber Creek

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Generalized Stratigraphy	Soft to firm CLAY	Stiff CLAY	Dense silty fine SAND	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-19	19-29	29-34	34 and deeper
Approximate El, ft	215-196	196-186	186-181	below 181
Recommend soil type	Soft clay	Stiff clay with free water	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	63	65	68
Cohesion (c), lbs per sq ft	800	1800	0	0
Angle of internal friction $(\phi), \circ$	0	0	37	38
Subgrade modulus (k), lbs per cu in.	100	500	115	125
Strain at 50% (EE50)	0.01	0.007	NA	NA

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Note: Pile cap bottom at ±El 215

ARDOT 101124 Hwy. 135 over Dead Timber Creek

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Dent 2. Recommended I af ameters for Later at Load Analyses Using LI ILLS	Bent 2: Recommended Parameters for	Lateral Load Analyses Using LPILE©
---	---	------------------------------------

Generalized Stratigraphy	Soft CLAY	Firm to stiff CLAY	Stiff CLAY	Medium dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-23	23-28	28-33	33 and deeper
Approximate El, ft	213-205	205-190	190-185	185-180	below 180
Recommend soil type	Soft clay	Stiff clay with free water	Stiff clay with free water	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	58	63	56	65
Cohesion (c), lbs per sq ft	600	1000	1600	0	0
Angle of internal friction $(\phi), \circ$	0	0	0	32	37
Subgrade modulus (k), lbs per cu in.	100	300	500	50	115
Strain at 50% (EE50)	0.01	0.009	0.007	NA	NA

Note: Ground surface at ±El 213

Seismic Loading with Liquefaction

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft CLAY	Firm to stiff CLAY	Stiff CLAY	Medium dense fine SAND (liquefiable)	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-23	23-28	28-33	33 and deeper
Approximate El, ft	213-205	205-190	190-185	185-180	below 180
Recommend soil type	Soft clay	Stiff clay with free water	Stiff clay with free water	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	58	63	56	65
Cohesion (c), lbs per sq ft	600	1000	1600	0	0
Angle of internal friction (ϕ) , °	0	0	0	8	37
Subgrade modulus (k), lbs per cu in.	100	300	500	20	115
Strain at 50% (EE50)	0.01	0.009	0.007	NA	NA

Note: Ground surface at ±El 213

SUMMARY OF LATERAL LOAD PARAMETERS ARDOT 101124 Hwy. 135 over Dead Timber Creek

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft to firm CLAY	Stiff CLAY	Medium dense silty fine SAND	Dense fine to medium SAND	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-25	25-35	35-45	45-75	75 and deeper
Approximate El, ft	214-189	189-179	179-169	169-139	below 139
Recommend soil type	Soft clay	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	63	56	65	68
Cohesion (c), lbs per sq ft	600	1250	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	32	37	38
Subgrade modulus (k), lbs per cu in.	100	500	50	115	125
Strain at 50% (EE50)	0.01	0.007	NA	NA	NA

Note: Ground surface at ±El 214

Seismic Loading with Liquefaction

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft to firm CLAY	Stiff CLAY	Medium dense silty fine SAND (liquefiable)	Dense fine to medium SAND	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-25	25-35	35-45	45-75	75 and deeper
Approximate El, ft	214-189	189-179	179-169	169-139	below 139
Recommend soil type	Soft clay	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	63	56	65	68
Cohesion (c), lbs per sq ft	600	1250	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	8	37	38
Subgrade modulus (k), lbs per cu in.	100	500	20	115	125
Strain at 50% (EE50)	0.01	0.007	NA	NA	NA

Note: Ground surface at ±El 214

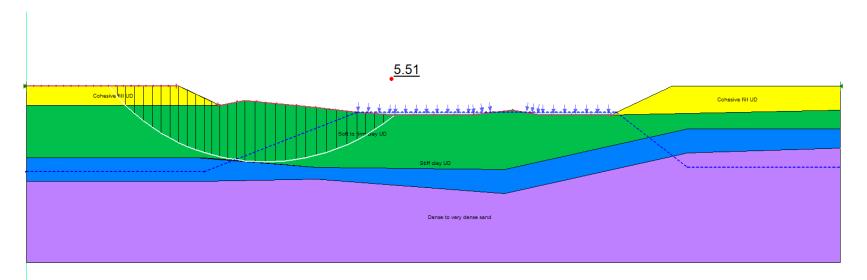
SUMMARY OF LATERAL LOAD PARAMETERS ARDOT 101124 Hwy. 135 over Dead Timber Creek

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

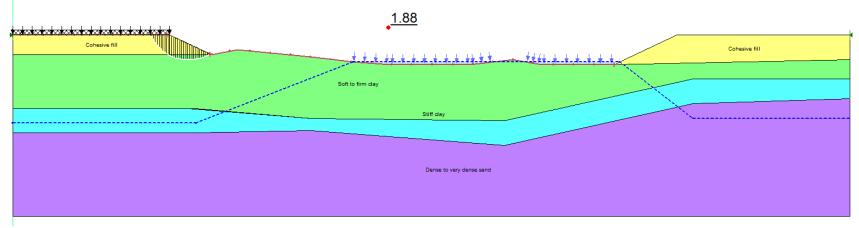
Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

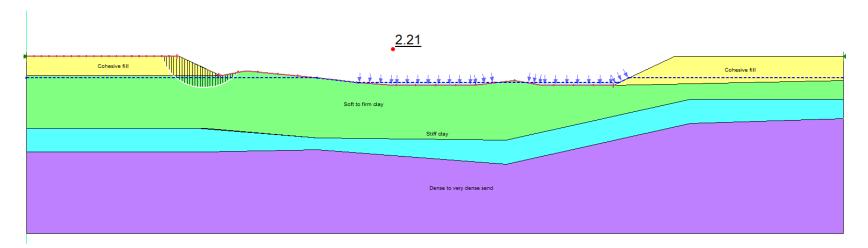
Generalized Stratigraphy	Soft to firm fine sandy CLAY	Very stiff CLAY	Dense fine SAND	Dense fine to medium SAND	Dense to very dense fine SAND
Depth below pile cap bottom, ft	0-10	10-20	20-25	25-75	75 and deeper
Approximate El, ft	215-205	205-195	195-190	190-140	below 140
Recommend soil type	Soft clay	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	120	68	65	68
Cohesion (c), lbs per sq ft	800	2800	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	38	37	40
Subgrade modulus (k), lbs per cu in.	100	1000	125	115	130
Strain at 50% (EE50)	0.01	0.005	NA	NA	NA

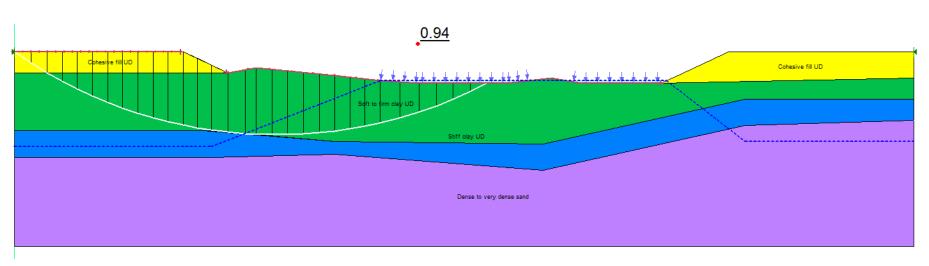

Note: Pile cap bottom at ±El 215

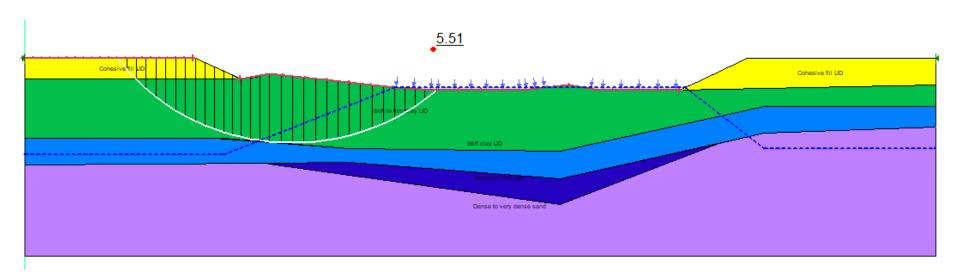
APPENDIX G

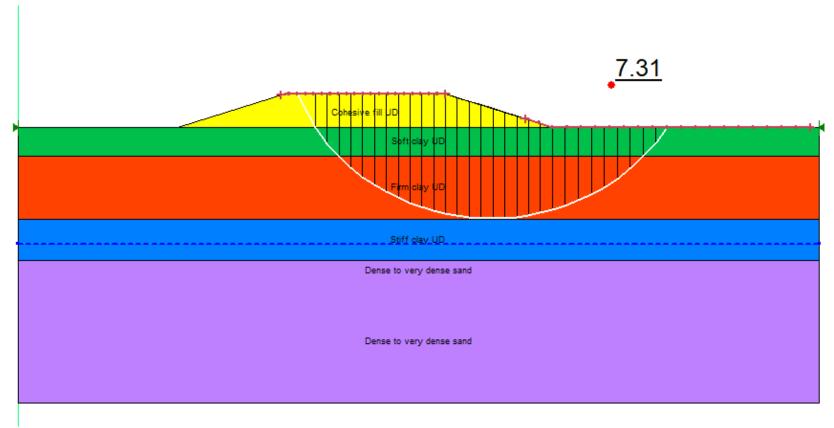
Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Dead Timber Lake GHBW Job No. 23-031 Poinsett County, Arkansas

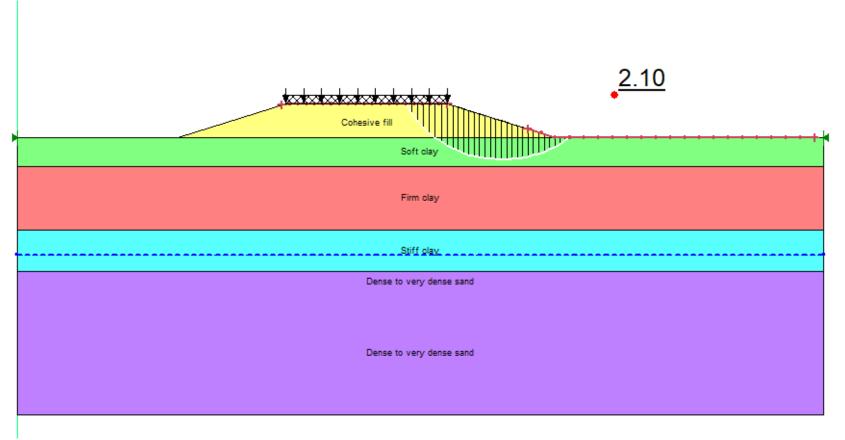

	Design Loading Condition	Calculated Minimum Factor of Safety
	End of Construction	5.51
	Long Term	1.88
South End Slope (Bent 1) (2H:1V)	Rapid Drawdown from El 215 to El 213	2.21
	Seismic ($k_h = A_S/2 = 0.477$)	0.94
	Lateral Spread	5.51
	End of Construction	7.31
South Side Slope (Bent 1)	Long Term	2.10
(3H:1V)	Rapid Drawdown from El 215 to Existing Grade	2.19
-	Seismic ($k_h = A_S/2 = 0.477$)	1.35
	End of Construction	6.56
North End Slope (Bent 4)	Long Term	1.61
(2H:1V)	Rapid Drawdown from El 215 to El 213	1.45
	Seismic ($k_h = A_S/2 = 0.477$)	1.80
	End of Construction	6.73
North Side Slope (Bent 4)	Long Term	1.95
(3H:1V)	Rapid Drawdown from El 215 to Existing Grade	1.72
	Seismic ($k_h = A_S/2 = 0.477$)	1.95

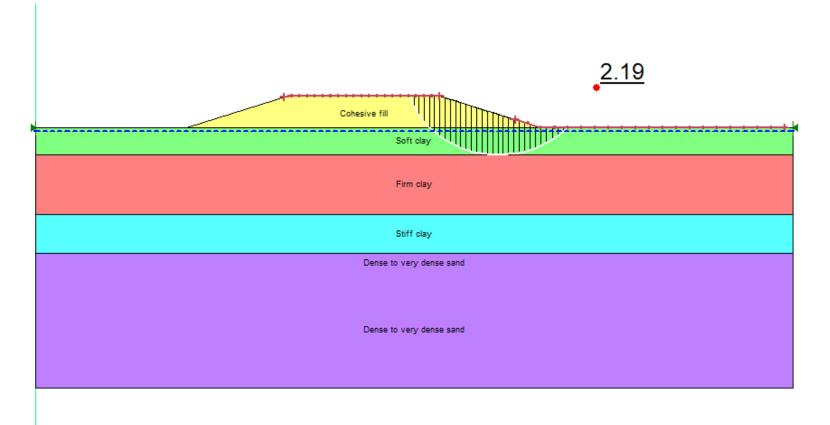

Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

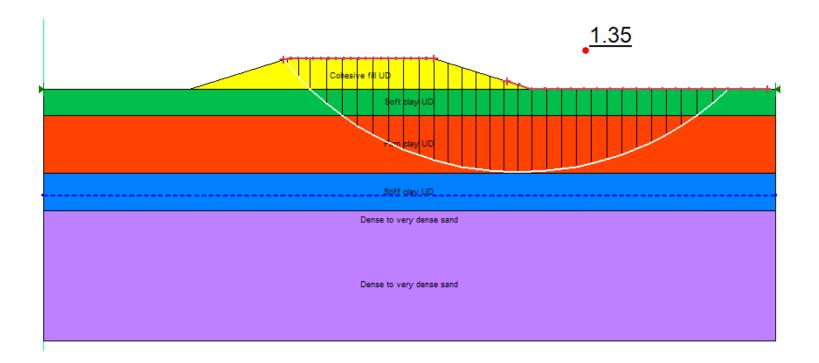

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

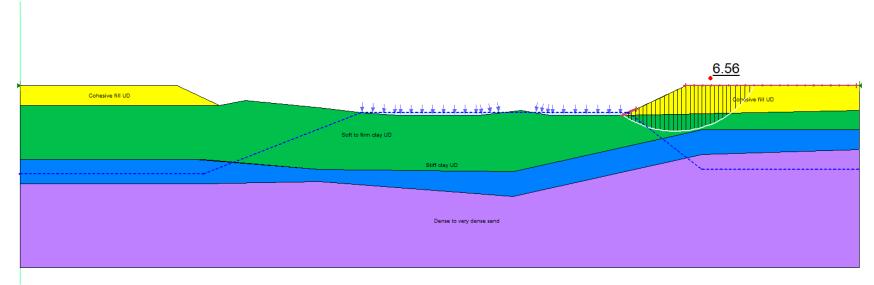

Results of Stability Analyses – Rapid Drawdown Condition from El 215 to El 213 Bent 1 End Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

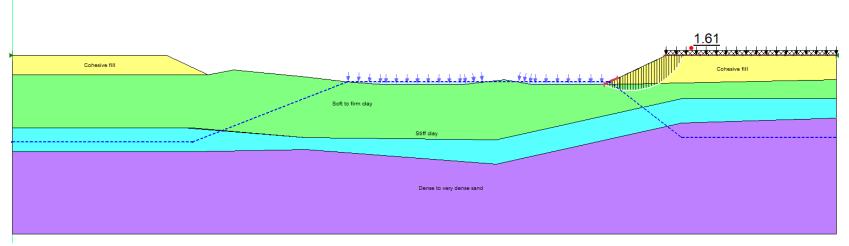

 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.477) \\ \mbox{Bent 1 End Slope} \\ \mbox{2H:1V Slope, H=8 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Dead Timber Creek} \end{array}$

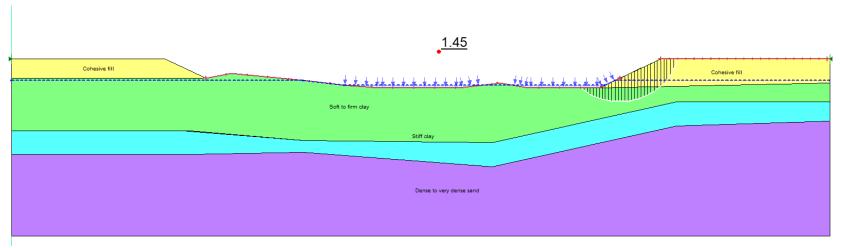

Results of Stability Analyses – Lateral Spread Bent 1 End Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

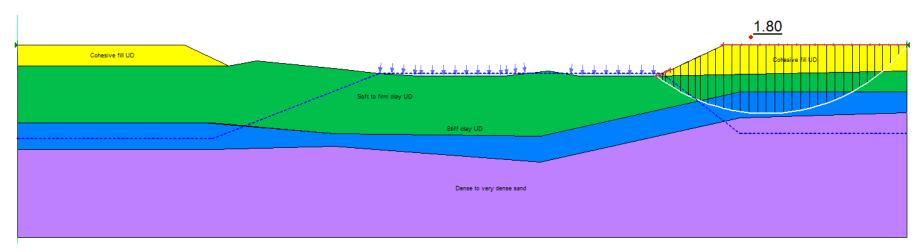

Results of Stability Analyses – End of Construction Bent 1 Side Slope 3H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

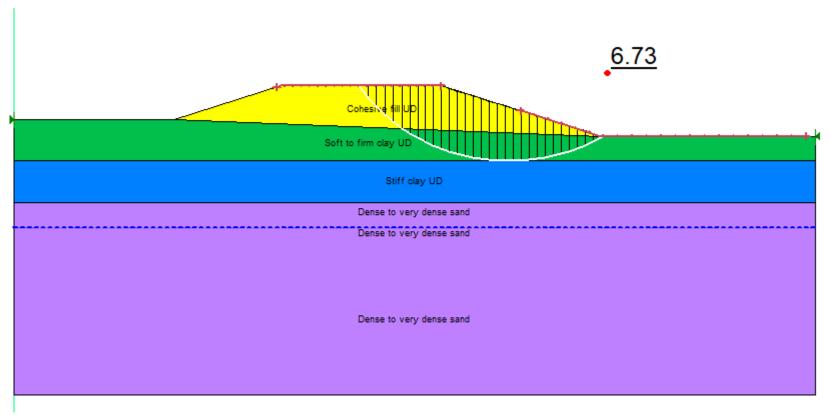

Results of Stability Analyses – Long Term Condition Bent 1 Side Slope 3H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

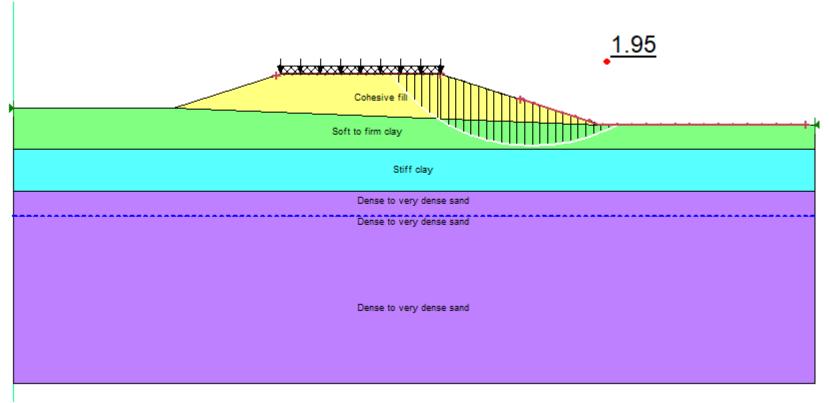

Results of Stability Analyses – Rapid Drawdown El 215 to Existing Grade Bent 1 Side Slope 3H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

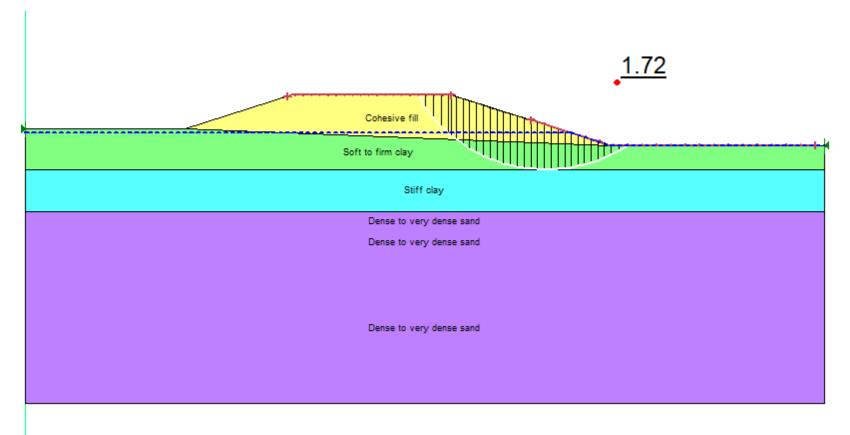

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.477) \\ \mbox{Bent 1 Side Slope} \\ \mbox{3H:1V Slope, H=8 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Dead Timber Creek} \end{array}$

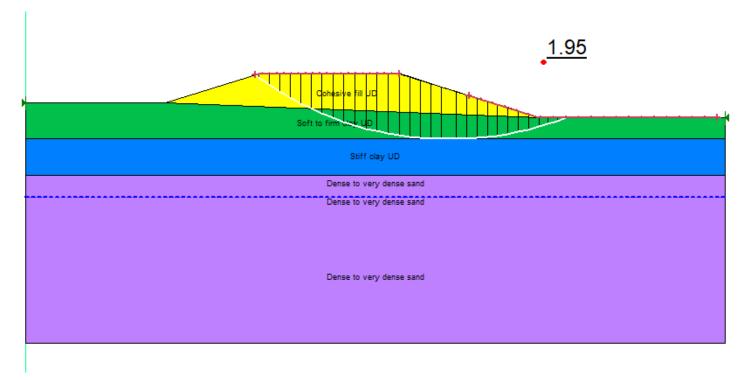

Results of Stability Analyses – End of Construction Bent 4 End Slope 2H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek


Results of Stability Analyses – Long Term Condition Bent 4 End Slope 2H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek


Results of Stability Analyses – Rapid Drawdown Condition, El 215 to El 213 Bent 4 End Slope 2H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek


 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.477) \\ \mbox{Bent 4 End Slope} \\ \mbox{2H:1V Slope, H=12 ft \pm} \\ \mbox{23-031 - ArDOT Job No. 101124 - Hwy. 35 over Dead Timber Creek} \end{array}$


Results of Stability Analyses – End of Construction Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek


Results of Stability Analyses – Long Term Condition Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

Results of Stability Analyses – Rapid Drawdown Condition, El 215 to Existing Grade Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Dead Timber Creek

 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.477) \\ \mbox{Bent 4 Side Slope} \\ \mbox{3H:1V Slope, H=12 ft \pm} \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Dead Timber Creek} \end{array}$

APPENDIX H

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX I

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \leq 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

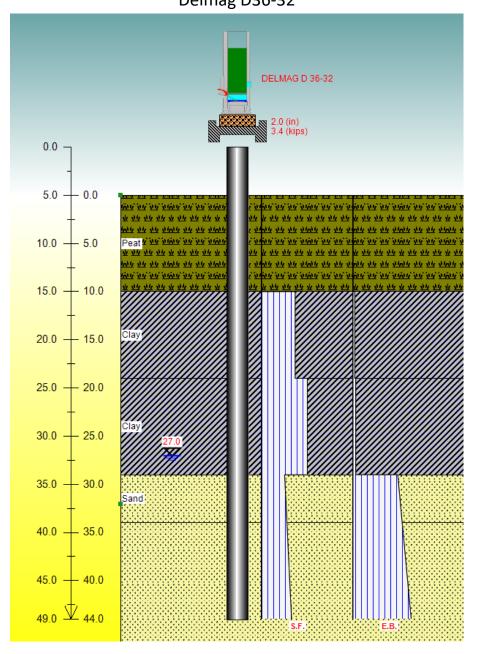
Payment will be made under:

Pay Item

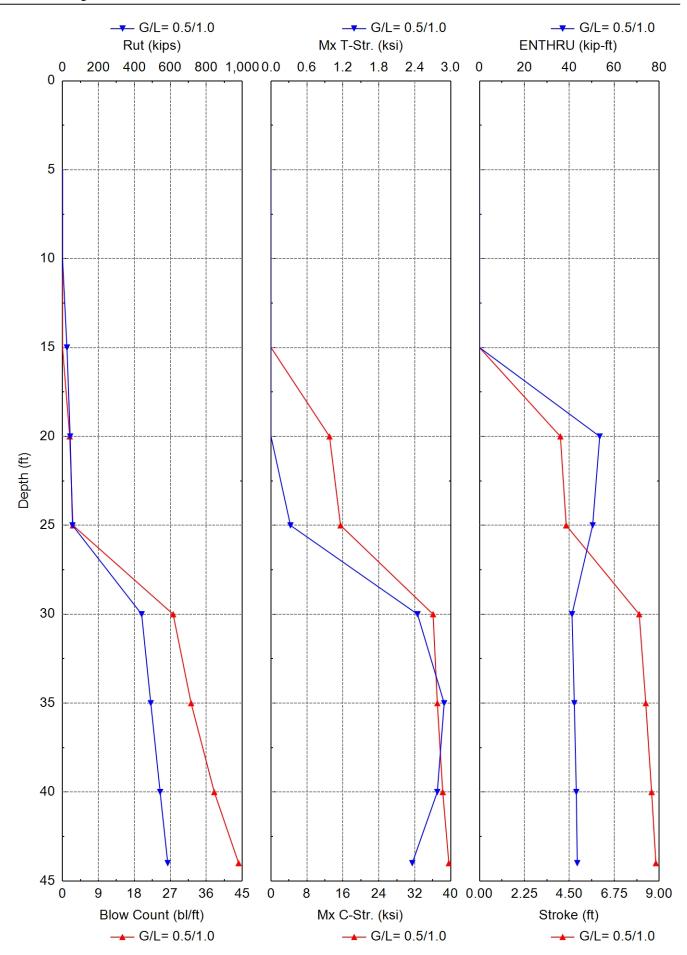
Pay Unit

Compacted Embankment

Cubic Yard

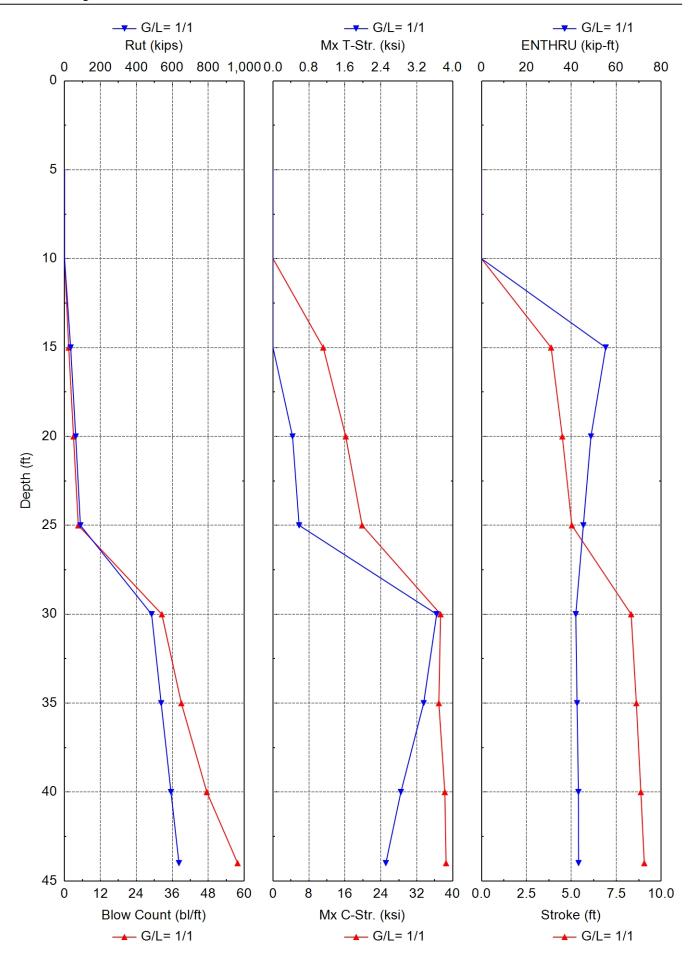

APPENDIX J

WEAP ANALYSES - STEEL SHELL PILES


Project: 101124 - Hwy 135 Poinsett County, Arkansas GHBW Project No: 23-031

Bridge	Bent	Pile Diameter (in)	Wall Thickness (in)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El.	Min Tip El.	Pile Length (ft)	Min Hammer Energy (ft- kip)	Max Comp Stress, ksi
	1	16	0.50	270	215	171	44	91	39.6
1 - Dead Timber Lake	2	24	0.50	198	213	172	41	91	32.8
T - Dead Timber Lake	3	24	0.50	289	214	156	58	125	37.5
	4	16	0.50	280	215	152	63	91	35.8

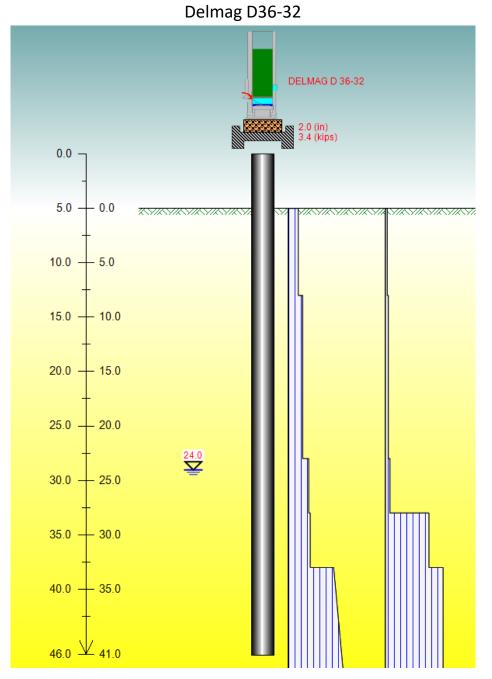
ArDOT 101124 Hwy 135 over Dead Timber Lake Bent 1 16-in-diameter Steel Shell Pile Delmag D36-32



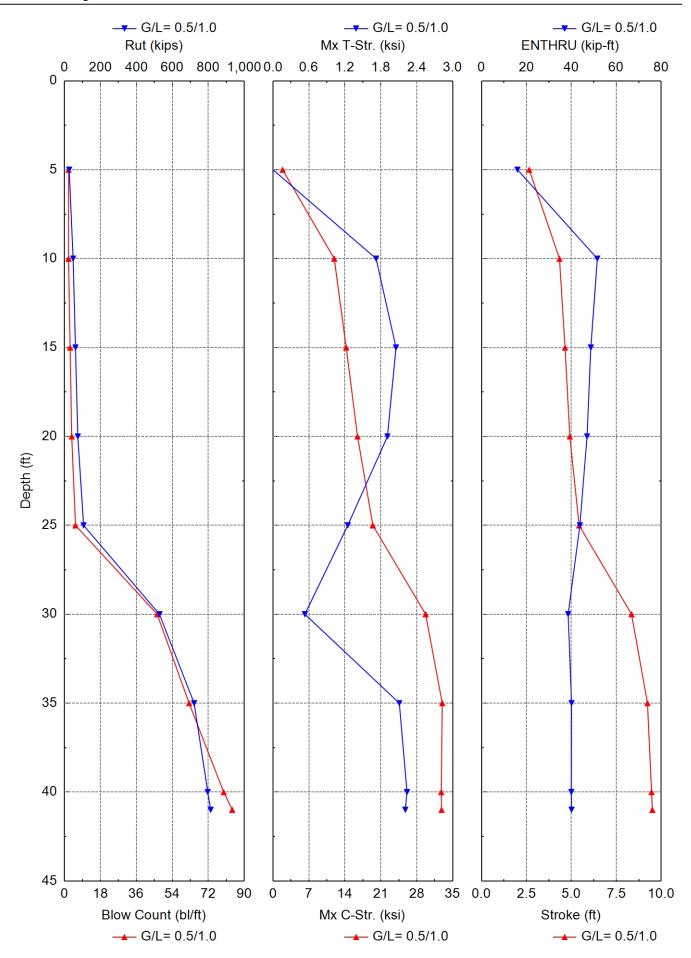
Gain/Loss Factor at Shaft/Toe = 0.500/1.000									
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke l	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
15.0	24.6	9.5	15.1	0.0	0.000	0.000	0.00	0.0	D 36-32
20.0	42.5	19.9	22.6	1.8	13.017	0.000	4.05	53.5	D 36-32
25.0	55.5	32.9	22.6	2.6	15.477	0.324	4.34	50.4	D 36-32
30.0	440.3	46.0	394.3	27.7	36.071	2.446	8.00	41.2	D 36-32
35.0	491.2	57.9	433.3	32.2	37.020	2.891	8.33	42.2	D 36-32
40.0	543.1	70.8	472.4	38.0	38.223	2.776	8.62	43.1	D 36-32
44.0	585.5	81.9	503.6	44.1	39.593	2.358	8.83	43.5	D 36-32

Driveability Analysis Summary	
ain/Loss Factor at Shaft/Toe = 0.500/1.00	0

Total driving time: 14 minutes; Total Number of Blows: 583 (starting at penetration 5.0 ft)

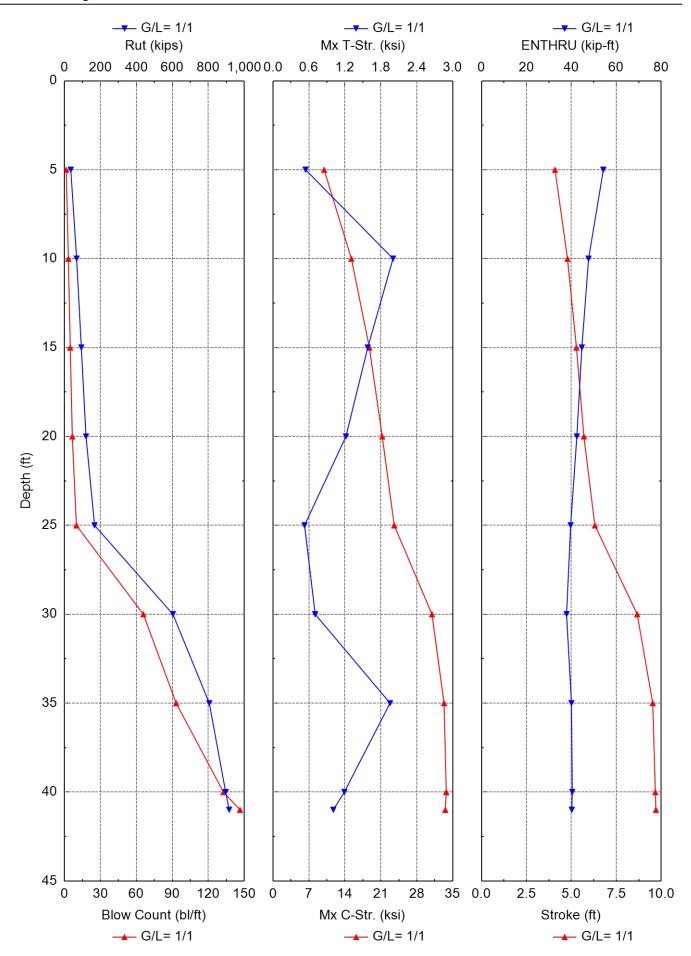

		Gain/	Loss Fa	ctor at Sł	naft/Toe =	1.000/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
15.0	34.0	18.9	15.1	1.4	11.181	0.000	3.87	55.3	D 36-32
20.0	62.4	39.8	22.6	3.0	16.186	0.435	4.50	48.7	D 36-32
25.0	88.4	65.8	22.6	4.6	19.833	0.581	5.03	45.3	D 36-32
30.0	484.6	90.3	394.3	32.5	37.298	3. <mark>6</mark> 43	8.33	42.0	D 36-32
35.0	537.8	104.5	433.3	39.0	36.913	3.353	8.62	42.5	D 36-32
40.0	592.3	120.0	472.4	47.5	38.243	2.847	8.87	43.2	D 36-32
44.0	636.9	133.4	503.6	57.8	38.520	2.512	9.06	43.2	D 36-32

Driveability Analysis Summary
ain/Loss Factor at Shaft/Toe = 1.000/1.000


Total driving time: 18 minutes; Total Number of Blows: 734 (starting at penetration 5.0 ft)

4/4

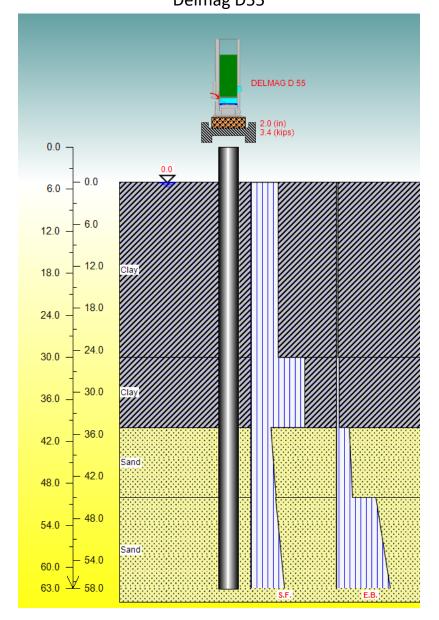
ArDOT 101124 Hwy 135 over Dead Timber Lake Bent 2 24-in-diameter Steel Shell Pile



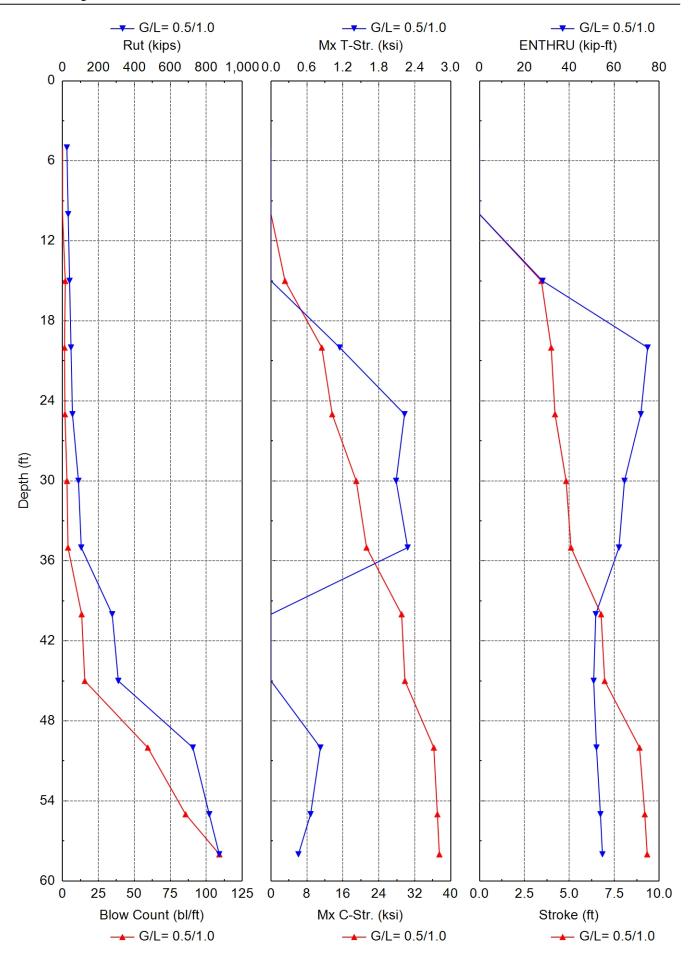
		Gain/	'Loss Fa	ctor at Sł	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	25.9	9.0	17.0	2.0	1.866	0.000	2.66	16.0	D 36-32
10.0	47.8	19.5	28.3	2.0	11.926	1.721	4.34	51.6	D 36-32
15.0	60.9	32.6	28.3	2.8	14.254	2.053	4.65	48.7	D 36-32
20.0	73.9	45.7	28.3	3.6	16.463	1.910	4.91	47.0	D 36-32
25.0	106.2	60.9	45.2	5.5	19.441	1.248	5.43	43.8	D 36-32
30.0	528.4	85.4	443.0	46.4	29.724	0.532	8.35	38.6	D 36-32
35.0	721.1	133.6	587.5	62.4	32.963	2.109	9.24	40.1	D 36-32
40.0	797.2	209.7	587.5	79.7	32.775	2.237	9.46	40.0	D 36-32
41.0	813.3	225.8	587.5	84.0	32.827	2.208	9.51	40.1	D 36-32

Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 0.500/1.000

Total driving time: 22 minutes; Total Number of Blows: 899 (starting at penetration 5.0 ft)

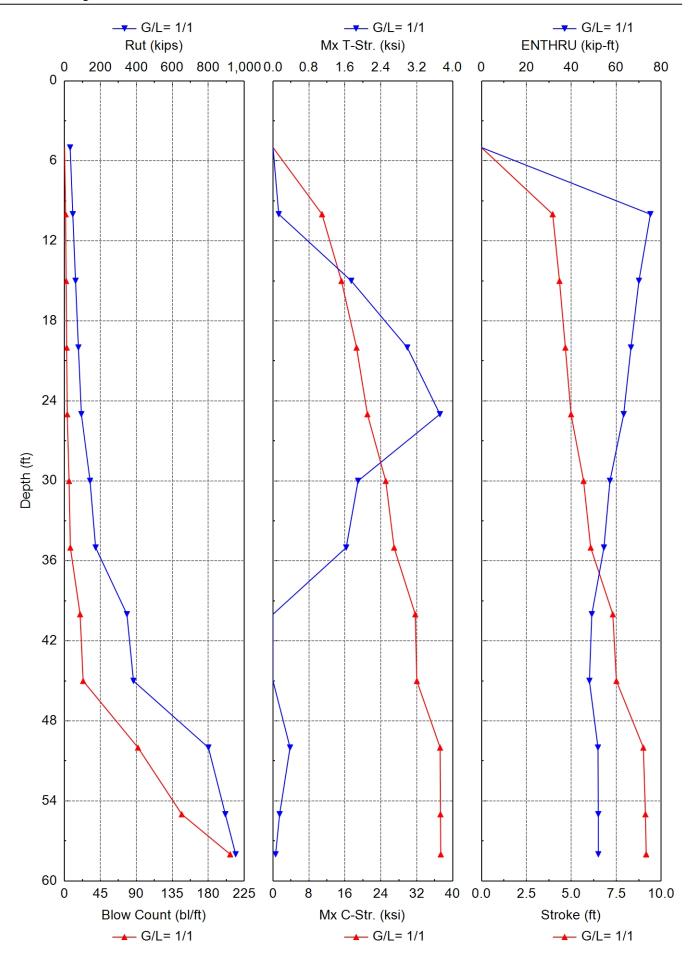


		Gain/	'Loss Fa	ctor at Sh	naft/Toe =	1.000/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	34.9	17.9	17.0	1.4	9.958	0.544	4.09	54.2	D 36-32
10.0	67.4	39.1	28.3	3.2	15.263	2.003	4.78	47.7	D 36-32
15.0	93.5	65.2	28.3	4.8	18.762	1.582	5.28	44.7	D 36-32
20.0	119.6	91.3	28.3	6.5	21.273	1.217	5.70	42.4	D 36-32
25.0	167.1	121.9	45.2	9.9	23.610	0.526	6.31	39.7	D 36-32
30.0	603.2	160.2	443.0	65.8	30.954	0.704	8.66	37.9	D 36-32
35.0	805.5	218.0	587.5	93.2	33.309	1.954	9.53	40.0	D 36-32
40.0	896.8	309.3	587.5	132.6	33.745	1.191	9.67	40.4	D 36-32
41.0	916.1	328.7	587.5	146.5	33.549	1.006	9.70	40.2	D 36-32


Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 1.000/1.000

Total driving time: 35 minutes; Total Number of Blows: 1391 (starting at penetration 5.0 ft)

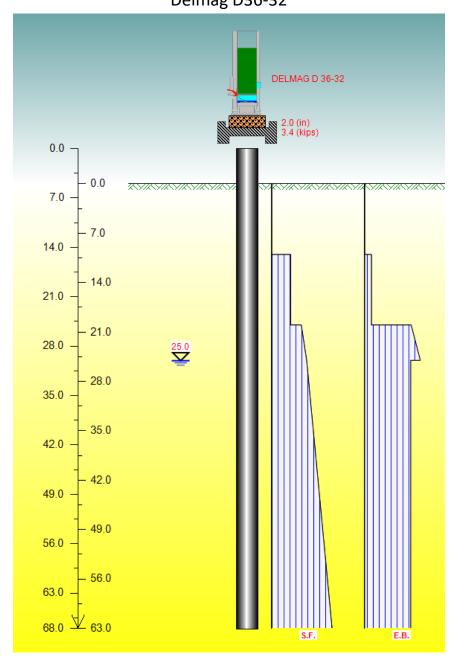
ArDOT 101124 Hwy 135 over Dead Timber Lake Bent 3 24-in-diameter Steel Shell Pile Delmag D55



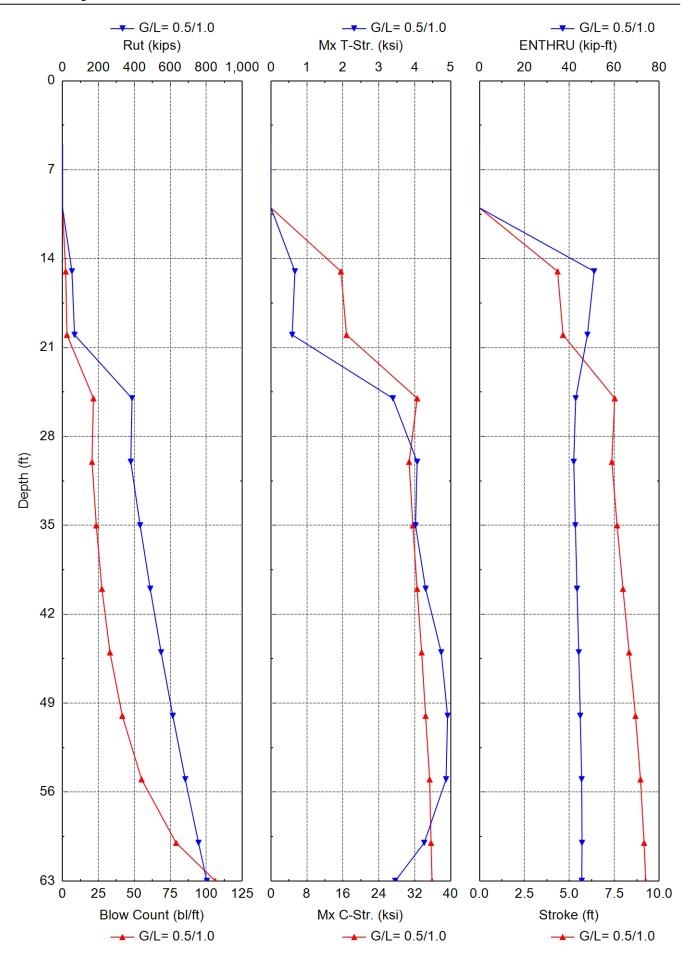
		Gain/	Loss Fa	ctor at Sh	naft/Toe =	0.500/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	24.1	7.1	17.0	0.0	0.000	0.000	0.00	0.0	D 55
10.0	31.5	14.5	17.0	0.0	0.000	0.000	0.00	0.0	D 55
15.0	39.2	22.2	17.0	1.9	3.106	0.000	3.44	28.1	D 55
20.0	47.1	30.2	17.0	1.4	11.302	1.147	3.99	74.8	D 55
25.0	55.4	38.4	17.0	1.7	13.617	2.229	4.20	71.8	D 55
30.0	88.7	53.4	35.3	3.1	18.972	2.089	4.82	64.5	D 55
35.0	104.2	68.9	35.3	3.8	21.264	2.281	5.09	62.1	D 55
40.0	276.4	78.8	197.6	13.3	29.072	0.000	6.77	51.8	D 55
45.0	310.5	89.9	220.6	15.5	29.808	0.000	6.97	50.8	D 55
50.0	725.2	102.3	622.9	59.3	36.235	0.824	8.91	52.1	D 55
55.0	816.6	116.3	700.3	85.6	37.034	0.661	9.20	53.8	D 55
58.0	872.2	125.4	746.8	109.1	37.474	0.458	9.33	54.7	D 55

Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 0.500/1.000

Total driving time: 25 minutes; Total Number of Blows: 1006 (starting at penetration 5.0 ft)



		Gain/	Loss Fa	ctor at Sh	naft/Toe =	1.000/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	31.2	14.3	17.0	0.0	0.000	0.000	0.00	0.0	D 55
10.0	46.0	29.1	17.0	1.4	10.909	0.128	3.96	75.2	D 55
15.0	61.4	44.4	17.0	2.0	15.232	1.742	4.34	70.1	D 55
20.0	77.3	60.3	17.0	2.7	18.593	2.989	4.67	66.5	D 55
25.0	93.7	76.8	17.0	3.4	21.017	3.715	4.98	63.3	D 55
30.0	142.0	106.7	35.3	5.7	25.097	1.893	5.68	57.2	D 55
35.0	173.1	137.7	35.3	7.3	26.951	1.629	6.08	54.5	D 55
40.0	347.3	149.6	197.6	19.5	31.663	0.000	7.31	49.1	D 55
45.0	383.6	163.0	220.6	23.3	32.016	0.000	7.51	48.0	D 55
50.0	800.7	177.8	622.9	92.0	37.192	0.379	9.01	51.8	D 55
55.0	894.9	194.6	700.3	146.8	37.277	0.147	9.12	52.0	D 55
58.0	952.4	205.6	746.8	207.4	37.342	0.058	9.1 <mark>6</mark>	52.0	D 55


Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 1.000/1.000

Total driving time: 42 minutes; Total Number of Blows: 1684 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Dead Timber Lake Bent 4 16-in-diameter Steel Shell Pile Delmag D36-32

		Gain/	Loss Fa	ctor at Sh	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.42	0.0	D 36-32
15.0	52.4	14.7	37.7	2.2	15.565	0.665	4.35	51.0	D 36-32
20.0	67.0	29.3	37.7	3.1	16.805	0.588	4.65	48.0	D 36-32
25.0	386.8	71.2	315.6	21.5	32.540	3.391	7.52	42.8	D 36-32
30.0	379.9	118.8	261.1	20.5	30.740	4.066	7.36	42.0	D 36-32
35.0	431.8	170.7	261.1	23.5	31.578	4.020	7.66	42.7	D 36-32
40.0	488.1	227.0	261.1	27.4	32.517	4.302	7.98	43.4	D 36-32
45.0	548.7	287.6	261.1	33.0	33.534	4.736	8.33	44.2	D 36-32
50.0	613.7	352.6	261.1	41.6	34.412	4.913	8.68	44.8	D 36-32
55.0	683.1	422.0	261.1	55.0	35.306	4.870	8.96	45.5	D 36-32
60.0	756.9	495.8	261.1	79.0	35.621	4.262	9.16	45.6	D 36-32
63.0	803.2	542.1	261.1	106.3	35.834	3.457	9.25	45.5	D 36-32

Driveability Analysis Summary

Total driving time: 40 minutes; Total Number of Blows: 1616 (starting at penetration 5.0 ft)

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 15, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER TYRONZA RIVER (SITE 2) ARDOT 101124 HWY. 135 STR. & APPRS. (S) POINSETT COUNTY, ARKANSAS

INTRODUCTION

Submitted herewith are the final results of the geotechnical investigation performed for the Hwy. 135 over Tyronza River replacement bridge in Poinsett County, Arkansas. This bridge is Site 2 of the ARDOT 110124 Hwy. 135 Str. & Apprs. (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by the Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on July 2 and August 19, 2023.

We understand the replacement bridge will be a prestressed concrete girder unit with five (5) bents, four (4) spans, and a total length of approximately 282.5 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed east of the existing bridge. Site grading will include about 20 ft of fill. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through

the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Tyronza River (Site 2) replacement bridge alignment were explored by drilling five (5) sample borings to 80- to 120-feet. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2. The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset,		ordinates grees)	Approx Surf El,	Completion Depth, ft
		ft	Latitude	Longitude	ft	_
B1	614+75	35 ft Lt	35.50502	-90.32281	221.8	110
B2	615+40	30 ft Lt	35.50514	-90.32299	216.6	120
B3	616+70	10 ft Rt	35.50547	-90.32288	203.3	80
B4	617+15	20 ft Lt	35.50565	-90.32293	201.3	100
B5	617+90	10 ft Rt	35.50585	-90.32286	214.9	110

Table 1: Summary of Exploration Program

The boring logs, presenting descriptions of the soil strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 16. The centerline station and offset of the boring locations and approximate ground surface elevation, as surveyed, are also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 17.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profile should be anticipated.

The borings were drilled with a truck-mounted CME-55 HTX rotary-drilling rig and a track-mounted Diedrich D-50 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.-diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the appropriate energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 55 natural water content determinations were performed to develop data on in-situ soil water content for each

boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 11 liquid and plastic (Atterberg) limit determinations and 30 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The location of 101124 Site 2 is on Hwy. 135 where the Tyronza River crosses the highway alignment, approximately 2430 ft south of Hwy. 118 in Poinsett County. The existing bridge is a two-lane structure with a concrete deck, steel girders, and a concrete pile foundation system. The Tyronza River channel at the bridge location is broad with well-defined banks. The banks are steep with tall grass and variable sparse to thick underbrush. The area around the bridge is low-lying and swampy, with standing water, thick underbrush, and numerous trees. The project locale is primarily agricultural land consisting of open and flat fields. The existing roadway is on embankment, and the existing pavements are in poor condition. Surface drainage along the roadway is poor and standing water is common after rain events.

Site Geology

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent Alluvium and variable Tertiary sediments. The <u>Geologic</u> <u>Map of Arkansas¹</u> indicates the alignment extends over exposures of Quaternary-aged Alluvium. The Alluvium is comprised of recent stream-deposited alluvial sediments which include gravel, sand, silt, clay and mixtures of all components. The thickness of the Alluvial deposits is variable. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

Seismic Conditions

A Site-Specific Ground Motion Response Analysis was performed for the 110124 project. The site-specific ground motion response analyses were performed by Geotechnology in accordance with Section 3.4.3.2 of the 2022 AASHTO Guide Specifications for LRFD Seismic Bridge Design 2nd Edition. Three (3) sites were analyzed for shear wave velocities: Sites 2, 5, and 7. The site-specific results from Site 2 were utilized in the analyses performed for this study.

Shear wave velocity profiles were developed for the Site-Specific Ground Motion Response Analysis. Summary results from the analysis are provided in Appendix D. An <u>average</u> shear wave velocity in the top 100 ft of subsurface soil was calculated to be 701 ft per second for Site 2. In light of the shear wave velocity profile and the results of the borings, a Seismic Site Class D (stiff soil profile) is considered fitting for the Site 2 bridge location.

Based on the results of the site-specific seismic hazard analysis, design earthquake spectral response acceleration of 0.769g for PGA, 1.565g for S_{DS}, 1.197g for S_{D1} and 7.7 for Design Earthquake Moment Magnitude (M_{W}) were determined. These calculated design seismic accelerations utilizing the site-specific procedure are 67 percent or greater of the corresponding counterparts as determined using the code-based procedure. A plot of design response spectra, showing the design earthquake spectral response accelerations versus period for both code-based and site-specific values, is also included in Appendix D. The design response spectra developed based on the results of the site-specific procedure are considered suitable for use in structural design.

Utilizing these parameters, Table 3.10.6-1² indicates that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Hwy. 135 bridge over Tyronza River site.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 0.769, as per the site-specific seismic analyses, and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

² AASHTO LRFD Bridge Design Specification, AASHTO; 2012

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 2 – TYRONZA RIVER

The results of the liquefaction analyses are provided in Appendix E as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the analyses results are shown on the generalized subsurface profile also provided in Appendix E. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix E.

Subsurface Conditions

Based on the results of the borings, the surface and near-surface soils to 6- to 38-ft depth are comprised of very soft to stiff brown, dark brown, reddish tan, and gray clay (CH), silty clay (CL), and fine sandy clay (CH). This stratum contains occasional organic inclusions, ferrous stains, and clayey silt and silty fine sand seams. The clayey soils exhibit very low to low strength, moderate to high plasticity, and moderate to high compressibility. These soils typically classify as A-6, A-7-5, and A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor subgrade support for pavement structures.

The clayey soil units are underlain below 6- to 38-ft depth by loose to dense gray, brown, and brownish gray fine to medium sand (SP). This stratum contains clay seams and pockets as well as coarse sand and fine gravel at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth.

Groundwater Conditions

Groundwater was encountered in the borings at 13- to 31-ft depth in May through July 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in Tyronza River and other surface water features.

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 2 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors, such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

<u>Piling</u>

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 18-in.-diameter steel shell piles are planned for bridge ends and 28-in.-diameter steel shell piles are planned for the interior bents. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix F. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength is mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (φ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (φ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects. The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical.

We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix G. Bridge End Embankment Slope Stability

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 5) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 25 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020⁴ and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.3845. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value from the site-specific seismic hazard analysis. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 209 to El 200 was assumed.

Stability analyses results are summarized and presented graphically in Appendix H. These results indicate acceptable stability for all cases evaluated. A suitable factor of safety against lateral flow sliding was calculated for each bridge end embankments.

Subgrade Support

It is understood that "standard" pavement sections will be utilized by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-7-6. These classifications correlate with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

⁴ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, undercuts or improvement depths on the order of 3 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. in cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, undercutting is expected to be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 8 to 38 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix I. Where embankment heights are less than about 4 ft, undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the

zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

Maximum embankment heights on the order of 25 ft are anticipated. Given the predominance of cohesive soils in the embankment foundations, some consolidation settlement will occur. Based on the results of the borings and the anticipated maximum embankment height, total settlement of the natural foundation soils below the embankments is estimated to be on the order of 3 to 4 inches. Settlement of cohesive fill in the embankments is expected to be on the order of 2 to 3 in. with 40 to 60 percent of the settlement occurring during construction. We recommend that embankment fill be placed as early in the construction sequence as possible to limit post-construction settlement after foundation construction.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow within about 100 ft of the bridge ends. An example special provision for cohesive embankment fill is provided in Appendix J.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Density and water content of all earthwork should be maintained until embankments and bridge work are completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Groundwater was encountered between 13- to 31-ft depth in May, June, and July 2023. Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

Piling

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered. Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁵. In the driveability analyses, the steel shell piles were assumed to be driven from the plan cap bottom elevation or existing grade. The results of these analyses are provided in Appendix K.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 107 ft-kips per blow for driving the steel shell piles at the end bents. For the intermediate bents, we recommend a hammer system capable of delivering at least 186 ft-kips per blow for driving the steel shell piles. A specific review and analysis of the pile-hammer system proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface

⁵ <u>GRLWEAP 2014</u>; Pile Dynamics, Inc.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 2 – TYRONZA RIVER

conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

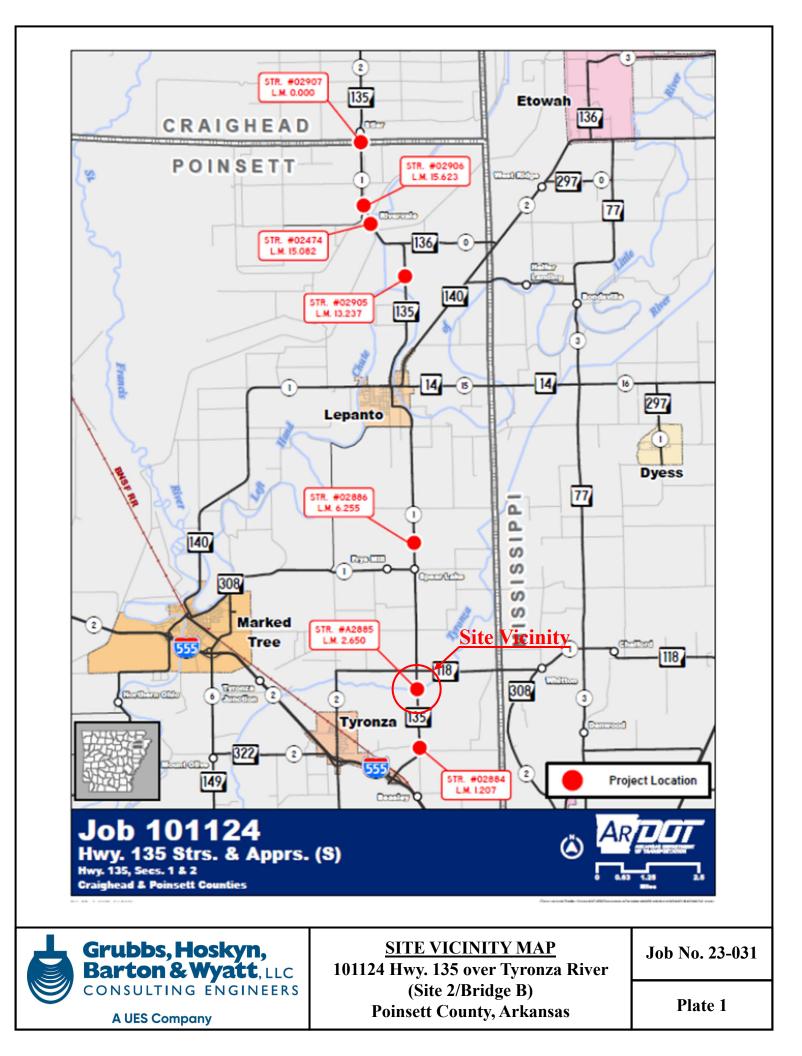
The following illustrations are attached and complete this submittal.

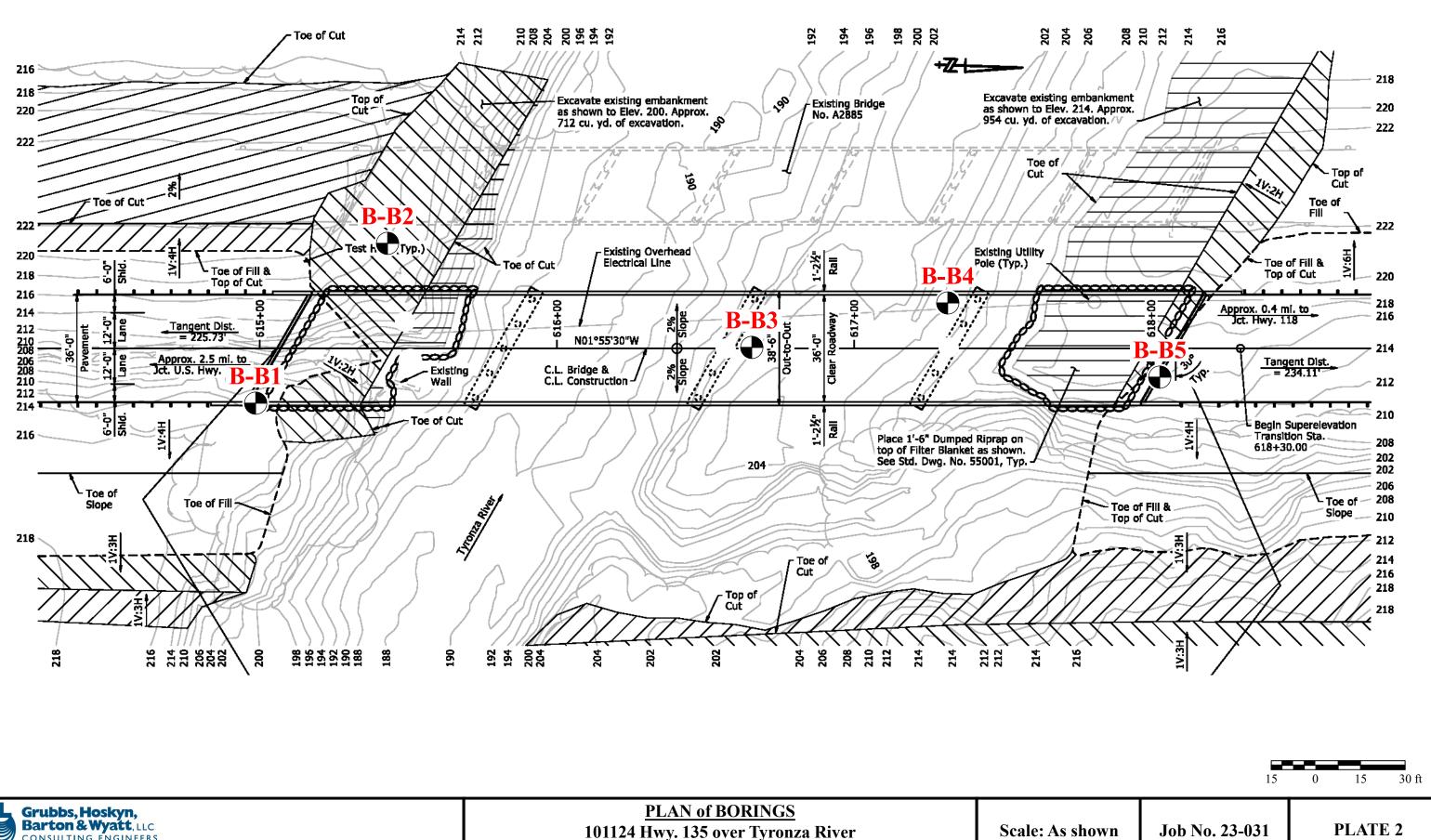
Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 16	Boring Logs
Plate 17	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Selected Results - Site-Specific Ground Motion
	Response Analysis
Appendix E	Liquefaction Analysis Results
Appendix F	Nominal Pile Capacity Curves
Appendix G	Lateral Load Parameters
Appendix H	Results of Stability Analyses
Appendix I	Example SP – Woven Geotextile
Appendix J	Example SP - Cohesive Embankment Fill Special
	Provision
Appendix K	Driveability Analysis Results

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,


GRUBBS, HOSKYN, BARTON &WYATT, LLC


Vellet M. Sett

Velleta M. Scott, P.E. Sr. Project Engineer No. Mark E. Wyatt, P.E. 2 President

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

TYPE:	HSA to 40 ft /Wash	LC	CATIO	ON: A	Appro	x Sta	614+7	75, 35	ft Lt			
E .	0		۲۷-		(SION	, TON	I/SQ F	Т		ò
SYMBOL		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.2		.4 C		1	1	1	1.4	
S S	SURF. EL: 221.8	z		LII	ISTIC MIT ╋────					LIQI LIN 	1IT -	:
	Soft brown silty clay, slightly sandy (CL)	7		10) 2	•	30 4	40	50	60	70	+
	Firm dark brown clay (CH)	11				•	•					-
5		11				-+	•	<u> </u>	+	+	+	(
	- brown and gray below 6.5 ft	13					•					_
10-	Soft brown and gray clay (CH), sandy	7					•					-
15-		9			-	<u></u>			<u>+-</u> +	,		-
20	- very soft to soft below 18 ft	6					•					_
25-	Soft brown and gray fine sandy clay (CH)	9					•					_
30-	- with occasional organic inclusions below 28 ft	7					+			•	19	• (
35-	- firm with silty clay seams and layers below 33 ft	10								•		_
40	Medium dense brownish gray fine to medium sand (SP)	21										_

	23-031												
	Gruk Bart Consult	bbs, Hoskyn, on & Wyatt, Inc. Ing Engineers LOGOFB 101124 Hwy. 1 Poinsett (35 ov	er Tyr	onza	a Riv							
	TYPE	: HSA to 40 ft /Wash	LC	OCATIO	ON:	Αισο	rox S	ta 61	4+75. (35 ft L1	t		
									ON, TO				
, FT	ğ		ЪF	γ W FT	(0.2	0.4	0.6		1.0	1.2	1.4	% OC
DEPTH,	SYMBOL	여 DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL L		C	C	WATER	R NT	L		- No. 200 %
		(continued)				10	20	30	40	50	60	70	_
- 50			34										
- 55		- with gray clay pockets below 54 ft	30										
- 60 -		Dense gray and brown fine sand, slightly silty (SP)	47				•						5
- 65		Medium dense brownish gray fine to medium sand, slightly silty (SM-SP) w/trace fine gavel	50										
- 70		- dense below 68 ft	44										_
- 75		3	46				•						_ 5
- 80		3	53										
23-031 BRIDGE B.GPJ 8-1-23		- gray and brown below 84 ft	60										
23-031 E		Dense brown and dark gray fine to coarse sand, slightly silty (SM-SW)	49										5
LGBNEW 2		LETION DEPTH: 110.0 ft D	EPTH					I	I	1			
l	DATE:	6-8-23 If	N BORI	NG: 3	1.4 T						DATE	E: 6/8/2	023 TE 4

TYPE	HSA to 40 ft /Wash	LC	CATIO	ON:	Appr	ox S	ta 614 [.]	+75, 3	5 ft L	t		
н I I	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	COHESION, TON/SQ FT								
DEPTH, FT						0.4	0.6	0.8	1.0	1.2	1.4	
S SY				PL		STIC IIT (LI 	QUID .IMIT	
	(continued) w/trace fine gravel		_		10	20	30	40	50	60	70	
	Witace file graver											
95 -	- brown and gray below 94 ft	54									_	
00		57										
05												
10		60									_	
	NOTE: Drilled with Diedrich D-50 ECF=1.43											
15												
20-												
25												
20												
30												

	23-031												
	Barto	bs, Hoskyn, on & Wyatt, Inc. ng Engineers LOGOFBC 101124 Hwy. 13 Poinsett Co	5 ove	ər Tyr	onza I		2						
	TYPE:	HSA to 20 ft /Wash	LC	OCATIO	DN: A	pprox	Sta 61	5+40, 30	ft Lt				
				⊢		CC	DHESI	ON, TON	I/SQ F	T	%		
, FT	2		Ц	UNIT DRY WT LB/CU FT	0.2 0.4 0.6 0.8 1.0 1.2 1.4								
ОЕРТН,	SYMBOL		N ₆₀ , BPF	T DR	PLAS	STIC		WATER		LIQU	-4 ID . 200 - 1		
B B	o b	SURF. EL: 216.6	z		LIN		C			∔			
					10	20	30	40	50	60 7	0		
		Firm gray, brown, and reddish tan clay (CH) w/ferrous stains and occasional decayed organics - firm to stiff from 2 to 4 ft	11			•							
		- firm to stiff from 2 to 4 ft	14			•							
- 5		- soft from 4 to 6 ft	7										
Ļ		- firm from 6 to 13 ft											
			11				•						
-			10										
- 10 -													
-													
		- soft from 13 to 23 ft											
15			9)					
- 20 -			9			-	┝╴─┤─╵	•		↓_	96		
		- gray, firm below 23 ft											
25													
-													
- 30 -			10					•					
		Dense brown and gray fine to medium sand, slightly silty (SM-SP)	44										
- 35													
-													
8-1-23		- medium dense below 38 ft											
ਔ <u></u> - 40 ·	X		40								5		
DGE B													
LGBNEW 23-031 BRIDGE B.GPJ 8-1-23		Medium dense brown and grav							+				
/ 23-0;		Medium dense brown and gray fine to medium sand (SP) w/clay	20										
BNEW	COMPL DATE:			TO WA NG: D	TER ry to 20) ft			D	ATE: 5	/28/2023		
9 					, =•								

DEPTH, FT	SYMBOL							0131-	40, 30				—
DEPTH, F			N ₆₀ , BPF	ΥT	COHESION, TON/SQ FT								
	6 4	DESCRIPTION OF MATERIAL (continued)		UNIT DRY WT LB/CU FT	PL	ASTIC	1	0.6 0.8 1.0 WATER CONTENT			1.2 1.4 LIQUID LIMIT		
	v					IMIT + — 10	 20		•	- <u> </u>	#	- 70	
		pockets and seams											
50 -		Firm gray silty clay (CL) w/trace fine to coarse gravel	10				*		+				_ ε
55 -		Dense brownish gray fine to medium sand, slightly silty (SM-SP)	56										_
60 -	X	Dense grayish brown fine sand, slightly silty (SM-SP) w/occasional organic inclusions	49				•						_
65 -	X		51										_
70 -	X		43										_
75 -	X	Medium dense gravish brown fine to medium sand (SW) w/trace coarse sand and fine gravel	36			•							_
80 -	X	Dense grayish brown fine to medium sand, slightly silty (SM-SP)	43										-
85 -	X	- tan from 83 to 88 ft	67										_

	HSA to 20 ft /Wash	LC	CATIO	ON:								
<u> </u>	a		τvτ				ESION	1, TOI 	V/SQ	FT		%
DEPTH, FT SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	CU F	C).2	0.4	0.6	0.8	1.0	1.2	1.4	- No 200 -
SY	SAIV	N ₆₀	UNIT DRY WT LB/CU FT	PL L	ASTIC	;	W/ COI		-	LI	QUID .IMIT	
	(continued)				10	20	30	40	50	60	70	
95 -	- tan and gray below 93 ft	86										
00		54										
10		53			•							7
15- 	Dense gray fine to medium sand (SW) w/fine to coarse gravel and clay pockets	172										
20	NOTE: Drilled with Diedrich D-50 ECF=1.43											
130-												

	Barto	bs, Hoskyn, on & Wyatt, Inc. Ing Engineers Building Constant Do by Constant Building Constant Do by Const	5 ove	er Tyr	onz	a Ri	-							
	TYPE:	Auger to 15 ft /Wash	LC		ON:	Арр	orox S	Sta 61	6+70	, 10 ft	Rt			
_				۲			СО	HES	ION, 1	TON/S	SQ F1	-		
DEPTH, FT	SYMBOL SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT		0.2 LAST	0.4	0.6	0.8 WATI	1) 1.	2 1 LIQU	.4 	
DE	S A		z	UNIT				(ENT				
		SURF. EL: 203.3 Soft gray and brown clay (CH)				10	20	30	40	50	6	0 7	70	+
			6					•						
		- brown, slightly sandy below 2 ft	6											
5 -		- soft below 4 ft	7			_			•					_
			7				4	┝╴┤┥	●	+	-+-			
10 -		Medium dense tan and brown fine to medium sand, slightly silty (SP-SM)	38											_
15 -	X	- grayish brown below 13 ft	17				•							
20 -	X	- loose at 18 to 23 ft	10											_
25 -	X	- medium dense to dense below 23 ft	37											_
30 -	X		62											_
35 -	X		31											-
40 -	X	Dense brownish gray fine to medium sand, slightly silty (SP-SM) w/trace coarse sand	48											-
*		Dense brownish gray fine to medium sand, slightly silty	44											1

	Bar	bb tor	s, Hoskyn, & Wyatt, Inc. Engineers 101124 Hwy. 13 Poinsett Co	85 ove	er Tyr	onza	a Riv	-						
	TYPE	≣:	Auger to 15 ft /Wash	LC	CATIO	ON:	Appr	ox St	a 616	+70,	10 ft R	t		
Ι.					F			СО⊦	IESIC	N, TO	ON/SQ	FT		
L T	ğ	LES		ЪГ	γ V FT		0.2	0.4	0.6	0.8	1.0	1.2	1.4	% OC
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL	ASTIC	;	V C		R NT			
			(continued)				+ − 10	20	30	40	50	60	+ 70	
			(SW-SM)											
- 50 -		X	- medium dense at 48 to 53 ft	27										
- 55 -		X	- dense, grayish tan w/dark gray nodules and organic stains below 53 ft	55				•						6
- 60 -		X	- tan below 63 ft	54										
65		X		85										
- 70 -			Dense grayish tan fine to medium sand, slightly silty (SP-SM)	95			•							7
- 75 -		X	Dense grayish brown fine sand (SP)	71										
- 80 -		`	Dense grayish tan fine to medium sand, slightly silty (SP-SM) w/trace coarse sand and fine to coarse gravel	70										
85	-		NOTE: Drilled with CME-55 ECF=1.42											
	-													
	COMF DATE				TO WA					<u> </u>	I	DATE	E: 7/2	26/2023
														ATE 10

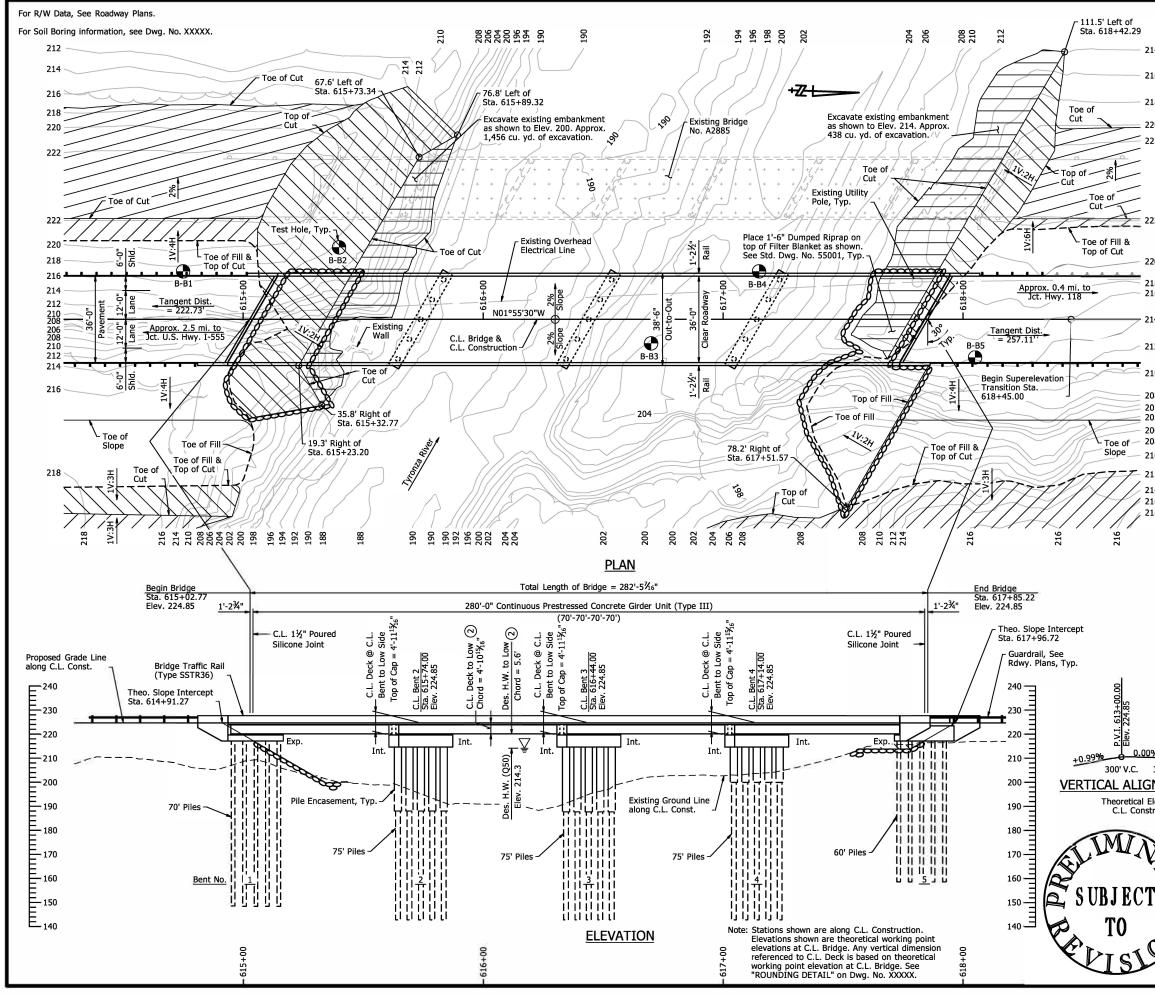
	ing Engineers LOGOFB 101124 Hwy. 13 Poinsett Co	85 ove	ər Tyr	onza	a Rive						
TYPE	HSA to 15 ft /Wash	LC	CATIO	DN:	Appro	ox Sta	617+1	5, 20 f	t Lt		
DEPTH, FT SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	((, TON/	SQ FT	1.4	
SYN	SURF. EL: 201.3	N ₆₀ ,	UNIT D LB/C	L	ASTIC IMIT			TER TENT		LIQUID LIMIT +	
	Soft gray and brown clay (CH)	7			10 2	<u>20</u> ;	30 4	40 5		70	
		7					•		T		
5 -	 very soft to soft, slightly sandy below 4 ft 	6				+ -	•		<u> </u>	•	
	Firm gray clayey silt, slightly sandy (CL-ML) w/ferrous stains Loose gravish tan fine sand	13									
10	Loose grayish tan fine sand, slightly silty (SP-SM) - medium dense below 8 ft	37									
15	Medium dense grayish tan fine to medium sand (SP)	40									
20	- medium dense to dense below 18	43			•	•					
25	Dense brownish gray fine sand, slightly silty (SP-SM) w/occasional dark gray nodules and organic stains	50									
30	- medium dense below 28 ft	34									
35-	Medium dense grayish tan fine to medium sand (SP) w/occasional dark gray nodules and organic stains	38									
40	- dense below 38 ft	58				•					
		51									

	23-031 Grul Bart Consul	obs, Hoskyn, on & Wyatt, Inc. ing Engineers Dobs, Hoskyn, LOGOF 101124 Hwy. Poinsett	135 ove	er Tyr	onza	Rive							
	TYPE	: HSA to 15 ft /Wash	LC	CATIC	DN: /	Appro	x Sta	617+ ⁻	15, 20) ft Lt			
								SION					
I, FT	ğ		ЦЦ	× ₹ ₹	0.	.2 0	.4 (0.6	-) 0.8	1.0	1.2	1.4	% 00
DEPTH,	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLA LI			W/ CON		Γ			- No. 200
		(continued)			1	0 2	20	30	40	50	60	70	
- 50 -			68										
- 55 -			62	-									
- 60 -			61										_
- 65 -		- with trace coarse sand and fine gravel (SW) below 63 ft	53	-		•							4
- 70 -			48	-									
- 75 -			47	-									
- 80 -		Dense grayish tan fine sand, slightly silty (SP-SM) w/occasiona dark gray nodules and organic stains	I 85										
- 85 -			84										
		Dense grayish tan fine to medium sand, slightly silty (SP-SM) w/trac	e 95										6
		LETION DEPTH: 100.0 ft	DEPTH				1					. 7/05	
	DATE	7-25-23	IN BORI	NG: 13	σπ						DATE	: 7/25	72023 TE 12

	Bar	bb toi	s, Hoskyn, h & Wyatt, Inc. ^{g Engineers} LOGOFB 101124 Hwy. 13 Poinsett C	85 ov	er Tyr	onza	a Riv							
	TYPE	:	HSA to 15 ft /Wash	LC	OCATIO	ON:	Аррі	ox S	ta 61	7+15,	20 ft L	t		
											ON/SC			
H, FT	SYMBOL	SLES		BPF	RY V U FT	(0.2	0.4	0.6	0.8	1.0	1.2	1.4	200 %
DEPTH,	SYM	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL L	ASTIC	C	C	WATE ONTE	R NT		LIQUID LIMIT	- No. 200
- 95 - -100- -105- -110- -115- -115- -115- -120- -122-		X	(continued) coarse sand and occasional dark gray nodules and organic stains - with more coarse sand below 93 ft Dense grayish tan fine to coarse sand, slightly silty (SP-SM) w/trace fine gravel NOTE: Drilled with CME-55 ECF=1.42	78										
M 23-031 BRIDGE B.GPJ 8-1-23														
					TO WA NG: 1							DATE	E: 7/25	5/2023
														TE 13

🖾 Barto	bbs, Hoskyn, on & Wyatt, Inc. ing Engineers LOGOFB 101124 Hwy. 13 Poinsett C	35 ove	er Tyr	onza	n Rive						
TYPE:	HSA to 30 ft /Wash	LC	CATIC	DN:	Appro	ox Sta	617+9	90, 10 f	t Rt		
DEPTH, FT SYMBOL		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0			(, TON/		Г .2 1.4	4
SYA		N ₆₀ ,	JNIT D LB/O	PL/ L							
	SURF. EL: 214.9			1	10 2	20 3	30 4	40 5	i0 6	60 70)
	(CL)	7				•					
	Firm brown fine sandy clay (CL) w/silty fine sand seams	10			•		-NON	I-PLAS	TIC-		
5 -		10	-			•					
	Soft brown clay (CH) w/silty fine sand seams	7									
10-	Very soft to soft brown and gray clay, slightly sandy (CH)	6									
15	- stiff below 13 ft	16				●+					
20		17						•			
25		17						•			
30 -	Stiff gray clay (CH), slightly sandy w/occasional organic inclusions	19					•				
35	Stiff gray fine sandy clay (CL)	17			+	•	-				
40	Medium dense brownish gray fine to medium sand (SP)	37									
	- dense below 43 ft	43									

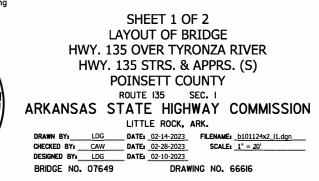
	Gru Bar _{Consu}	bb toi	bs, Hoskyn, a & Wyatt, Inc. ^{g Engineers} b 101124 Hwy. 13 Poinsett C	85 ove	er Tyr	onza	a Riv							
	TYPE	:	HSA to 30 ft /Wash	LC		ON:	Appr	ox Sta	617+	90, 10) ft Rt			
ОЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	C).2		1	0.8	1.0	FT 1.2	1.4	- No. 200 %
DEP	SΥ	SAN	(continued)	N ₆₀	UNIT LB/		ASTIC .IMIT + – 10		W/ COI 30	ATER NTENT 	- 50	LI L 60	QUID IMIT + 70	- No
- 50 -		X	- tan and gray with fine gravel at 49 to 54 ft	46 53										
- 60 -			- dark gray and gray below 59 ft	56										
- 65 -		X	Dense brownish gray fine sand, slightly silty (SM-SP)	64				•						6
- 70 -		X		60 70										
- 75 -		X		69										
		X		66										
- 85 -		X	Dense brownish gray fine to medium sand, slightly silty	60										5
					TO WA NG: 2						[DATE	: 6/12/ PLAT	


23-031

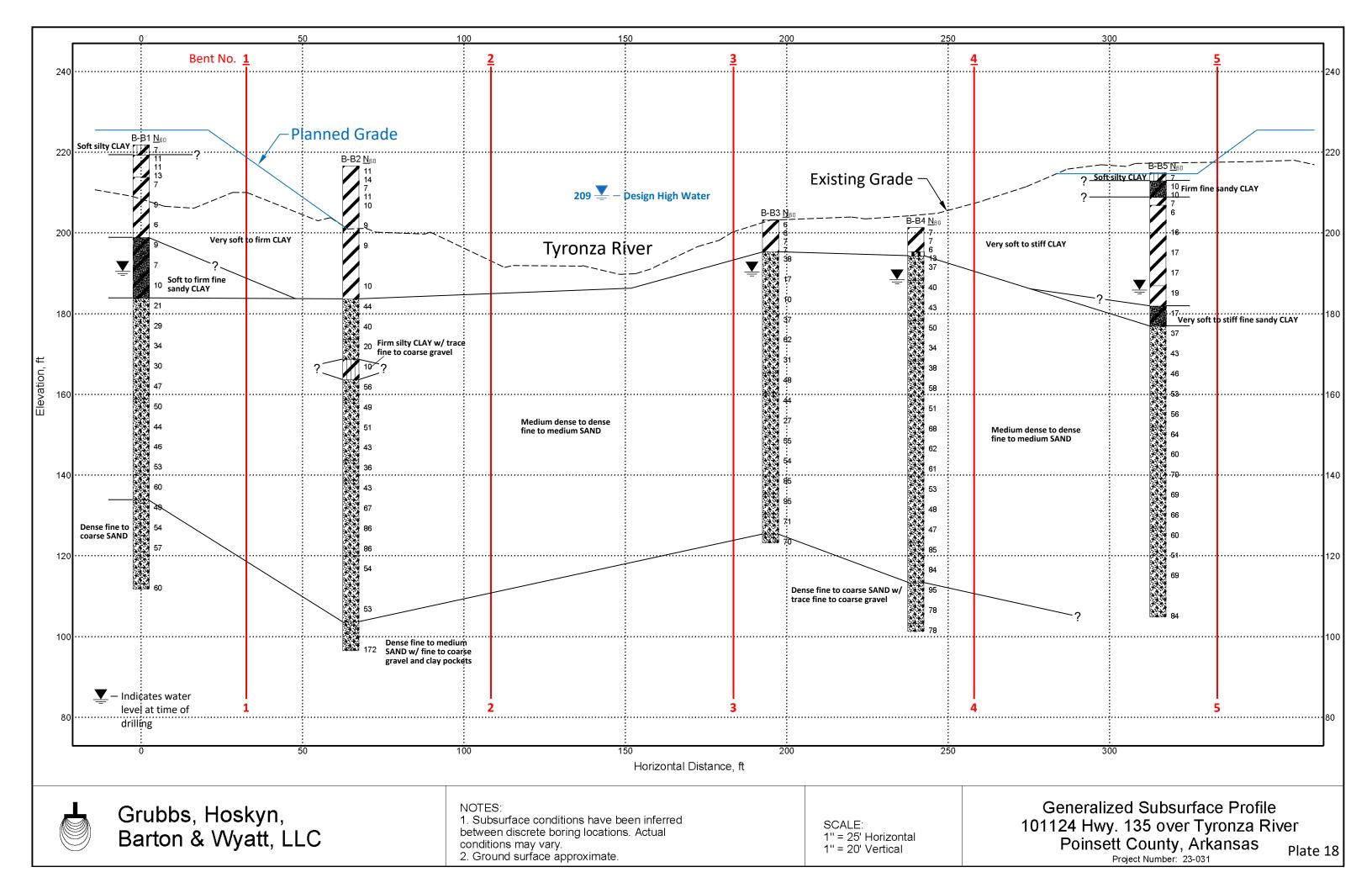
Г

			LOGOFB & Wyatt, Inc. Fingineers HSA to 30 ft /Wash	35 ov county	er Tyr	onz ansa	a Ri as	ver		17+9	90, 10) ft Rt				
							7.95					N/SQ				
FT	Ы	В		Ц	ГМТ		0.2	0.4	0.6	().8	1.0	1.2	1.	4	% 0
DEPTH ,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT		LAST		I				- 1	LIQU		- No 200 %
			(continued)		5		10	 20	30		•	' 50	- <u>-</u> - 60	+		'
95 - 100- 105- 110- 115- 120- 120- 125- 130-		X X	(SM-SW) w/trace coarse sand	51 69 84												

Grubbs, Hoskyn, Barton & Wyatt, Inc. Consulting Engineers	SYMBOLS	AND TE	RMS US		N BOR	ING L	OGS
(SHOWN IN	DIL TYPES SYMBOLS COLUM IIII Silt nt type shown heavy	Clay	(SHO Shelby Tube	SAMPL WN ON S H Rock Core	AMPLES		Cutting
COARSE GRAINED SO sands, and (2) silty or cla determined by laborator	ayey gravels and sa y tests.	etained on No.	200 sieve):	Includes	(I) Clean	gravels a	ind S
VERY LOO LOOSE MEDIUM D DENSE VERY DEN	ENSE SE	N-VALUI 0-4 4-10 10-30 30-50 50 and	above	RELATI	0-15% 15-35% 35-65% 65-85% 85-100%		
FINE GRAINED SOILS silts and clays, (2) grav according to shearing s compression tests.	elly, sandy, or silty o	clays, and (3) (layey silts.	Consisten is or by ur	cy is rated	d	
VER SOF FIRI STII VER HAF NOTE: Slic strengths tha	M FF XY STIFF	cause of plane	L 0 1 2 4 ave lower u s of weakne	PRESSIN TON/S ess than 0.25-0.50 0.50-1.00 .00-2.00 0.00-4.00 0.00 and h nconfined ess or crac	/E STRI SQ. FT. 0.25 igher compres	ENGTH	ł
TE SLICKENSIDED - ha FISSURED - contair or less LAMINATED - comp INTERBEDDED - co CALCAREOUS - co WELL GRADED - ha	ERMS CHARAC aving inclined planes ing shrinkage crack s vertical. bosed of thin layers o omposed of alternate ntaining appreciable aving a wide range i particle sizes.	CTERIZING s of weakness s, frequently fi of varying color a layers of diffe quantities of c n grain sizes a one grain size,	SOIL ST that are slic led with fine and texture rent soil typ alcium carb nd substant	RUCTL k and glos sand or s s. es. onate. ial amoun	JRE ssy in app silt; usuall ts of all in	y more termedia	
Terms used on this repart are in accordance with Technical Memorandun	the UNIFIED SOIL C	CLASSIFICĂTI	ON SYSTEM	M, as desc	ribed in	ibution	


APPENDIX A

USER: CTAUSER DESIGN FILE: G:\22110001_101124\TRANSP\dgn\br1dge\b101124x2_11.d PLOTTED: 8/24/2023 4:33:33 PM SCALE: 40.0000 '/ 1n.


					550 PD	-		SHEET	TOTAL
1.0.1			REVISED	REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	NO.	TOTAL Sheets
Left of 18+42.29					6	ARK.	101124	170	356
	214				07649		LAYOUT		66616
	216	GENERA							
	218						Control Sheets. vay and Transport	ation Der	partment
>	210	Standard Spec Supplemental	cifications for Specification	Highway Co s and Specia	onstructio al Provisi	on (2014 e ons. Secti	edition) with appli on and Subsectior ted in the Plans.	cable	
\sim	222	DESIGN SPEC	IFICATIONS:	AASHTO LR	RFD Bridg	e Design	Specifications, 9th	n Edition ((2020).
		LIVE LOADING	G: HL-93						
<u>~</u>]		SEISMIC ZON	E:4 S _{D1} =1	1.197 SITE	CLASS:	D			
of		SEISMIC OPER	RATIONAL CL	ASS: OTHE	R				
f Fill & f Cut	222 220 218 216	MATERIALS A Class S(AE) Co Class S Concre Prestressing S Class S Concre Reinforcing St Structural Stee Structural Stee Structural Stee	oncrete (supe ete (prestress trands (AASH ete (substruc eel (AASHTO el (ASTM A70 el (ASTM A70	erstructure) sed concrete ITO M 203, ture) M 31 or M 3 19, Gr. 50) 19, Gr. 50W)	Gr. 270) 322, Typ		$\begin{array}{l} fc = 4,000 \ psi \\ fc = 6,000 \ psi \\ fpu = 270,000 \ pi \\ fc = 3,500 \ psi \\ fy = 60,000 \ psi \\ Fy = 50,000 \ psi \\ Fy = 36,000 \ psi \\ Fy = 36,000 \ psi \end{array}$		
	210	BORING LOGS Section of the				om the Co	nstruction Contra	ct Develo	pment
	212	shell piles and tons per pile,	shall be driv respectively.	en to a min Piling in Ber	imum ult <mark>nts 2, 3, a</mark>	mate bea and 4 sha	diameter concretring capacity of 3 ll be 28" diameter	85 and 35 concrete	52 filled
	210	and 1045 tons	per pile, res	pectively. A	ll piling s	hall be dri	e bearing capacity iven with an appro 158 or lower at B	oved air, s	steam,
Toe of	208 202 202 206 208	respectively, a end bents sha shown are ass the field. No a	and to a minin Il be driven a Sumed for est dditional pay	mum tip elev ifter embank imating qua ment will be	vation of ment to intities or made fo	143 or lo bottom of hly. Actual or cut-off	wer at <mark>Bents 2 thr</mark> f cap is in place. L l lengths are to be or build-up. Test p on in accordance	u 4. Piling engths of determir piles are r	g in Fpiling ned in not
Slope	210 212		etration. This	work shall	not be pa	aid for dire	eer may be requi ectly, but shall be		
	214 216	For additional	General Note	es, see Dwg	. No. 666	17.			
///	218			<u>HYDRA</u>	ULIC	<u>DATA</u>			
216		FLOOD	FREQUEN			NATURAL			
		DESCRIPTIO	YEARS	CFS		FEET	FEET		
		DESIGN	50	9,260		214.3	214.	-	
		BASE	100	10,05	0	215.3	215.	3	
		EXTREME	500	11,80	_	216.9	217.	0	
		OVERTOPPIN	IG >500		0				
		õ					ture or roadway a	pproache	s.
			d Low Bridge ackwater ele Area = 290.1	vation for ex			215.3 feet		
P.V.I. 613+00.00 Elev. 224.85	I'/		H.W. Elev. =	= N/A e: Use Type C2 Appro	ach Slat oridge. S	ee Dwg.	ach Gutters and = 24'-0") at bot Nos. XXXXX, XXX	h	
300' V.C. ΔΙΔΙΤ	300' GNM	v.c. ENT DAT	Δ						
			-						
heoretica C.L. Co	nstructi			ç	SHEFT	- 1 OF	2		

CT P

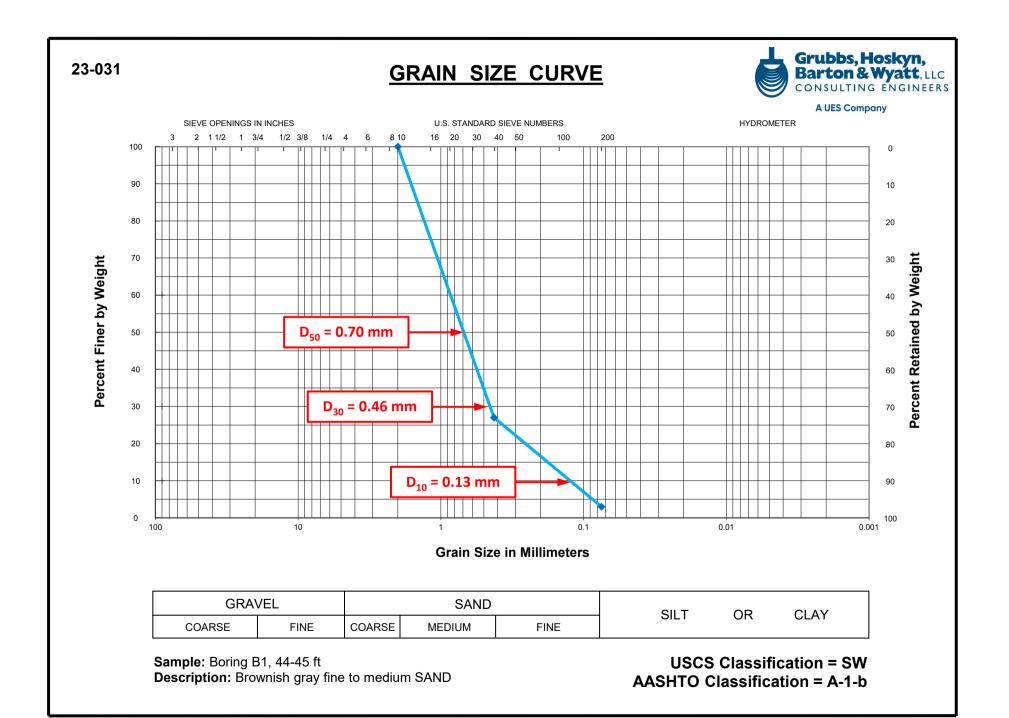
8/24/2023 4:33:39 PM

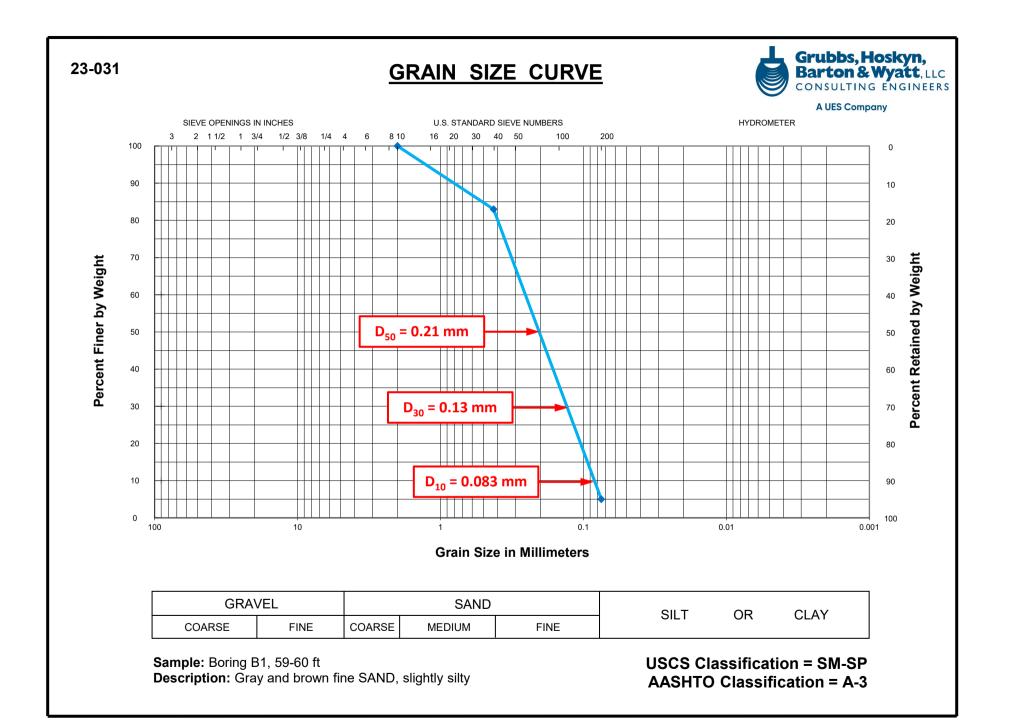
APPENDIX B

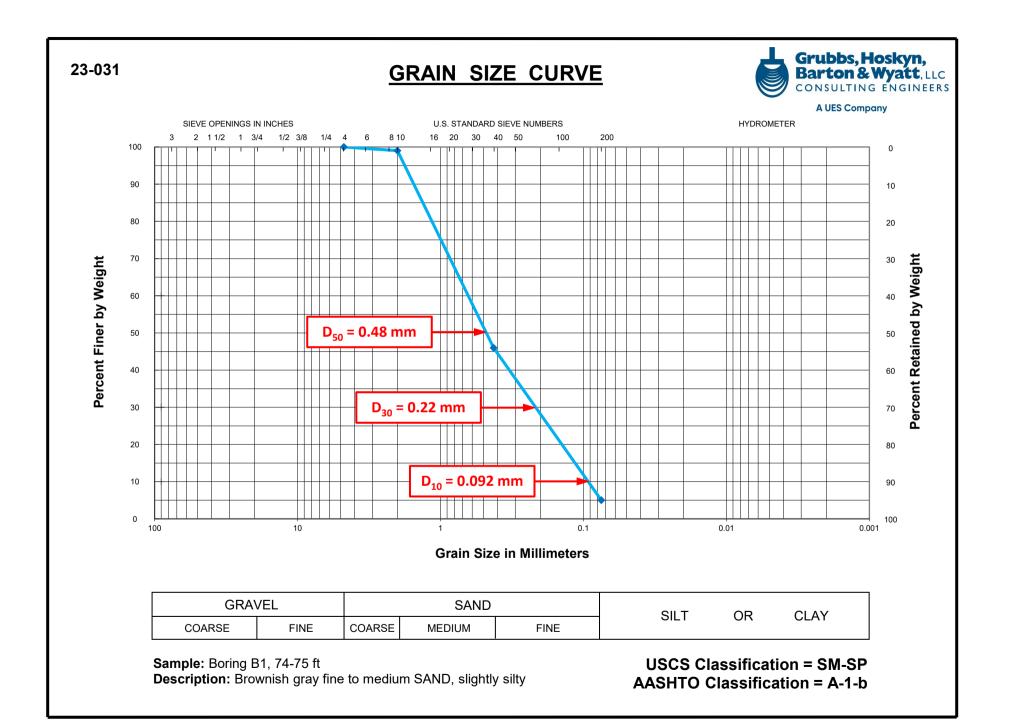
APPENDIX C

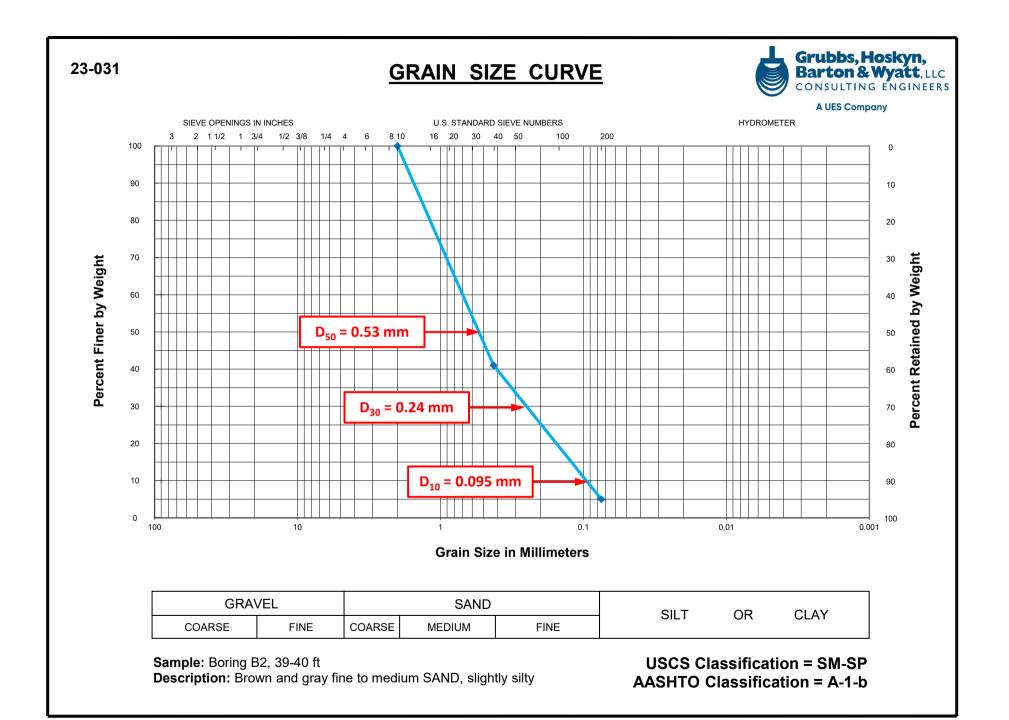
SUMMARY of CLASSIFICATION TEST RESULTS

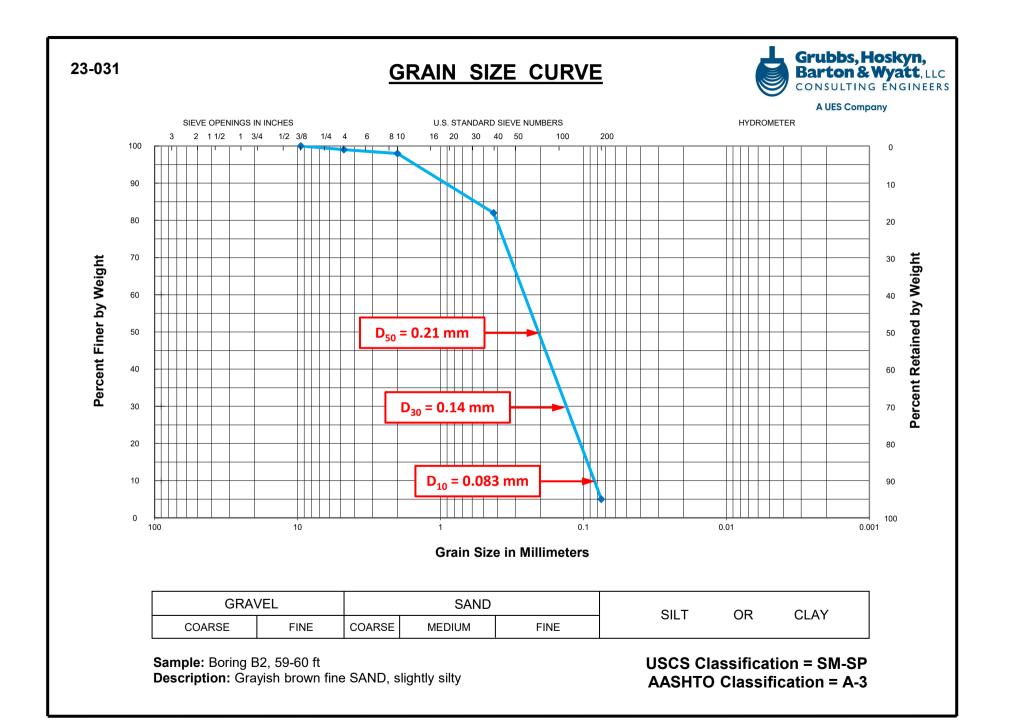
PROJECT: 101124 Hwy. 135 over Tyronza River (Site 2) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

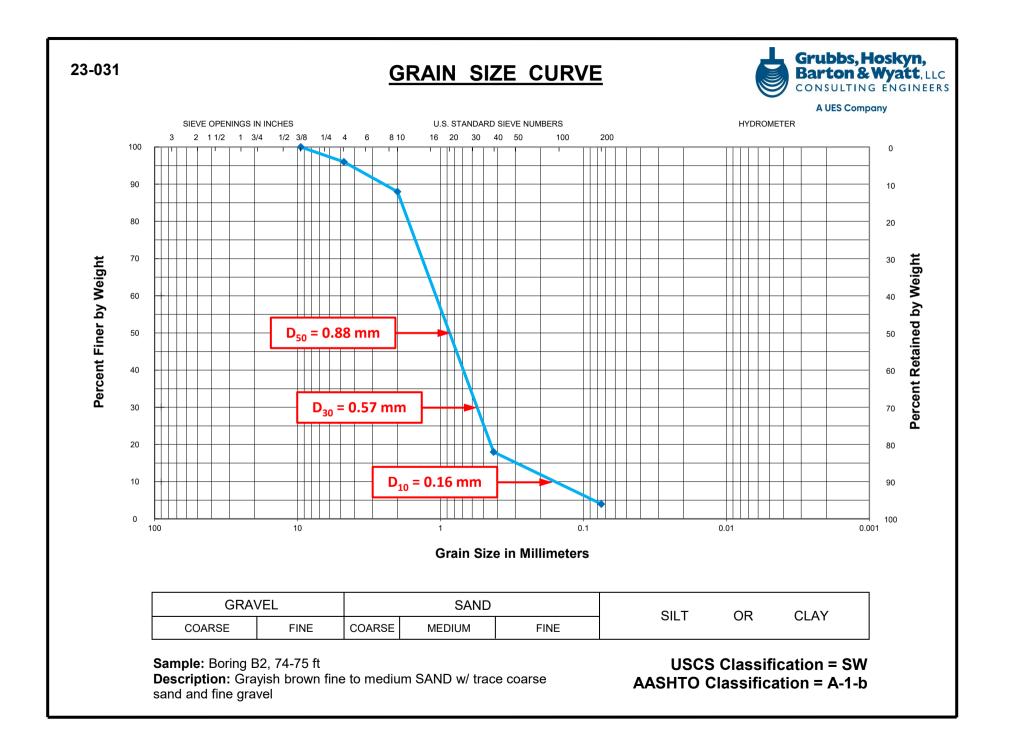

BORING	SAMPLE	WATER	AT	TERBERG LIM	IITS			SI	EVE AI	NALYS	SIS			USCS	AASHTO
No.	DEPTH (ft)	CONTENT	LIQUID	PLASTIC	PLASTICITY			PEI	RCENT	PASSI	NG			CLASS.	CLASS.
110.		(%)	LIMIT	LIMIT	INDEX	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	CLASS.	CLASS.
B1	4.5-5.5	31	70	27	43					100			98	CH	A-7-6
B1	14-15	33	57	20	37					100			78	CH	A-7-6
B1	29-30	66	79	35	44					100			65	CH	A-7-5
B1	44-45	25				100	100	100	100	100	100	27	3	SW	A-1-b
B1	59-60	20				100	100	100	100	100	100	83	5	SM-SP	A-3
B1	74-75	20				100	100	100	100	100	99	46	5	SM-SP	A-1-b
B1	89-90	16								88			5	SM-SP	A-1-b
B2	19-20	35	66	23	43					100			96	CH	A-7-6
B2	39-40	20				100	100	100	100	100	100	41	5	SM-SP	A-1-b
B2	49-50	49	47	20	27		1			94		1	88	CL	A-7-6
B2	59-60	21				100	100	100	100	99	98	82	5	SM-SP	A-3
B2	74-75	16				100	100	100	100	96	88	18	4	SW	A-1-b
B2	109-110	14				100	100	100	100	99	98	29	7	SM-SW	A-1-b
B3	6.5-7.5	34	56	24	32					100			83	CH	A-7-6
B3	14-15	16				100	100	100	100	100	100	66	5	SM-SP	A-3
B3	54-55	24				100	100	100	100	99	98	39	6	SM-SW	A-1-b
B3	69-70	16				100	100	100	100	100	97	42	7	SM-SP	A-1-b
B3	74-75	21				100	100	100	100	100	100	83	4	SP	A-3
B4	0.5-1.5	35	59	24	35					100			97	CH	A-7-6
B4	4.5-5.5	37	62	23	39					100			90	СН	A-7-6
B4	19-20	18				100	100	100	99	97	94	57	4	SP	A-3
B4	39-40	22				100	100	100	100	99	98	55	4	SP	A-3
B4	64-65	16				100	100	100	100	94	85	25	4	SW	A-1-b
B4	89-90	19				100	100	100	100	99	95	65	6	SM-SP	A-3

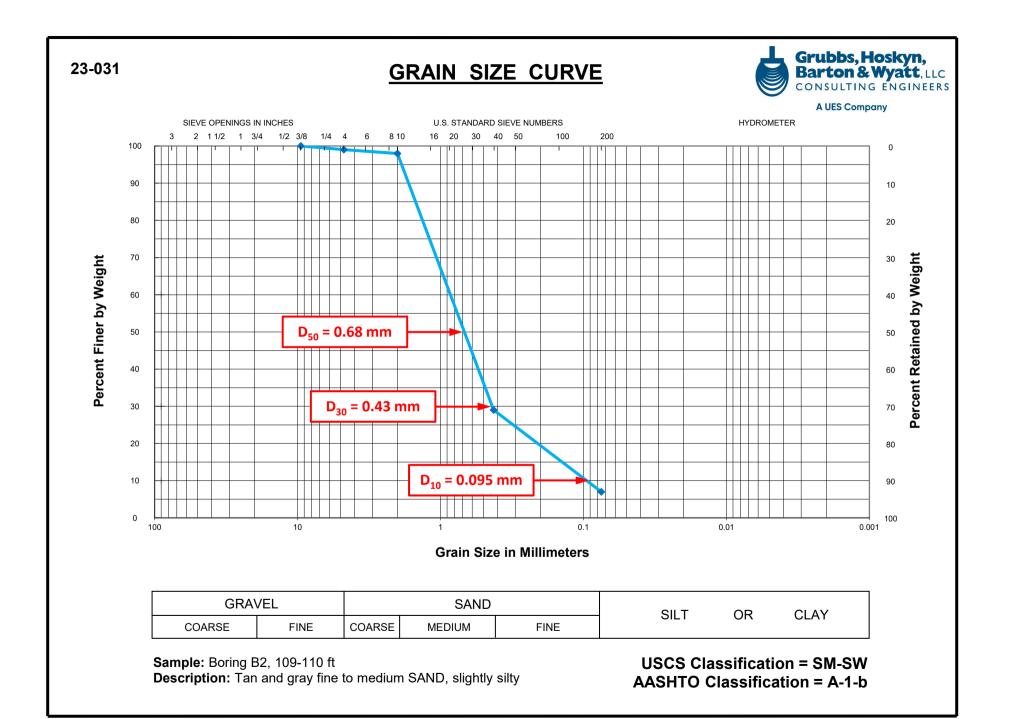

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

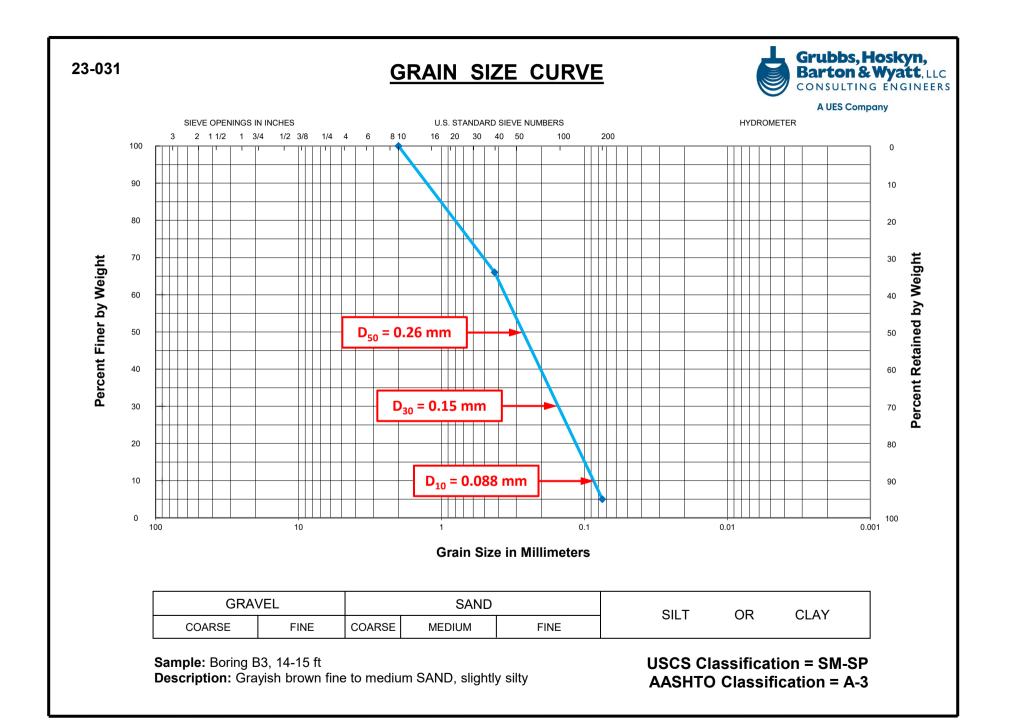

SUMMARY of CLASSIFICATION TEST RESULTS

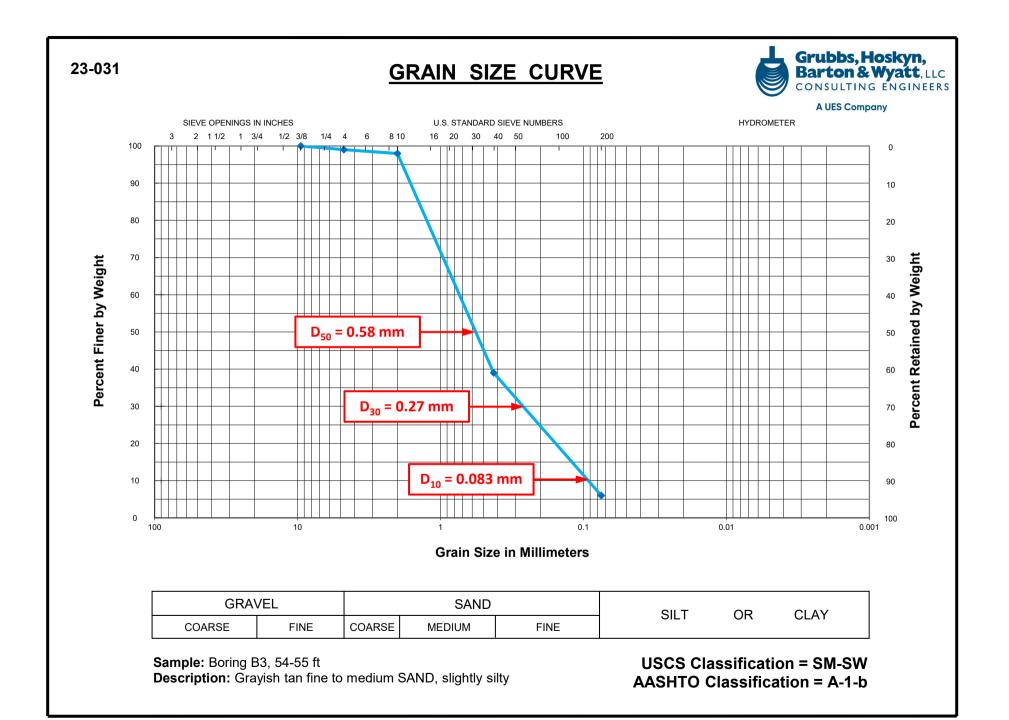

PROJECT: 101124 Hwy. 135 over Tyronza River (Site 2) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

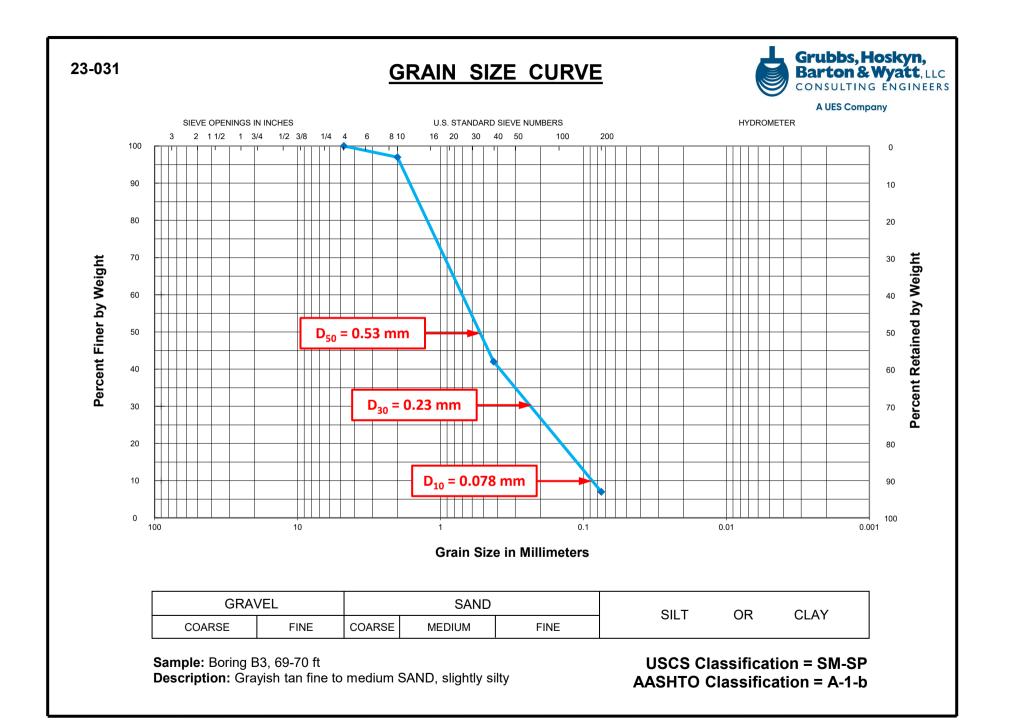

BORING No.	SAMPLE DEPTH (ft)	WATER CONTENT (%)	ATTERBERG LIMITS			SIEVE ANALYSIS							USCS		
			LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PERCENT PASSING								USCS CLASS.	AASHTO CLASS.
						2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200		
B5	2.5-3.5	18	Ν	ION-PLASTI	C					100			41	SM	A-4
B5	14-15	21	66	24	42					99			83	СН	A-7-6
B5	34-35	28	34	18	16					100			55	CL	A-6
B5	44-45	15				100	100	100	100	100	97	47	4	SP	A-1-b
B5	64-65	21				100	100	100	100	100	100	90	6	SM-SP	A-3
B5	89-90	16				100	100	100	100	97	91	36	5	SM-SW	A-1-b

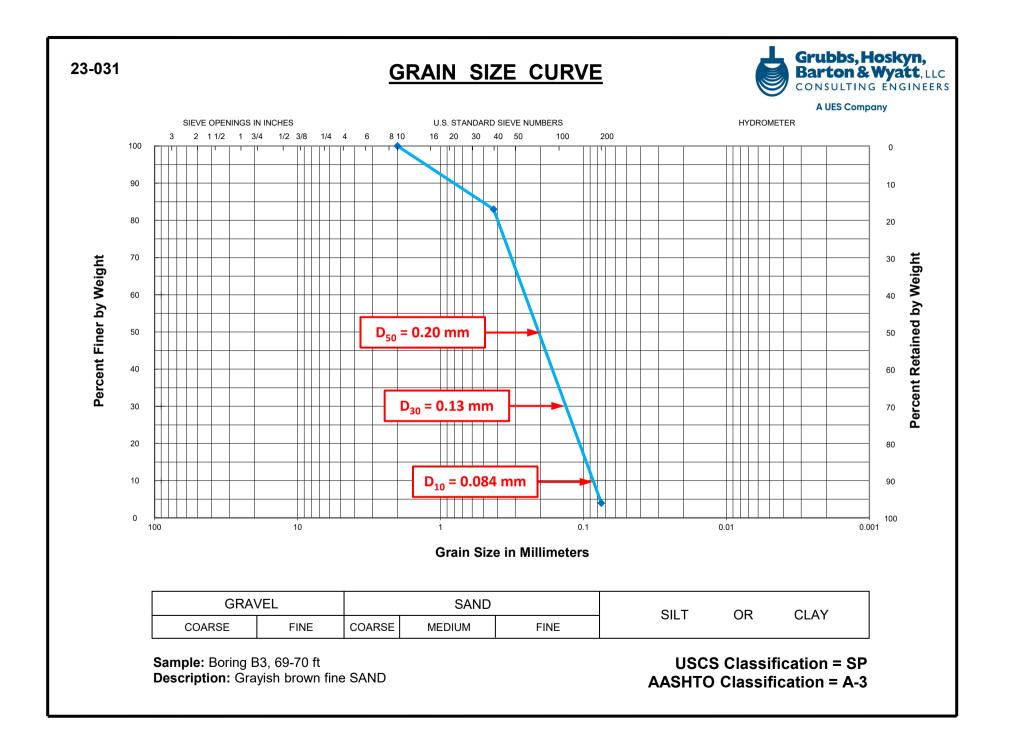


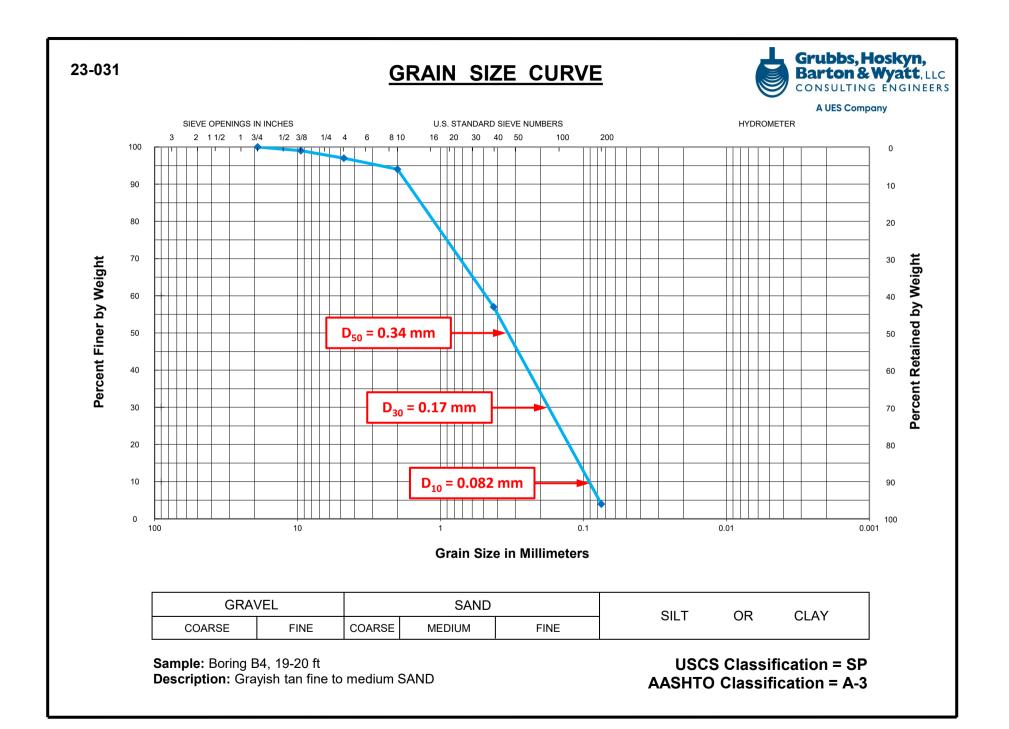


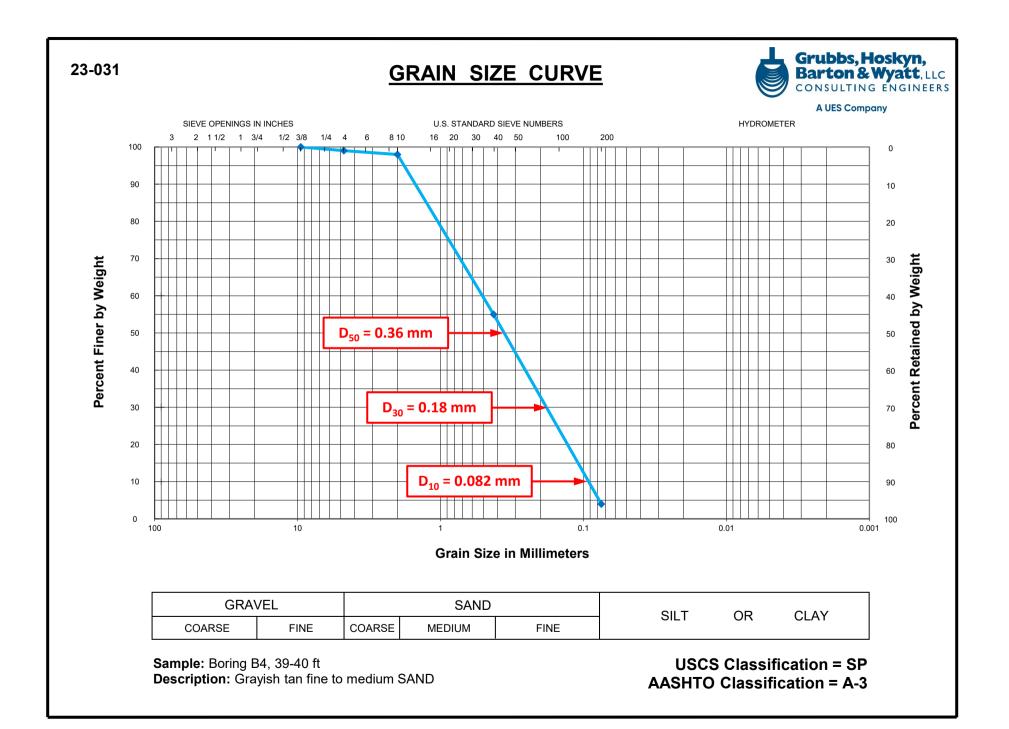


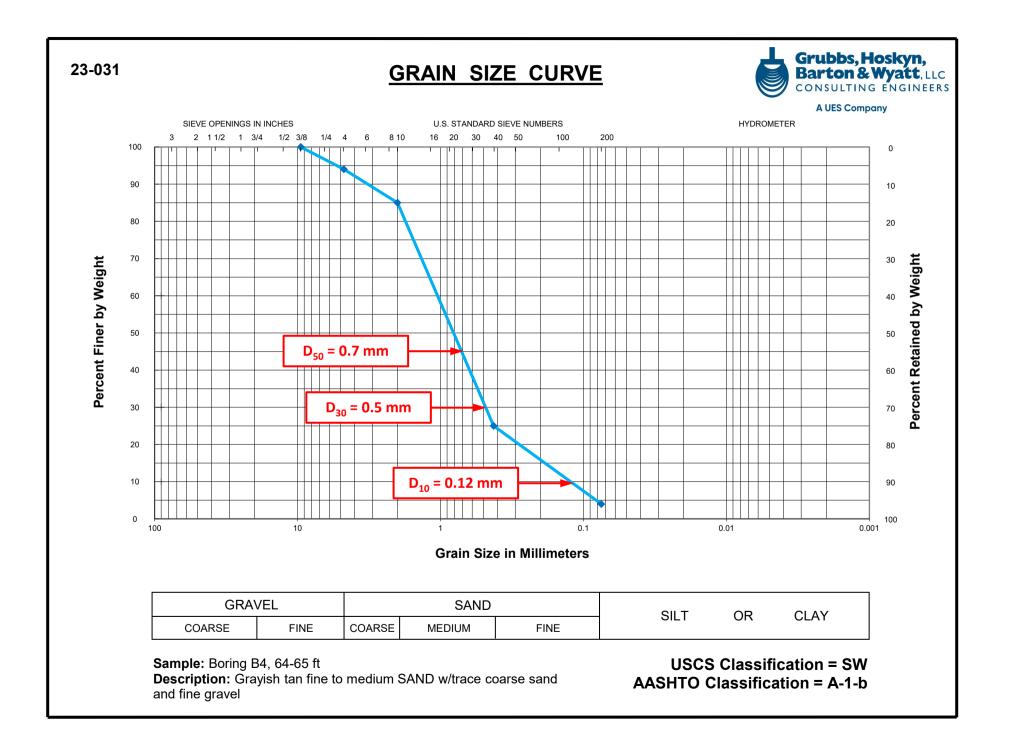


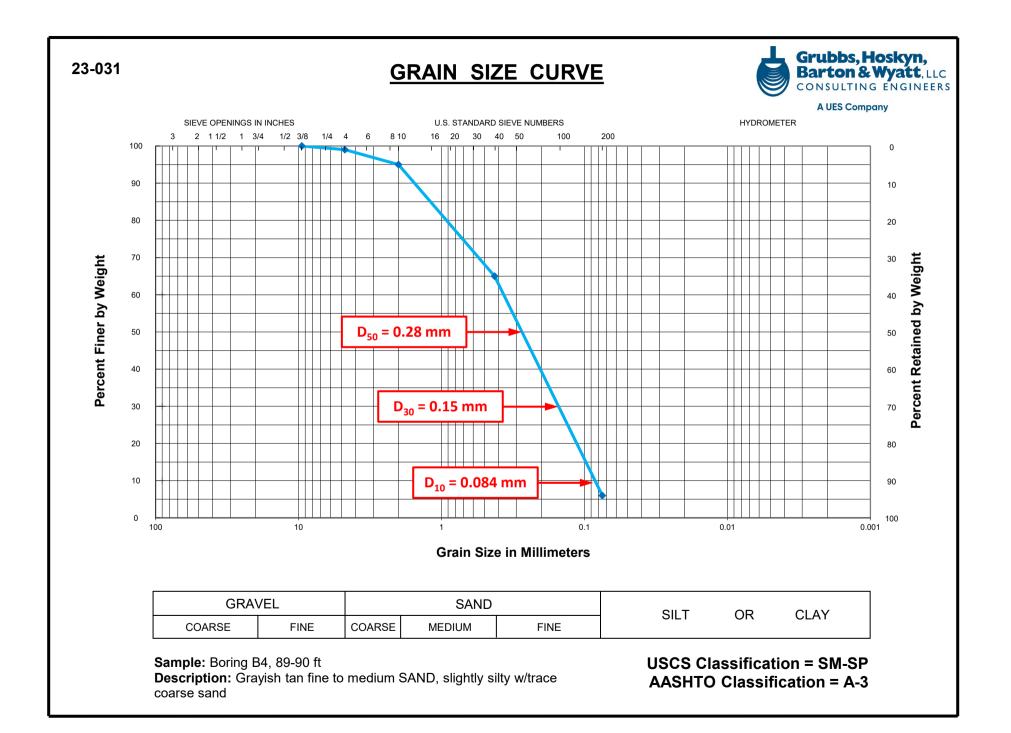


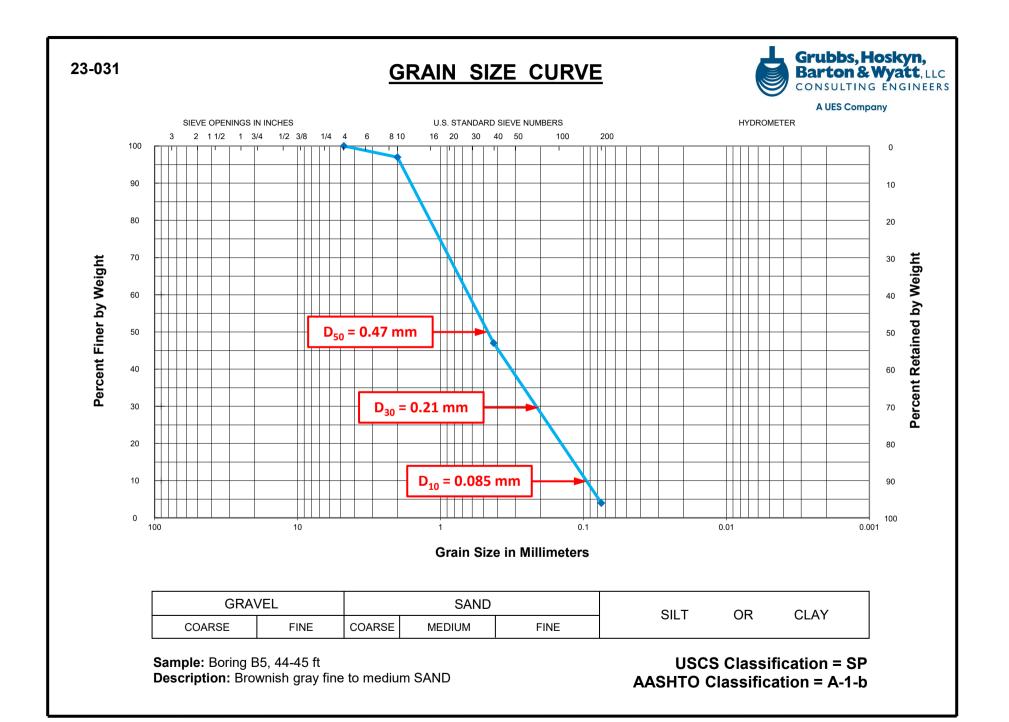


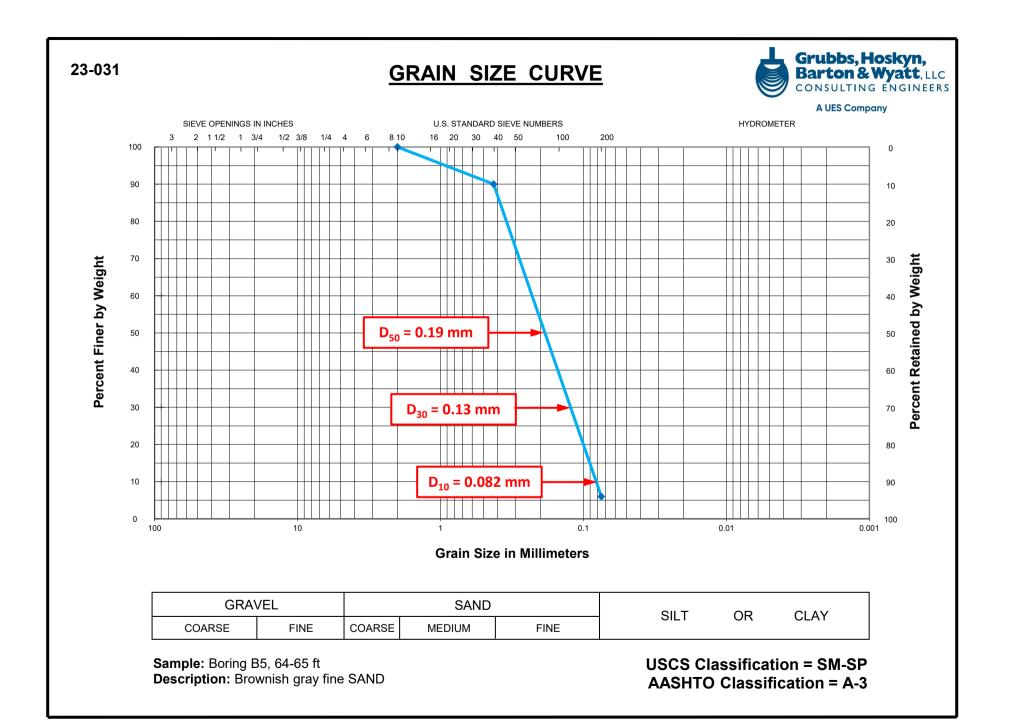


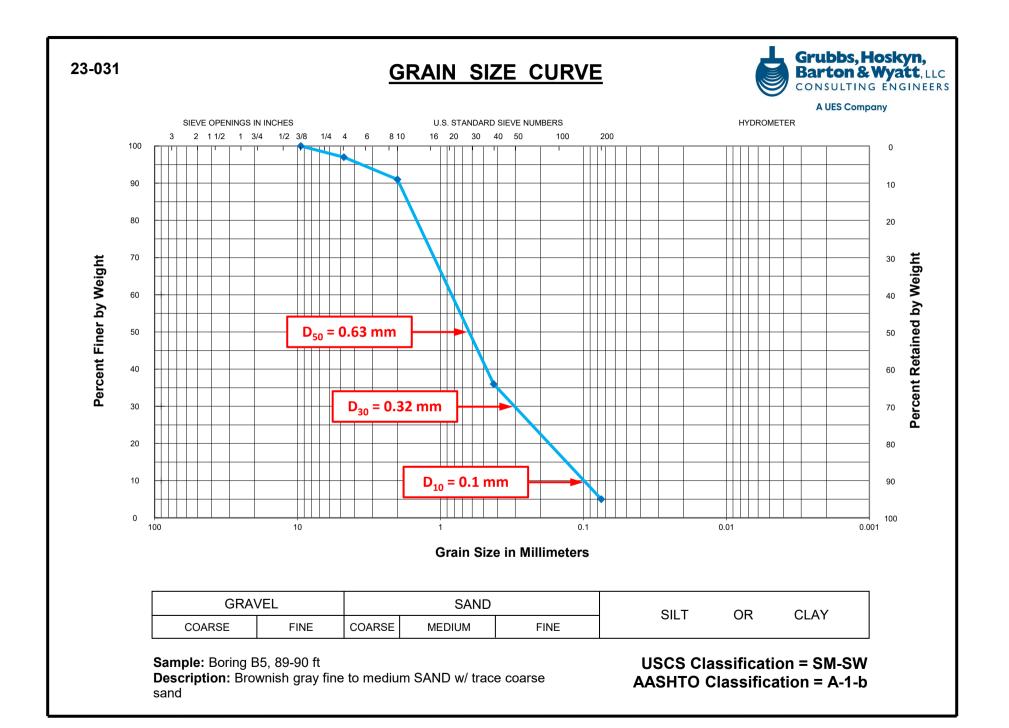












APPENDIX D

Table 2. Summar	y of Site-Specific Re	esponse Results

Period	Site 2-Tyronza River	Site 5 – Righthand Chute Little River
A₅ (g) (Site-adjusted PGA)	0.769	0.864
S _{DS} (g) (0.2 sec)	1.565	1.673
Sp1 (g) (1 Sec)	1.197	1.247
Seismic Performance Zone	ZONE 4	ZONE 4

Table 4. Average Shear Wave Velocity and AASHTO Site Classification

CPT Designation	Average Shear Wave Velocity	AASHTO Site Class
SCPT-2	701	D
SCPT-5-South	709	D
SCPT-5-North	701	D
SCPT-7	712	D

Tyronza River Site:

PARAMETER	DESIGN ACCELERATION PARAMETERS (g)
S _{DS}	1.565
S _{D1}	1.197
SMS	1.565
S _{M1}	1.200
MCE _G	0.769

Table 6. Site-Specific Response Accelerations Considering 5% Damping.

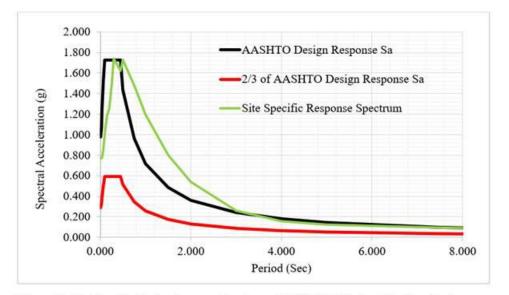
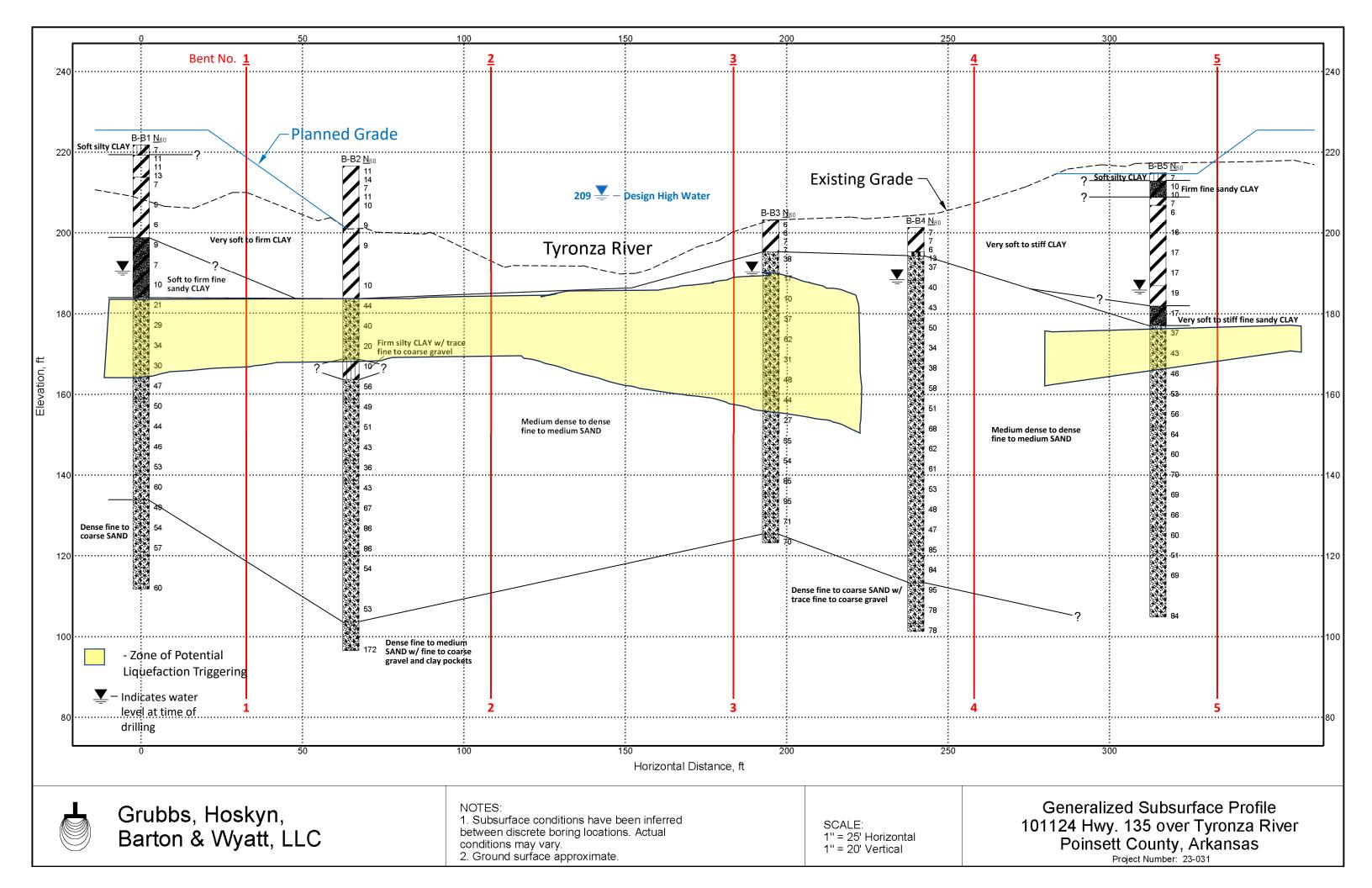
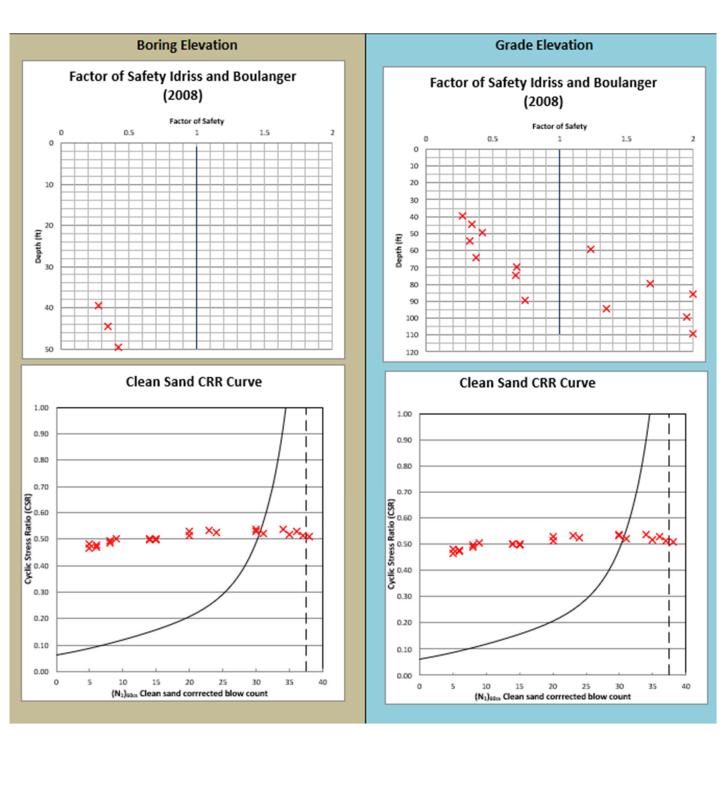
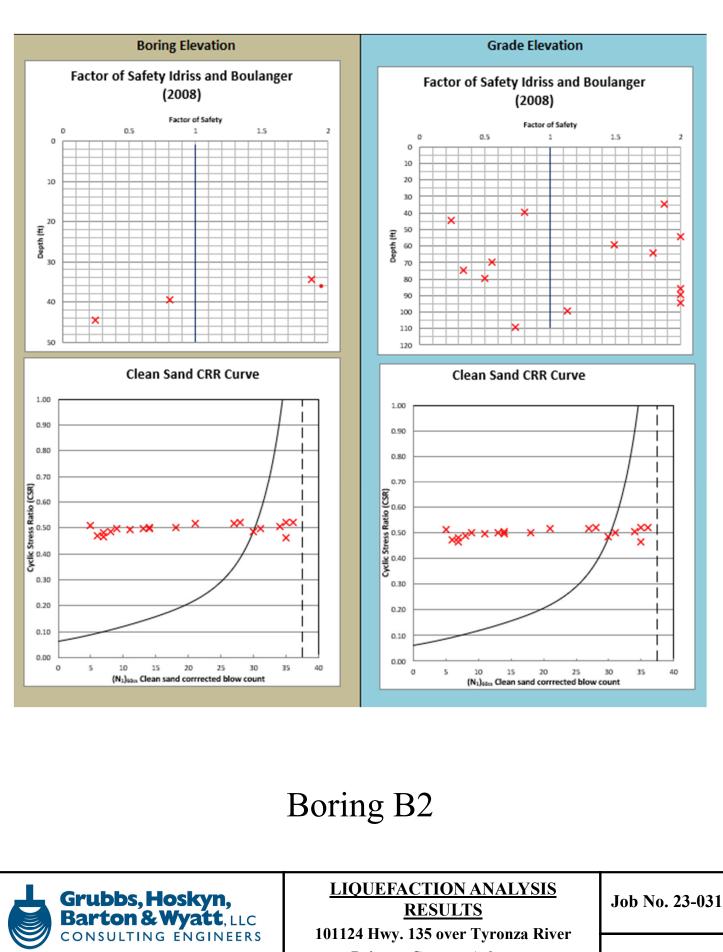




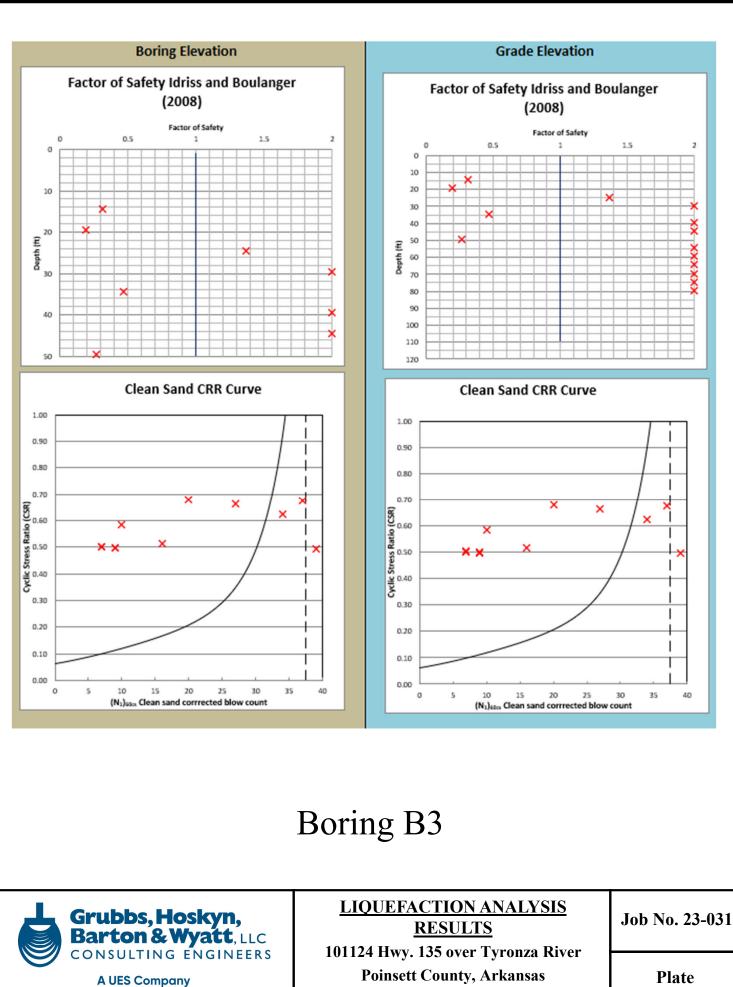
Figure 3. Site-Specific Design Response Spectrum, AASHTO Guide Specifications Design Response Spectrum, and 2/3 of the AASHTO Guide Specifications Design Response Spectrum.

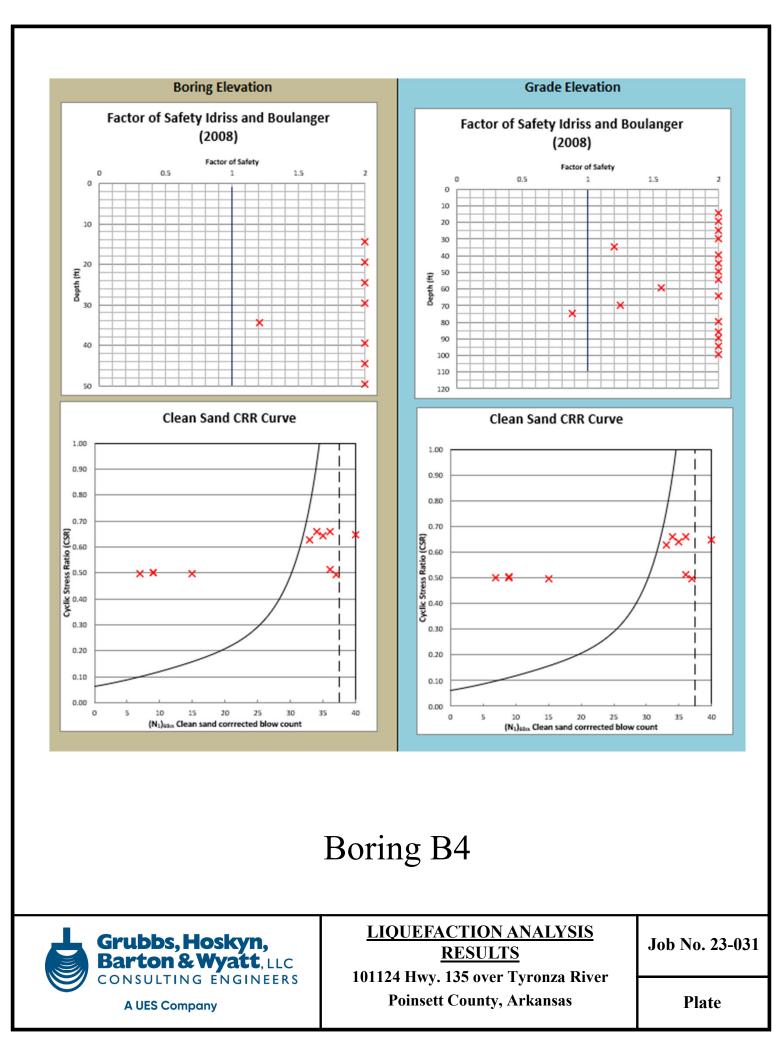
APPENDIX E

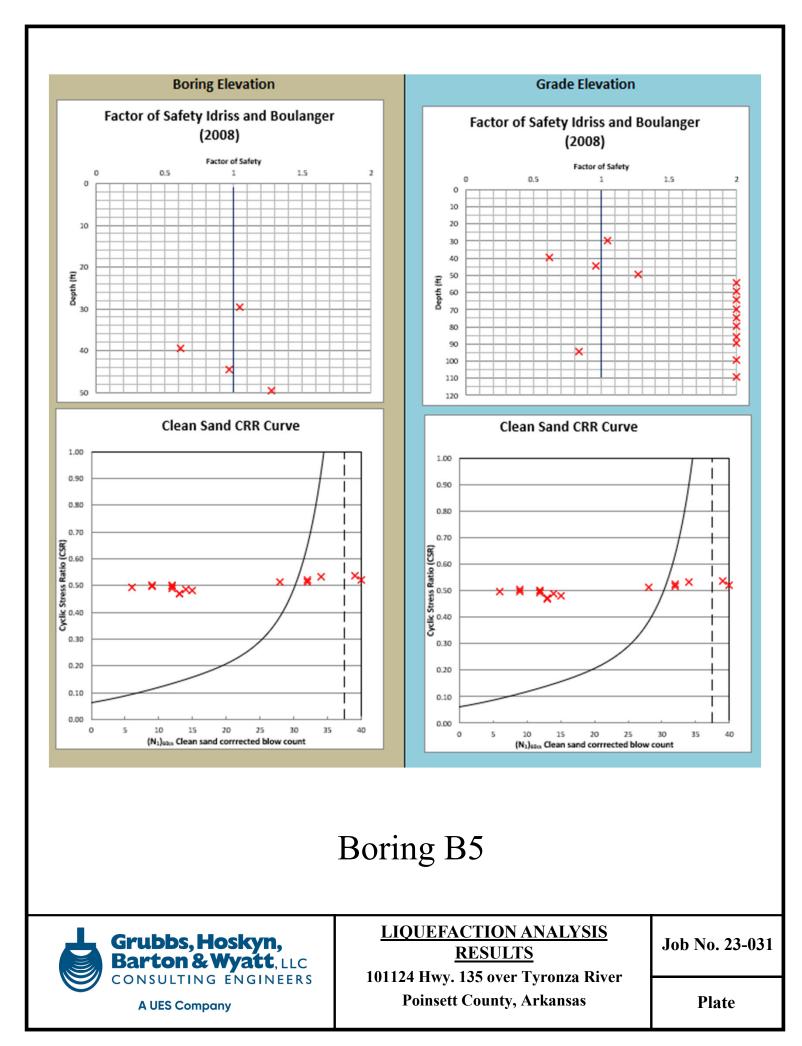

Boring B1

LIQUEFACTION ANALYSIS RESULTS

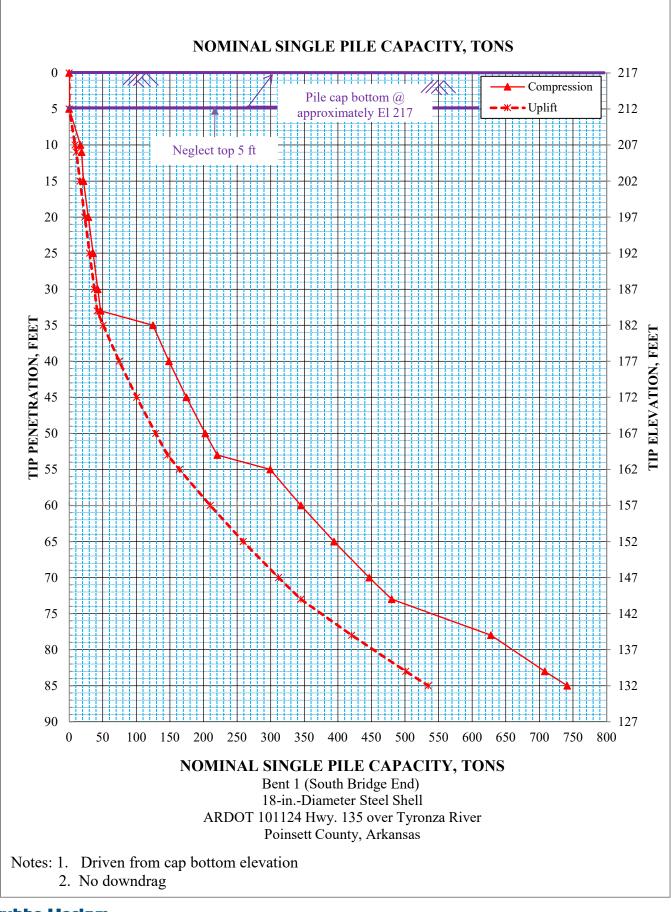
101124 Hwy. 135 over Tyronza River Poinsett County, Arkansas Job No. 23-031


Plate

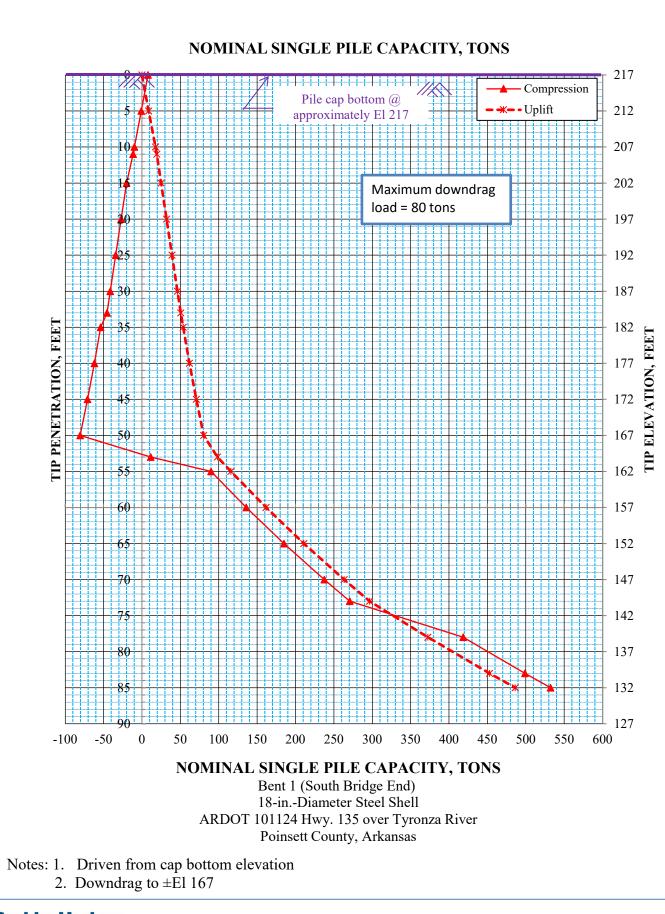

A UES Company

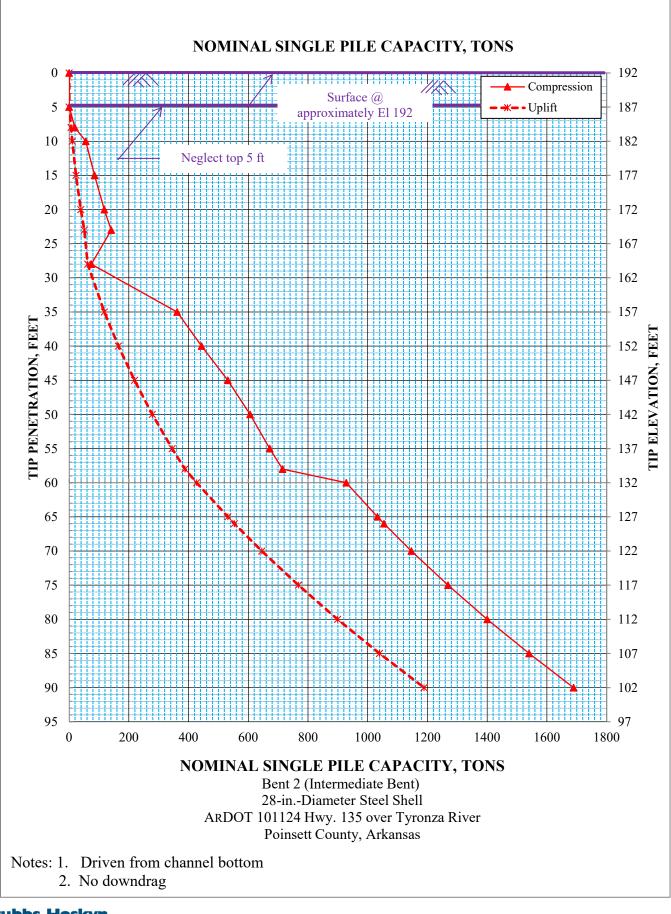

Poinsett County, Arkansas

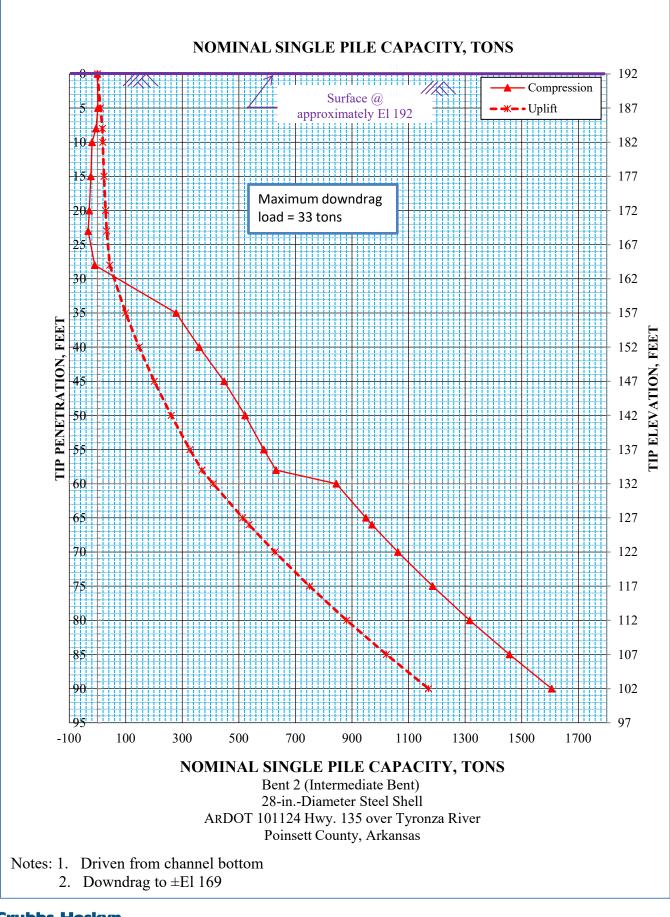
Plate

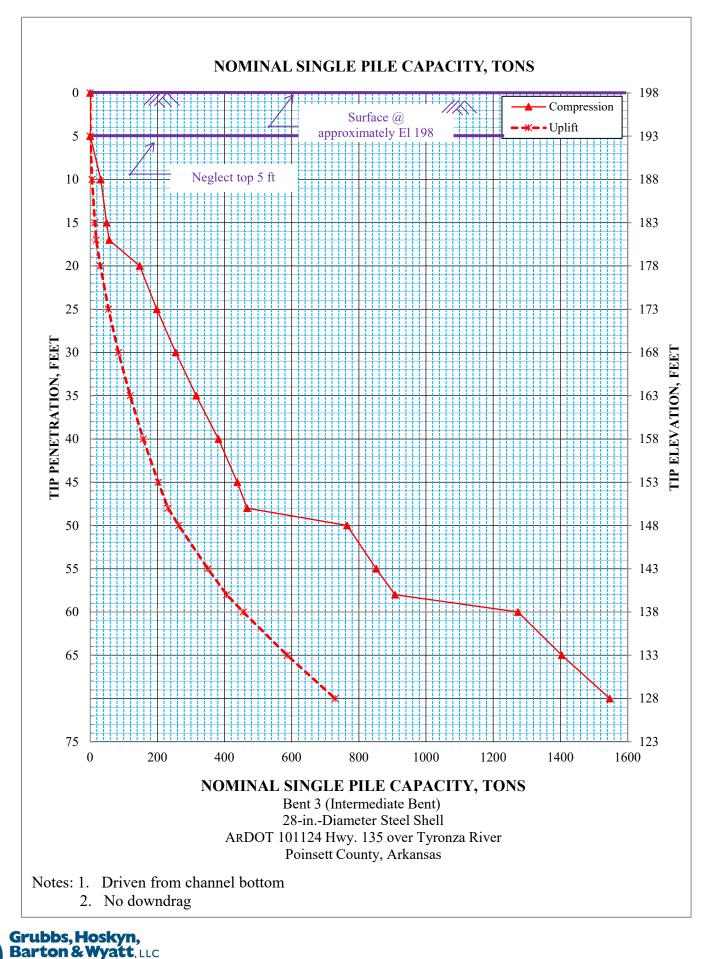


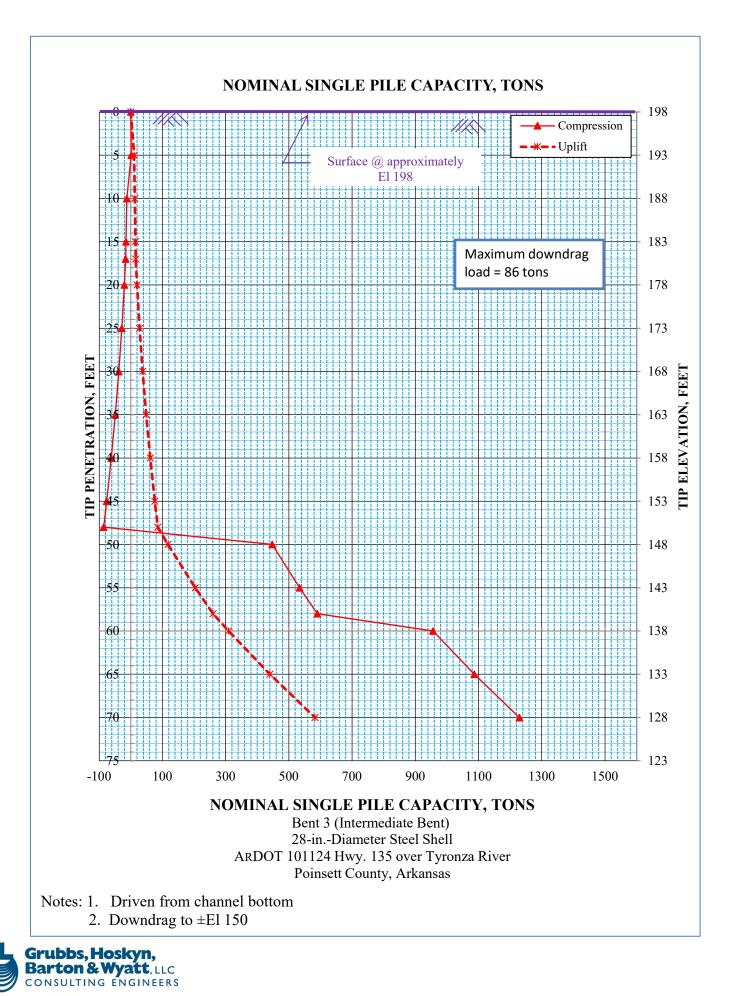
Plate

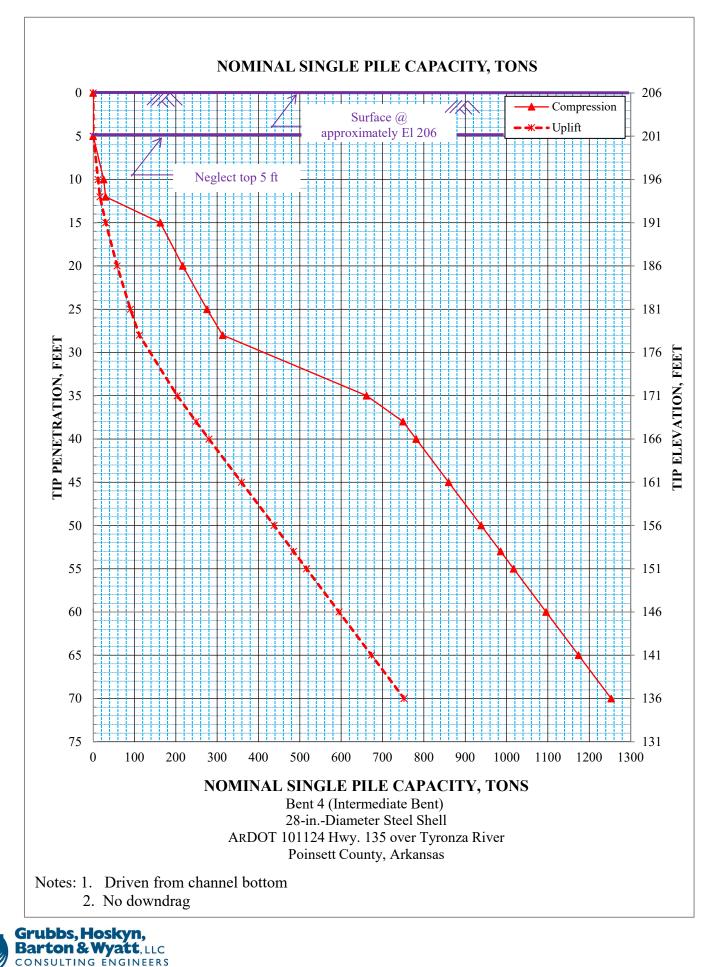



APPENDIX F

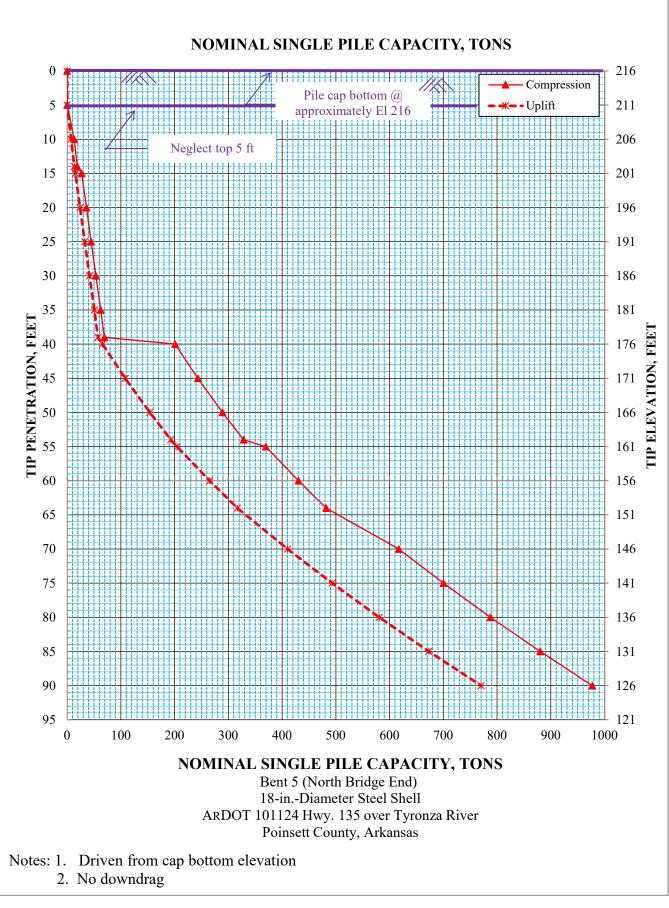


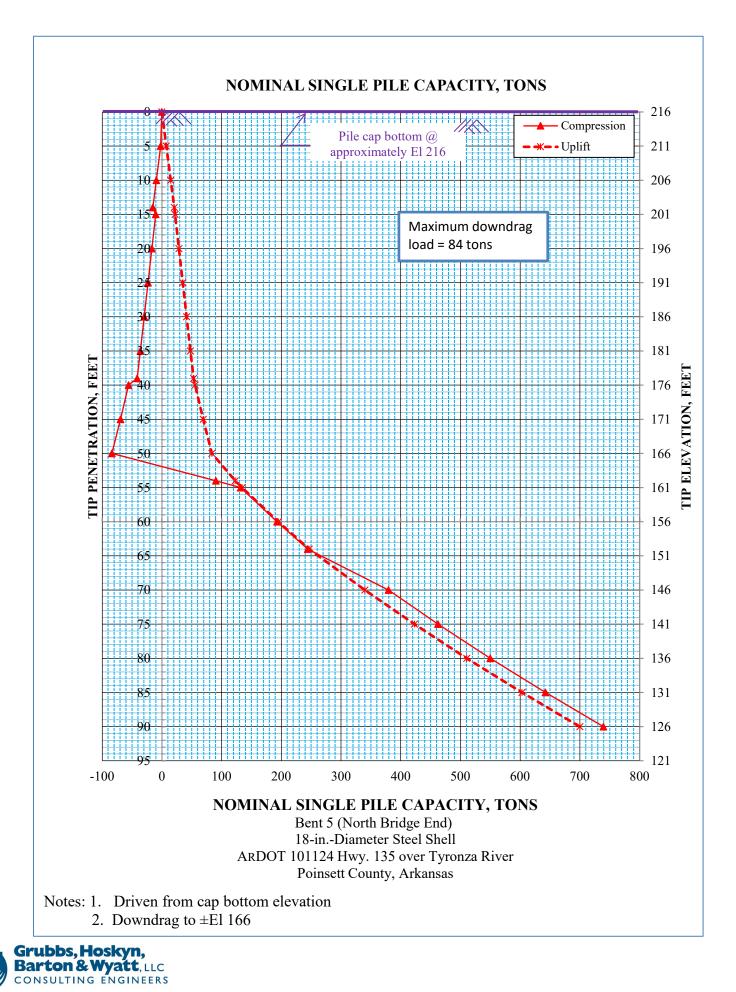






Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS A UES Company





A UES Company

A UES Company

APPENDIX G

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 1: Recommended Parameters for	or Lateral Load Anal	lyses Using LPILE©
------------------------------------	----------------------	--------------------

Generalized Stratigraphy	Soft to firm CLAY	Soft CLAY	Medium dense fine to medium SAND	Medium dense to dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-11	11-33	33-53	53-73	73 and deeper
Approximate El, ft	217-206	206-184	184-164	164-144	below 144
Recommend soil type	Stiff clay without free water	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	120	115	57	63	68
Cohesion (c), lbs per sq ft	1000	650	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	33	36	38
Subgrade modulus (k), lbs per cu in.	300	100	55	105	125
Strain at 50% (EE50)	0.009	0.01	NA	NA	NA

Note: Pile cap bottom at ±El 217

Seismic Loading with Liquefaction

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft to firm CLAY	Soft CLAY	Medium dense fine to medium SAND (liquefiable)	Medium dense to dense fine to medium SAND	Medium dense to dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-11	11-33	33-50	50-53	53-73	73 and deeper
Approximate El, ft	217-206	206-184	184-167	167-164	164-144	below 144
Recommend soil type	Stiff clay without free water	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	120	115	57	63	63	68
Cohesion (c), lbs per sq ft	1000	650	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	11	36	36	38
Subgrade modulus (k), lbs per cu in.	300	100	20	105	105	125
Strain at 50% (EE50)	0.009	0.01	NA	NA	NA	NA

Note: Pile cap bottom at ±El 217

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Generalized Stratigraphy	Soft CLAY	Medium dense silty fine SAND	Soft CLAY	Medium dense to dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-23	23-28	28-58	58 and deeper
Approximate El, ft	192-184	184-169	169-164	164-134	below 134
Recommend soil type	Soft clay	Sand (Reese)	Soft clay	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	57	53	63	68
Cohesion (c), lbs per sq ft	650	0	650	0	0
Angle of internal friction $(\phi), \circ$	0	33	0	36	38
Subgrade modulus (k), lbs per cu in.	100	55	100	105	125
Strain at 50% (EE50)	0.01	NA	0.01	NA	NA

Note: Ground surface at ±El 192

Seismic Loading with Liquefaction

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft CLAY	Medium dense silty fine SAND (liquefiable)	Soft CLAY	Medium dense to dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-23	23-28	28-58	58 and deeper
Approximate El, ft	192-184	184-169	169-164	164-134	below 134
Recommend soil type	Soft clay	Sand (Reese)	Soft clay	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	53	57	53	63	68
Cohesion (c), lbs per sq ft	650	0	650	0	0
Angle of internal friction $(\phi), \circ$	0	11	0	36	38
Subgrade modulus (k), lbs per cu in.	100	20	100	105	125
Strain at 50% (EE50)	0.01	NA	0.01	NA	NA

Note: Ground surface at ±El 192

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 3: Recommended Parameter	s for Lateral Load Analyses Using LPI	LE©
--------------------------------------	---------------------------------------	-----

Generalized Stratigraphy	Soft CLAY	Loose to medium dense fine SAND	Medium dense fine to medium SAND	Dense fine to medium SAND	Very dense fine to medium SAND
Depth below pile cap bottom, ft	0-5	5-17	17-48	48-58	58 and deeper
Approximate El, ft	198-193	193-181	181-150	150-140	below 140
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	53	60	65	73
Cohesion (c), lbs per sq ft	650	0	0	68	0
Angle of internal friction $(\phi), \circ$	0	30	35	38	40
Subgrade modulus (k), lbs per cu in.	100	35	80	125	130
Strain at 50% (EE50)	0.01	NA	NA	NA	NA

Note: Ground surface at ±El 198

Seismic Loading with Liquefaction

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft CLAY	Loose to medium dense fine SAND (liquefiable)	Medium dense fine to medium SAND (liquefiable)	Dense fine to medium SAND	Very dense fine to medium SAND
Depth below pile cap bottom, ft	0-5	5-17	17-48	48-58	58 and deeper
Approximate El, ft	198-193	193-181	181-150	150-140	below 140
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	53	60	65	73
Cohesion (c), lbs per sq ft	650	0	0	68	0
Angle of internal friction $(\phi), \circ$	0	8	11	38	40
Subgrade modulus (k), lbs per cu in.	100	20	20	125	130
Strain at 50% (EE50)	0.01	NA	NA	NA	NA

Note: Ground surface at ±El 198

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft CLAY	Medium dense fine SAND	Dense fine to medium SAND	
Depth below pile cap bottom, ft	0-12	12-28	28 and deeper	
Approximate El, ft	206-194	194-178	below 178	
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	
Effective unit weight (γ), lbs per cu ft	115	60	68	
Cohesion (c), lbs per sq ft	700	0	0	
Angle of internal friction $(\phi), \circ$	0	35	38	
Subgrade modulus (k), lbs per cu in.	100	80	125	
Strain at 50% (EE50)	0.01	NA	NA	

Note: Ground surface at ±El 206

PLATE

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Generalized Stratigraphy	Soft CLAY	Stiff CLAY	Medium dense to dense fine to medium SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-14	14-39	39-54	54-64	64 and deeper
Approximate El, ft	216-202	202-177	177-162	162-152	below 152
Recommend soil type	Soft clay	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	125	63	65	68
Cohesion (c), lbs per sq ft	700	1500	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	36	37	38
Subgrade modulus (k), lbs per cu in.	100	500	105	115	125
Strain at 50% (EE50)	0.01	0.007	NA	NA	NA

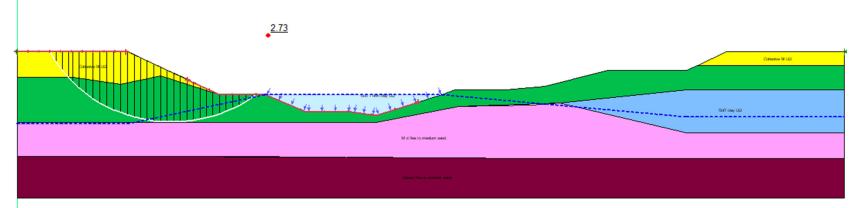
Note: Pile cap bottom at ±El 216

Seismic Loading with Liquefaction

Bent 5: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft CLAY	Stiff CLAY	Medium dense to dense fine to medium SAND (liquefiable)	Medium dense to dense fine to medium SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-14	14-39	39-50	50-54	54-64	64 and deeper
Approximate El, ft	216-202	202-177	177-166	166-162	162-152	below 152
Recommend soil type	Soft clay	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	125	63	63	65	68
Cohesion (c), lbs per sq ft	700	1500	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	0	11	36	37	38
Subgrade modulus (k), lbs per cu in.	100	500	20	105	115	125
Strain at 50% (EE50)	0.01	0.007	NA	NA	NA	NA

Note: Pile cap bottom at ±El 216

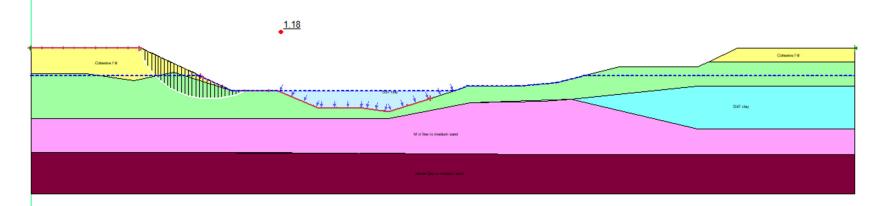

APPENDIX H

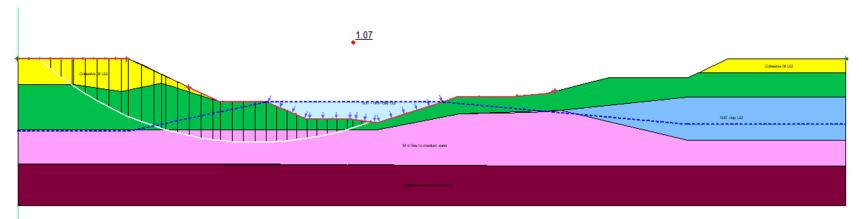
Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Tyronza River GHBW Job No. 23-031 Poinsett County, Arkansas

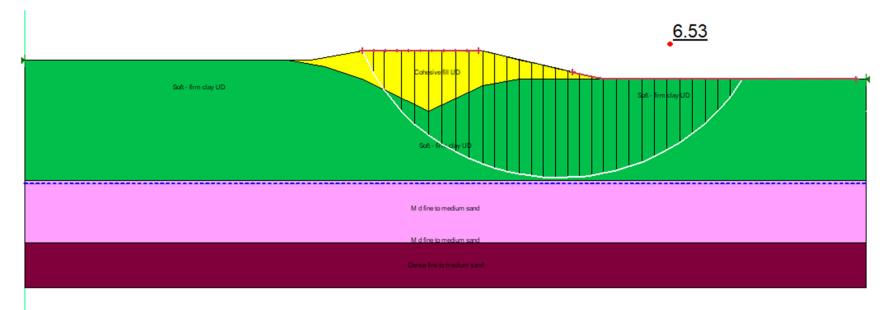
	Design Loading Condition	Calculated Minimum Factor of Safety
South End Slope (Bent 1)	End of Construction	2.73
	Long Term	1.49
(2H:1V)	Rapid Drawdown from El 209 to El 200	1.18
	Seismic ($k_h = A_S/2 = 0.3845$)	1.07
	End of Construction	6.53
South Side Slope (Bent 1)	Long Term	3.08
(4H:1V)	Rapid Drawdown from El 209 to Existing Grade	3.56
	Seismic ($k_h = A_S/2 = 0.3845$)	1.33
	End of Construction	5.23
North End Slope (Bent 4)	Long Term	2.01
(2H:1V)	Rapid Drawdown from El 209 to El 200	2.27
	Seismic ($k_h = A_S/2 = 0.3845$)	1.38
	End of Construction	4.78
North Side Slope (Bent 4)	Long Term	2.48
(4H:1V)	Rapid Drawdown from El 209 to Existing Grade	2.02
	Seismic ($k_h = A_S/2 = 0.3845$)	1.37



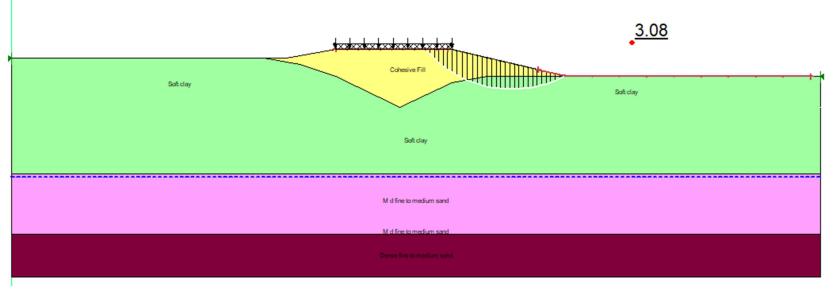
A UES Company

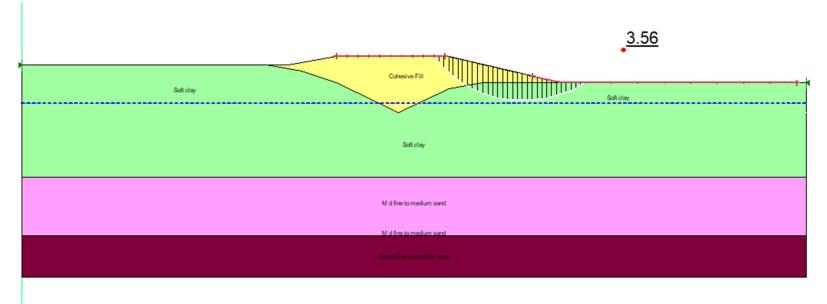

Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

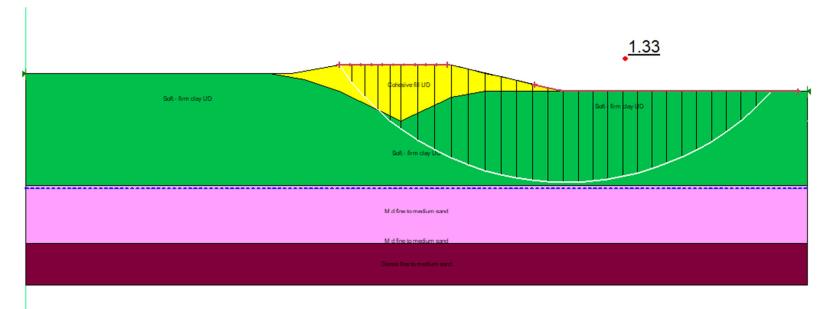

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

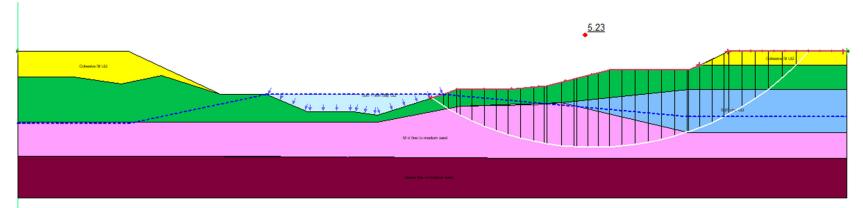


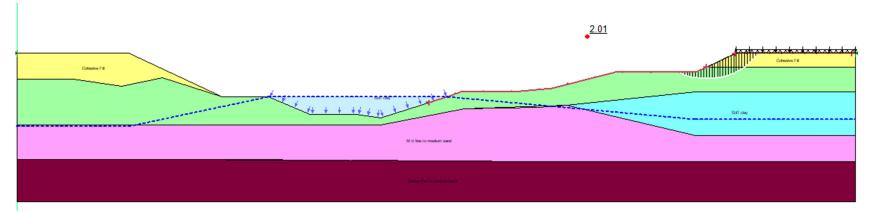
Results of Stability Analyses – Rapid Drawdown Condition from El 215 to El 213 Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

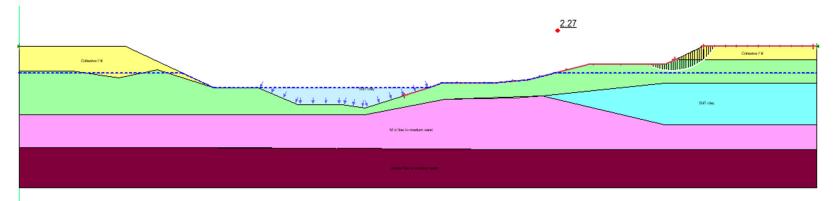


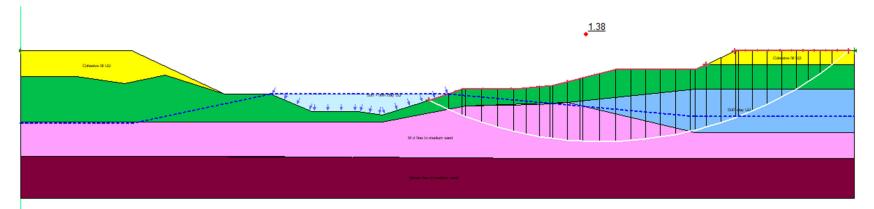

Results of Stability Analyses – End of Construction Bent 1 Side Slope 4H:1V Slope, H=9 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

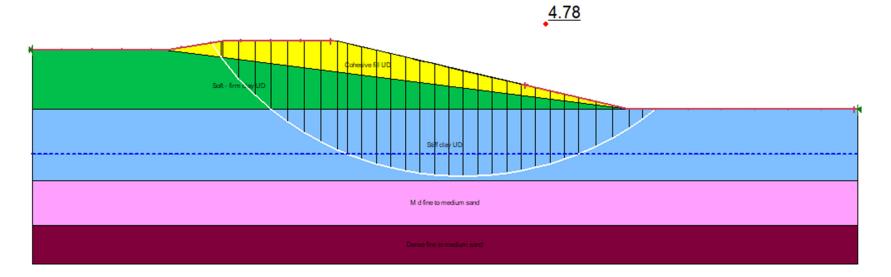

 $\begin{array}{c} \mbox{Results of Stability Analyses}-\mbox{Long Term Condition}\\ \mbox{Bent 1 Side Slope}\\ \mbox{4H:1V Slope, H=9 ft } \pm \\ \mbox{23-031}-\mbox{ArDOT Job No. 101124}-\mbox{Hwy. 35 over Tyronza River} \end{array}$

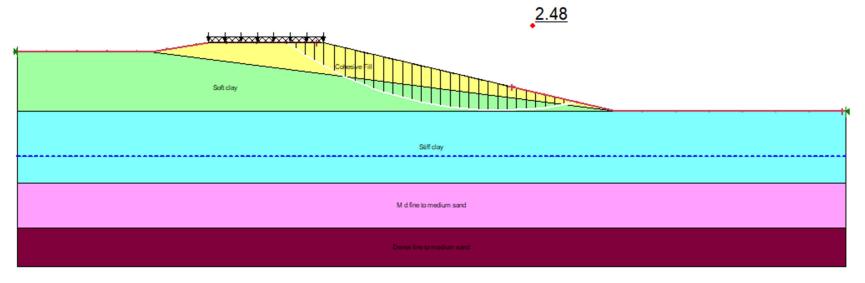

Results of Stability Analyses – Rapid Drawdown El 209 to Existing Grade Bent 1 Side Slope 4H:1V Slope, H=9 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

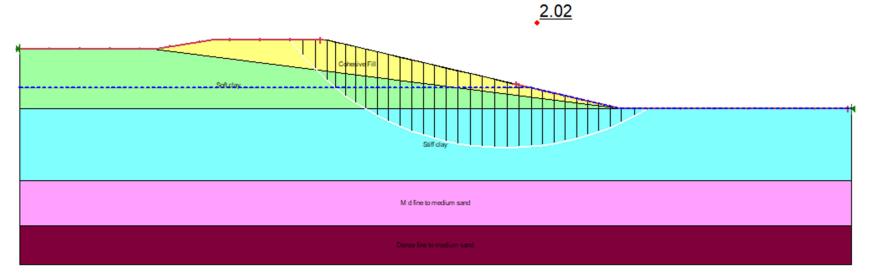

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.3854) \\ \mbox{Bent 1 Side Slope} \\ \mbox{4H:1V Slope, H=9 ft \pm} \\ \mbox{23-031 - ArDOT Job No. 101124 - Hwy. 35 over Tyronza River} \end{array}$

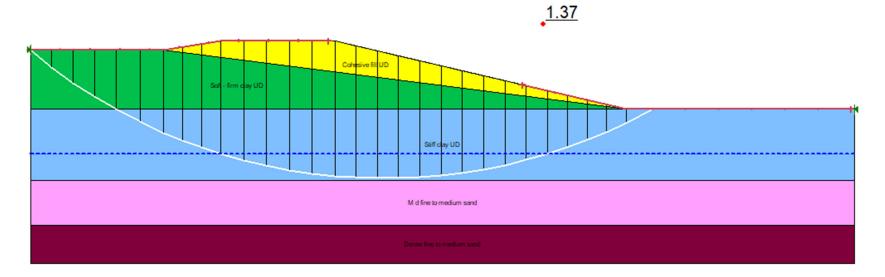

Results of Stability Analyses – End of Construction Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River


Results of Stability Analyses – Long Term Condition Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River


Results of Stability Analyses – Rapid Drawdown Condition, El 209 to El 200 Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River


 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S \ /2= 0.3854) \\ & \mbox{Bent 4 End Slope} \\ & \ 2H:1V \ Slope, \ H=23 \ ft \pm \\ 23-031 - \ ARDOT \ Job \ No. \ 101124 - Hwy. \ 35 \ over \ Tyronza \ River \end{array}$


Results of Stability Analyses – End of Construction Bent 4 Side Slope 4H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River


Results of Stability Analyses – Long Term Condition Bent 4 Side Slope 4H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

Results of Stability Analyses – Rapid Drawdown Condition, El 209 to Existing Grade Bent 4 Side Slope 4H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Tyronza River

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition} (k_h = A_S \slashed{A_S} = 0.3845) \\ \mbox{Bent 4 Side Slope} \\ \slashed{4H:1V Slope, H=23 ft \pm} \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Tyronza River} \end{array}$

APPENDIX I

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX J

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \le 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

Payment will be made under:

Pay Item

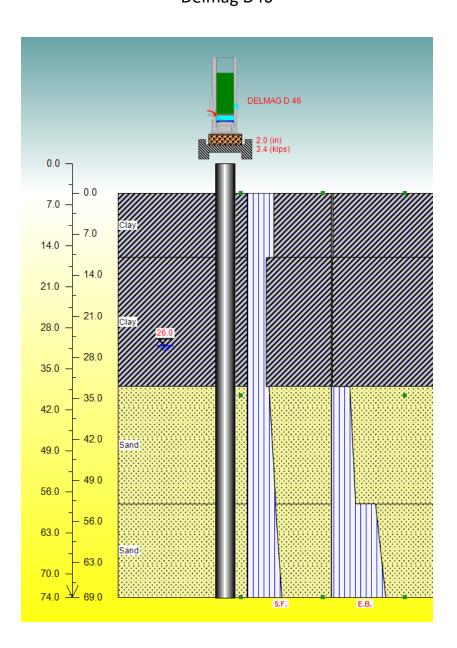
Pay Unit

Compacted Embankment

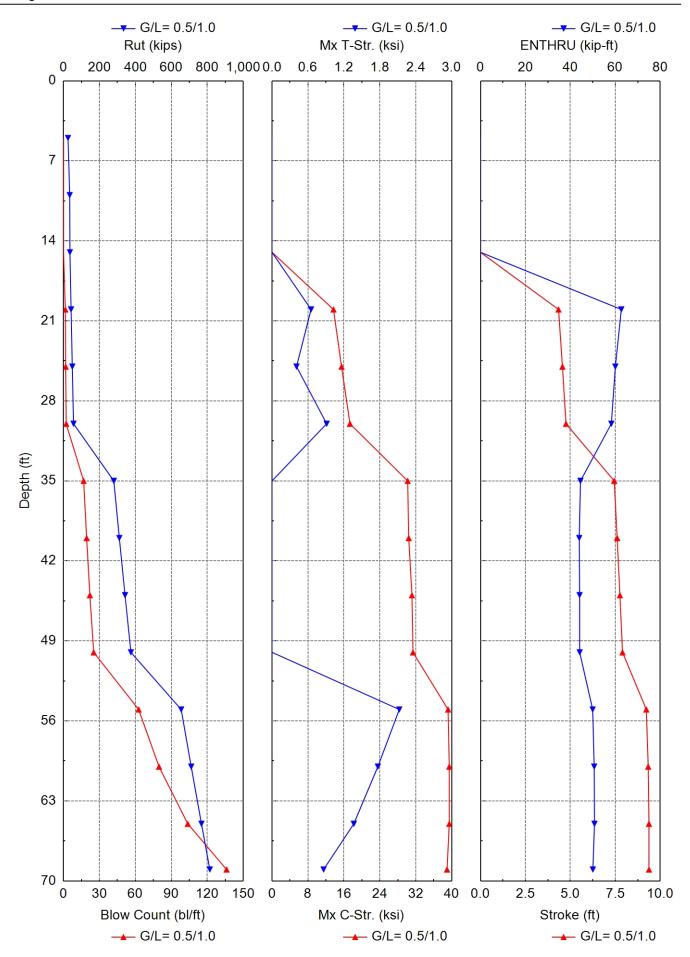
Cubic Yard

APPENDIX K

RECOMMENDED MINIMUM HAMMER ENERGY - STEEL SHELL PILES

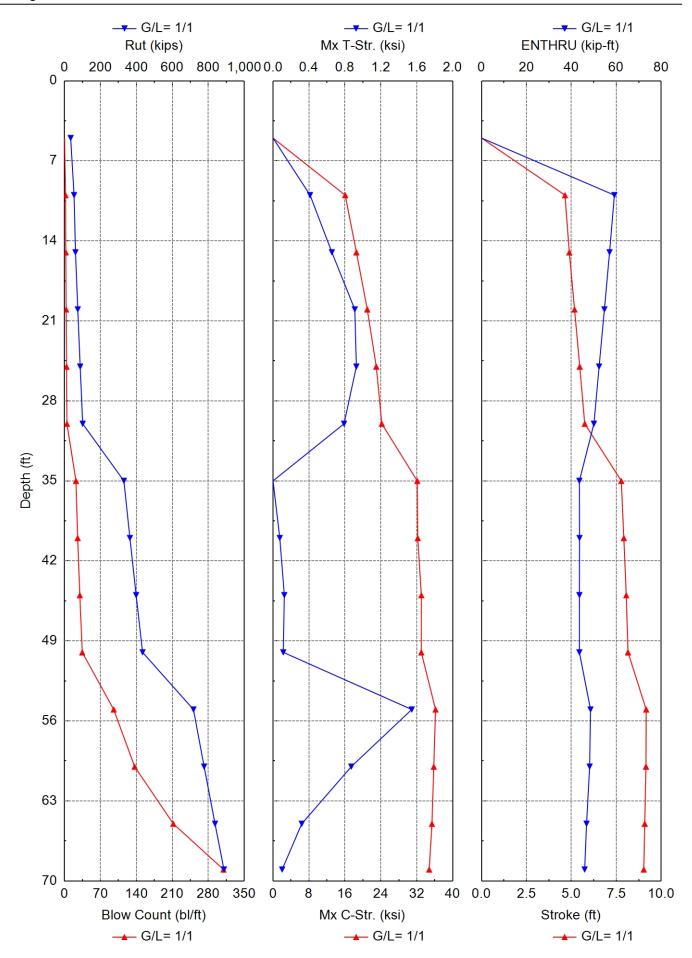

Project: 101124 - Hwy 135 HWY. 135 OVER TYRONZA RIVER (SITE 2) Poinsett County, Arkansas GHBW Project No: 23-031

Site	Bridge	Bent	Pile Diameter (in)	Wall Thickness (in)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El.	Min Tip El.	Pile Length (ft)	Min Hammer Energy (ft- kip)	Max Comp Stress, ksi
		1	18	0.50	320	217	148	69	107	39.5
2 -		2	28	0.75	562	192	143	49	186	36.5
Tyronza	В	3	28	0.75	562	198	138	60	186	36.2
River		4	28	0.75	562	206	163	43	186	38.7
		5	18	0.50	320	216	158	58	107	36.3


Notes: 1. Driveability analyses performed utilizing <u>GRLWEAP 2014</u>; Pile Dynamics, Inc.

2. All piles are steel shells.

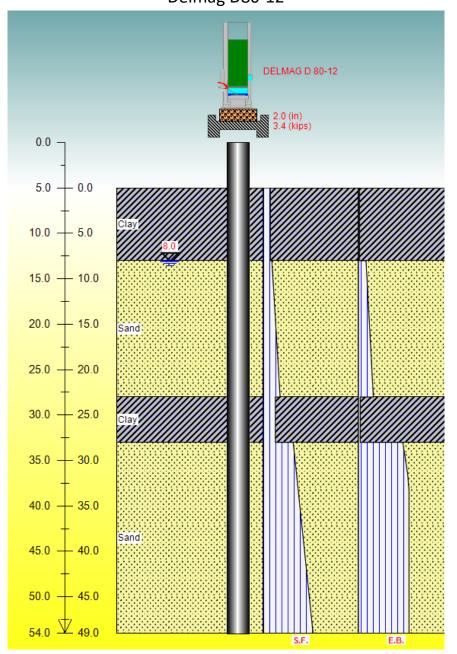
ArDOT 101124 Hwy 135 over Tyronza River Bent 1 18-in-diameter Steel Shell Pile Delmag D46



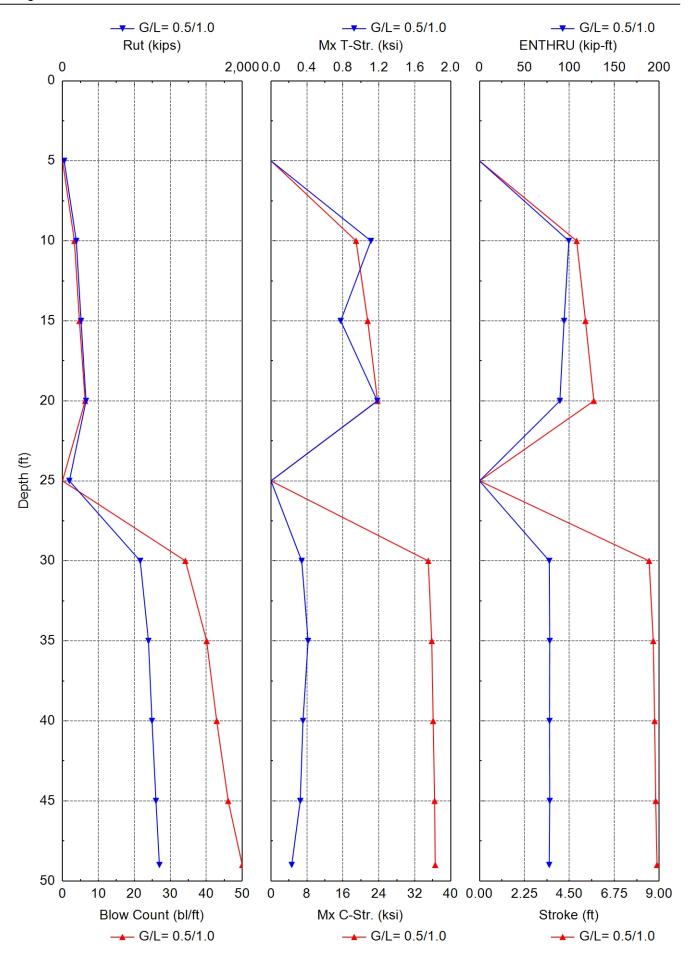
	Gain/Loss Factor at Shaft/Toe = 0.500/1.000								
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str.	Mx T-Str.	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	25.0	9.1	15.9	0.0	0.000	0.000	0.00	0.0	D 46
10.0	34.4	18.5	15.9	0.0	0.000	0.000	0.00	0.0	D 46
15.0	35.7	25.4	10.3	0.0	0.000	0.000	0.00	0.0	D 46
20.0	42.1	31.7	10.3	1.5	13.684	0.652	4.34	62.7	D 46
25.0	48.7	38.4	10.3	1.8	15.476	0.409	4.56	60.0	D 46
30.0	55.7	45.3	10.3	2.2	17.348	0.912	4.76	58.2	D 46
35.0	279.8	54.8	225.0	16.8	30.194	0.000	7.44	44.5	D 46
40.0	310.5	68.3	242.2	19.3	30.434	0.000	7.61	44.0	D 46
45.0	342.3	82.9	259.4	22.0	31.145	0.000	7.76	44.1	D 46
50.0	375.0	98.4	276.6	25.2	31.378	0.000	7.90	44.2	D 46
55.0	654.8	114.9	540.0	62.7	39.188	2.125	9.23	49.9	D 46
60.0	710.6	132.3	578.3	79.7	39.452	1.767	9.33	50.6	D 46
65.0	767.6	151.0	616.6	103.7	39.453	1.366	9.37	50.7	D 46
69.0	814.1	166.8	647.3	136.1	38.960	0.861	9.38	50.0	D 46

Driveability Analysis Summary

Total driving time: 48 minutes; Total Number of Blows: 1895 (starting at penetration 5.0 ft)

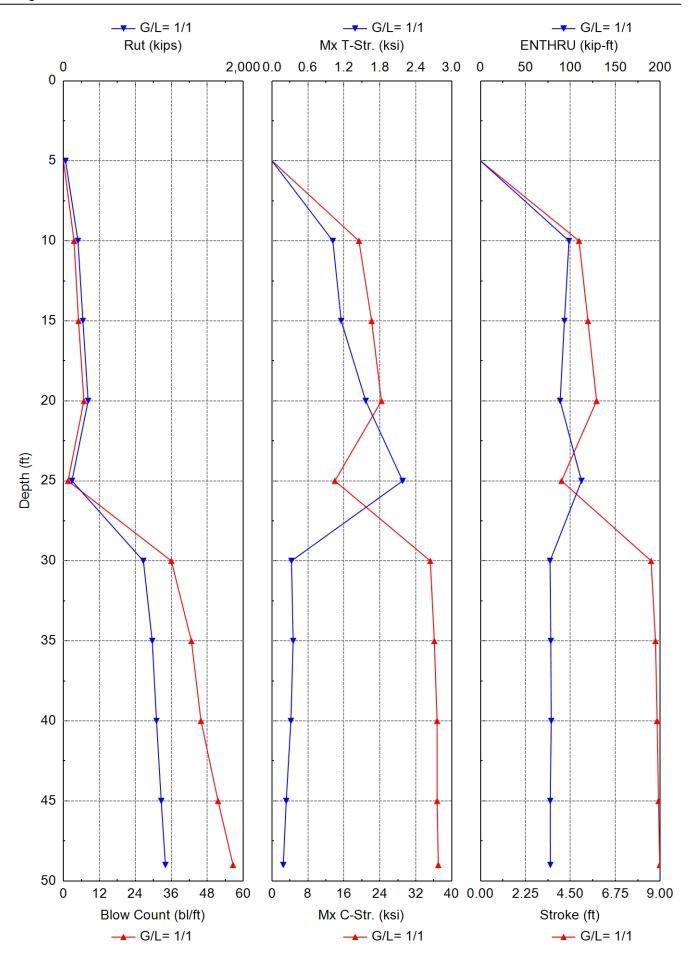


		Gain/	'Loss Fa	ctor at Sh	naft/Toe =	1.000/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	34.1	18.2	15.9	0.0	0.000	0.000	0.00	0.0	D 46
10.0	53.0	37.1	15.9	2.0	16.071	0.412	4.65	59.2	D 46
15.0	61.1	50.7	10.3	2.5	18.561	0.655	4.89	57.0	D 46
20.0	73.8	63.5	10.3	3.1	20.988	0.910	5.18	54.7	D 46
25.0	87.1	76.8	10.3	3.9	22.983	0.928	5.47	52.4	D 46
30.0	101.0	90.7	10.3	4.7	24.218	0.790	5.74	50.0	D 46
35.0	330.4	105.4	225.0	22.3	32.101	0.000	7.78	43.6	D 46
40.0	363.9	121.7	242.2	25.6	32.221	0.075	7.92	43.6	D 46
45.0	398.5	139.1	259.4	29.8	33.013	0.126	8.06	43.6	D 46
50.0	434.4	157.8	276.6	34.5	33.007	0.114	8.15	43.6	D 46
55.0	717.5	177.5	540.0	95.8	36.176	1.544	9.16	48.5	D 46
60.0	776.8	198.5	578.3	136.6	35.785	0.871	9.15	48.1	D 46
65.0	837.5	220.9	616.6	211.9	35.372	0.320	9.08	46.8	D 46
69.0	887.1	239.8	647.3	309.6	34.767	0.102	9.03	45.9	D 46


Driveability Analysis Summary

Total driving time: 85 minutes; Total Number of Blows: 3376 (starting at penetration 5.0 ft)

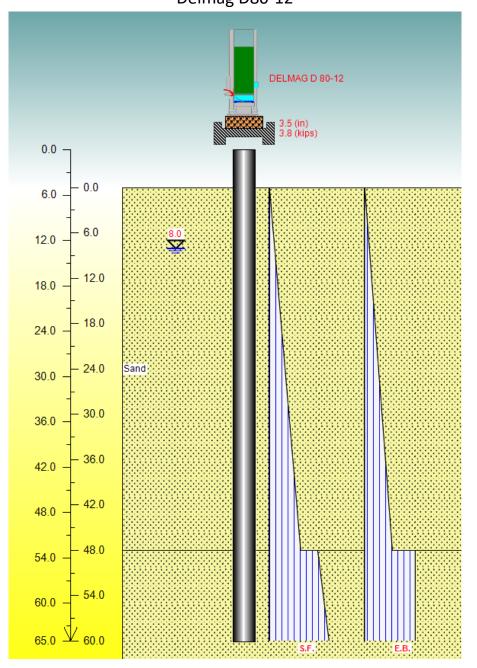
ArDOT 101124 Hwy 135 over Tyronza River Bent 2 28-in-diameter Steel Shell Pile Delmag D80-12



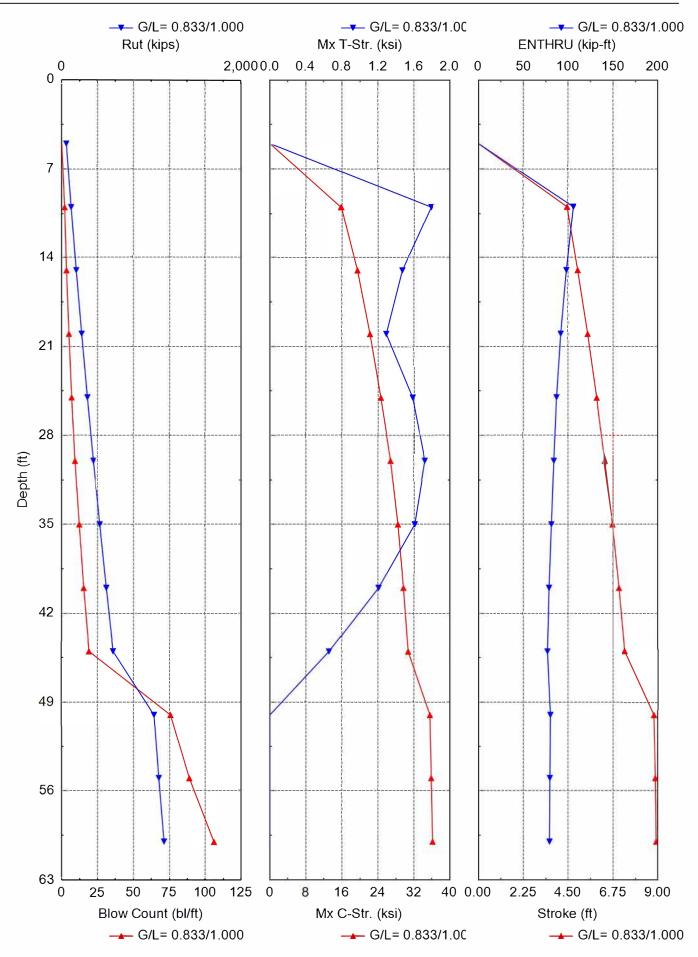
		Gain/	'Loss Fa	ctor at Sł	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	18.5	4.2	14.3	0.3	0.000	0.000	10.57	0.0	D 80-12
10.0	153.5	10.4	143.1	3.3	18.927	1.112	4.87	99.4	D 80-12
15.0	206.1	21.4	184.7	4.7	21.521	0.775	5.31	94.1	D 80-12
20.0	261.4	35.2	226.2	6.3	23.713	1.183	5.73	89.4	D 80-12
25.0	76.4	47.8	28.6	0.0	0.000	0.000	0.00	0.0	D 80-12
30.0	864.5	64.6	799.9	34.2	35.004	0.342	8.49	77.7	D 80-12
35.0	956.4	99.1	857.4	40.1	35.779	0.413	8.70	78.2	D 80-12
40.0	995.7	138.4	857.4	42.9	36.088	0.356	8.77	77.9	D 80-12
45.0	1039.8	182.4	857.4	46.1	36.41 <mark>8</mark>	0.326	8.82	78.1	D 80-12
49.0	1078.4	221.1	857.4	50.0	36.553	0.231	8.89	77.6	D 80-12

Driveability Analysis Summary
Gain/Loss Factor at Shaft/Toe = 0.500/1.000

Total driving time: 26 minutes; Total Number of Blows: 965 (starting at penetration 5.0 ft)

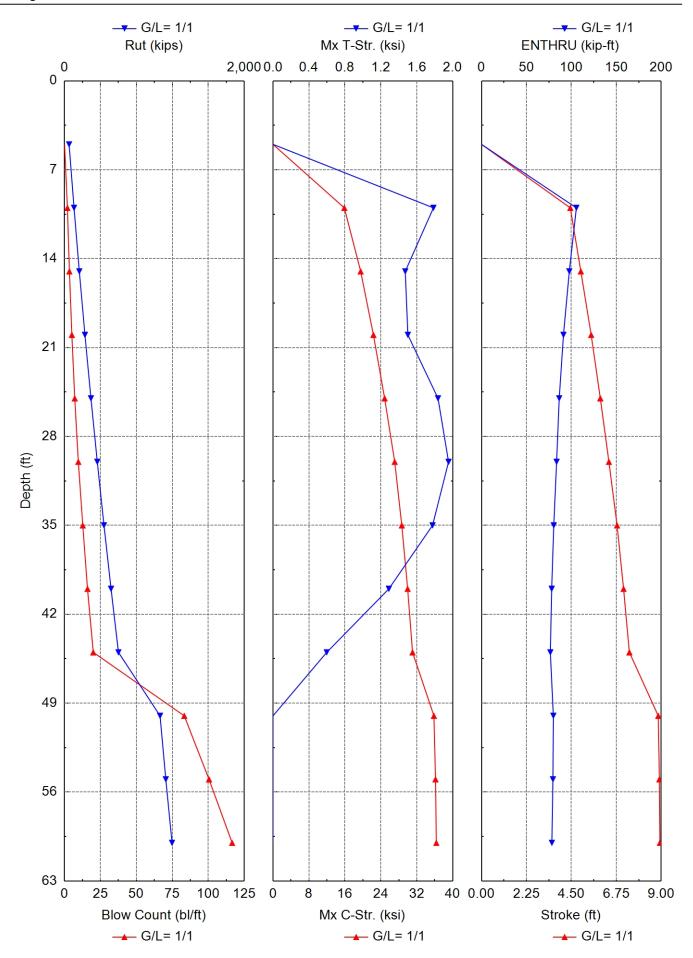

		Gain/	Loss Fa	ctor at Sh	naft/Toe =	1.000/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	
5.0	22.7	8.4	14.3	0.0	0.000	0.000	0.00	0.0	D 80-12
10.0	161.0	17.8	143.1	3.5	19.344	1.015	4.93	98.5	D 80-12
15.0	215.7	31.1	184.7	5.0	22.166	1.155	5.38	93.4	D 80-12
20.0	273.9	47.7	226.2	6.8	24.364	1.564	5.81	88.6	D 80-12
25.0	93.6	65.1	28.6	1.5	13.993	2.181	4.06	112.4	D 80-12
30.0	888.6	88.7	799.9	36.0	35.227	0.325	8.54	77.4	D 80-12
35.0	987.5	130.1	857.4	42.7	36.126	0.353	8.76	78.2	D 80-12
40.0	1034.6	177.2	857.4	45.9	36.742	0.315	8.85	78.7	D 80-12
45.0	1087.4	230.1	857.4	51.6	36.746	0.237	8.91	77.6	D 80-12
49.0	1133.9	276.5	857.4	56.6	37.014	0.188	8.97	77.7	D 80-12

Driveability Analysis Summary
Gain/Loss Factor at Shaft/Toe = 1.000/1.000


Total driving time: 26 minutes; Total Number of Blows: 1052 (starting at penetration 5.0 ft)

4/4

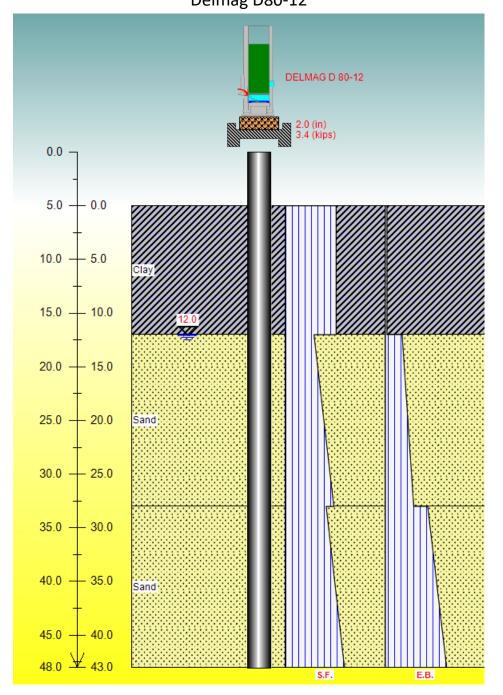
ArDOT 101124 Hwy 135 over Tyronza River Bent 3 28-in-diameter Steel Shell Pile Delmag D80-12



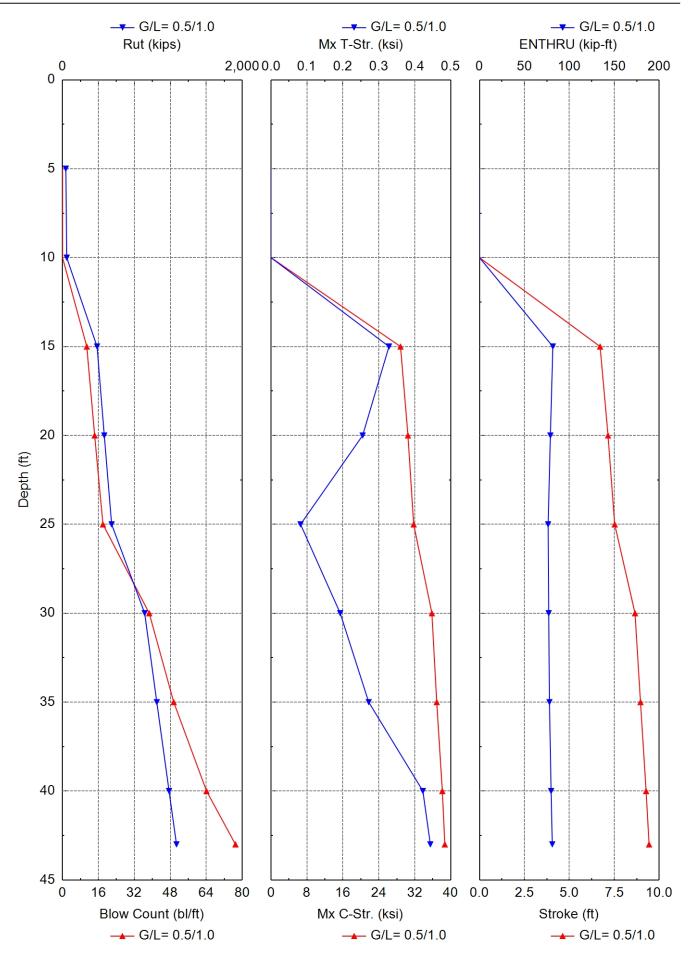
		Gain/	Loss Fa	ctor at Sh	naft/Toe =	0.833/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	50.6	1.6	48.9	0.0	0.000	0.000	0.00	0.0	D 80-12
10.0	104.4	6.6	97.8	2.0	15.792	1.790	4.44	105.6	D 80-12
15.0	1 <mark>6</mark> 1.6	14.8	146.7	3.3	19.370	1.468	4.97	97.8	D 80-12
20.0	222.0	26.4	195.7	5.0	22.153	1.289	5.46	<mark>91.7</mark>	D 80-12
25.0	285.7	41.2	244.6	6.9	24.574	1.583	5.92	87.0	D 80-12
30.0	352.8	59.3	293.5	9.2	26.795	1.721	6.33	84.0	D 80-12
35.0	423.1	80.7	342.4	12.2	28.419	1.606	6.72	<mark>81.3</mark>	D 80-12
40.0	496.7	105.4	391.3	15.3	29.671	1.206	7.05	78.7	D 80-12
45.0	573.6	133.4	440.2	19.1	30.718	0.658	7.34	76.9	D 80-12
50.0	1029.0	171.7	857.4	75.8	35.578	0.000	8.80	80.2	D 80-12
55.0	1082.1	224.8	857.4	88.9	35.868	0.000	8.87	79.6	D 80-12
60.0	1140.0	282.7	857.4	106.0	36.174	0.000	8.91	79.1	D 80-12

Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 0.833/1.000

Total driving time: 35 minutes; Total Number of Blows: 1452 (starting at penetration 5.0 ft)

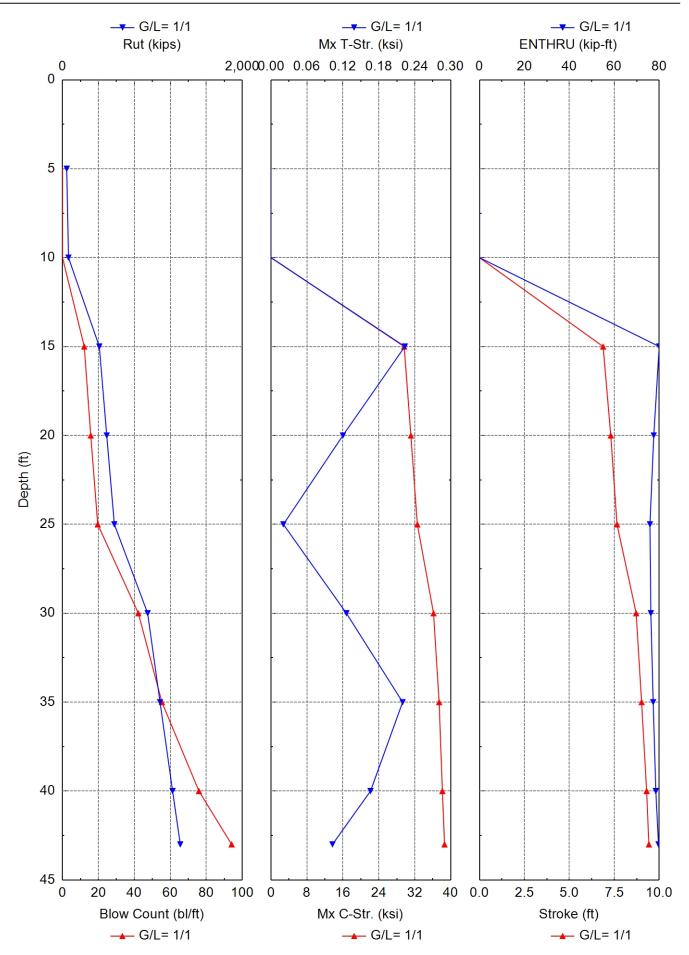


		Gain/	Loss Fa	ctor at Sh	naft/Toe =	1.000/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	50.9	2.0	48.9	0.0	0.000	0.000	0.00	0.0	D 80-12
10.0	105.7	7.9	97.8	2.0	15.873	1.785	4.45	105.6	D 80-12
15.0	164.5	17.8	146.7	3.4	19.511	1.472	4.98	97.7	D 80-12
20.0	227.3	31.6	195.7	5.1	22.348	1.501	5.49	91.2	D 80-12
25.0	294.0	49.4	244.6	7.1	24.841	1.836	5.95	86.5	D 80-12
30.0	364.6	71.1	293.5	9.6	27.090	1.954	6.38	83.6	D 80-12
35.0	439.2	96.8	342.4	12.7	28.668	1.776	6.79	80.4	D 80-12
40.0	517.8	126.5	391.3	16.0	29.967	1.289	7.12	78.1	D 80-12
45.0	600.3	160.1	440.2	20.0	31.060	0.598	7.41	76.6	D 80-12
50.0	1063.4	206.0	857.4	83.3	35.816	0.000	8.85	80.0	D 80-12
55.0	1127.1	269.7	857.4	100.5	36.169	0.000	8.91	79.5	D 80-12
60.0	1196.6	339.2	857.4	116.6	36.349	0.000	8.93	78.3	D 80-12


Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 1.000/1.000

Total driving time: 39 minutes; Total Number of Blows: 1589 (starting at penetration 5.0 ft)

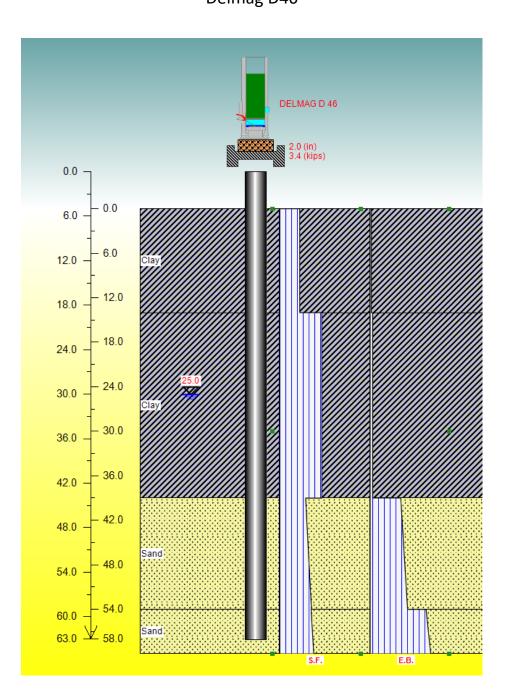
ArDOT 101124 Hwy 135 over Tyronza River Bent 4 28-in-diameter Steel Shell Pile Delmag D80-12



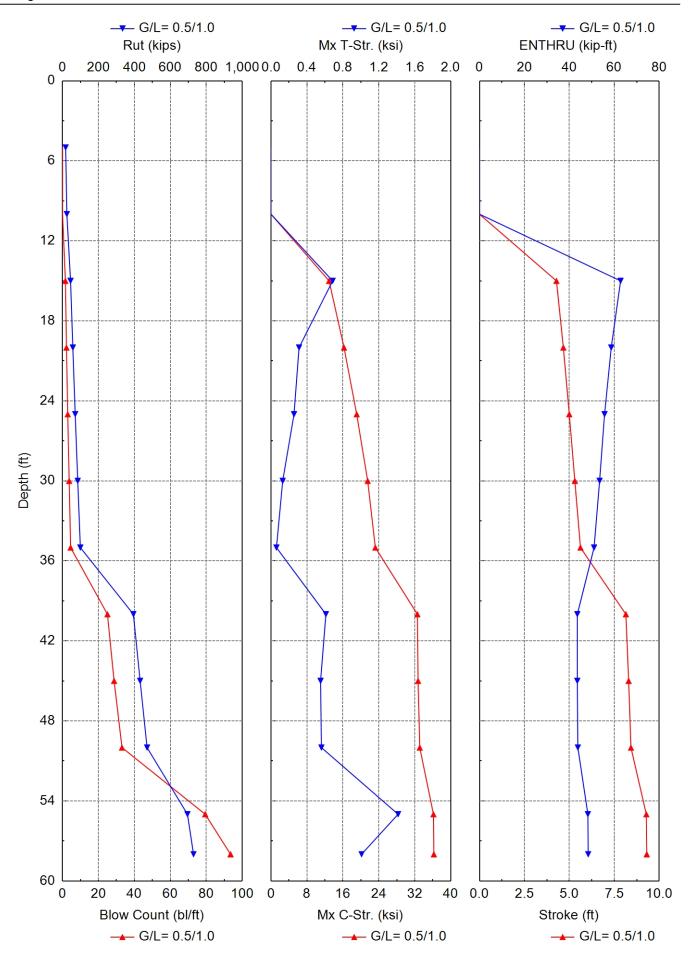
		Gain	/Loss Fa	ctor at Sł	naft/Toe =	0.500/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	11 - -
5.0	36.7	9.7	26.9	0.0	0.000	0.000	0.00	0.0	D 80-12
10.0	46.7	19.8	26.9	0.0	0.000	0.000	0.00	0.0	D 80-12
15.0	384.5	29.8	354.7	10.8	28.827	0.328	6.71	81.6	D 80-12
20.0	464.7	41.3	423.3	14.3	30.477	0.255	7.15	78.9	D 80-12
25.0	546.8	54.9	491.9	18.0	31.757	0.082	7.52	76.4	D 80-12
30.0	914.5	69.5	845.0	38.6	35.812	0.193	8.65	77.0	D 80-12
35.0	1049.1	84.6	964.5	49.5	36.890	0.272	8.96	77.9	D 80-12
40.0	1185.8	101.7	1084.1	64.1	38.132	0.423	9.27	79.7	D 80-12
43.0	1268.7	112.9	1155.8	77.0	38.691	0.443	9.44	81.0	D 80-12

Driveability Analysis Summary
Gain/Loss Factor at Shaft/Toe = 0.500/1.000

Total driving time: 26 minutes; Total Number of Blows: 1027 (starting at penetration 5.0 ft)

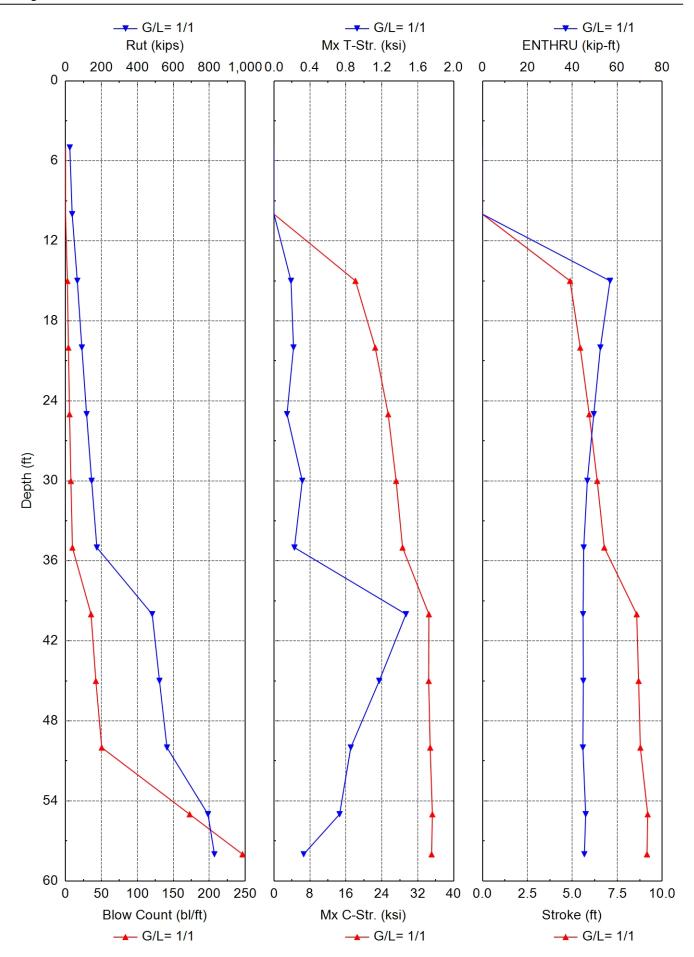


Gain/Loss Factor at Shaft/Toe = 1.000/1.000									
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	46.4	19.5	26.9	0.0	0.000	0.000	0.00	0.0	D 80-12
10.0	66.5	39.5	26.9	0.0	0.000	0.000	0.00	0.0	D 80-12
15.0	409.6	54.9	354.7	12.1	29.637	0.223	6.88	80.0	D 80-12
20.0	492.0	68.7	423.3	15.7	31.136	0.120	7.30	77.6	D 80-12
25.0	576.9	85.0	491.9	19.6	32.575	0.021	7.65	75.9	D 80-12
30.0	947.5	102.5	845.0	42.2	36.174	0.126	8.72	76.3	D 80-12
35.0	1085.2	120.6	964.5	55.3	37.422	0.220	9.02	77.3	D 80-12
40.0	1225.2	141.1	1084.1	75.9	38.146	0.166	9.30	78.5	D 80-12
43.0	1310.4	154.6	1155.8	94.1	38.629	0.103	9.43	79.7	D 80-12


Driveability Analysis Summary
Gain/Loss Factor at Shaft/Toe = 1.000/1.000

Total driving time: 30 minutes; Total Number of Blows: 1169 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Tyronza River Bent 5 18-in-diameter Steel Shell Pile Delmag D46



		Gain/	Loss Fa	ctor at Sh	naft/Toe =	0.500/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	17.4	6.3	11.1	0.0	0.000	0.000	0.00	0.0	D 46
10.0	24.0	12.9	11.1	0.0	0.000	0.000	0.00	0.0	D 46
15.0	44.7	20.8	23.9	1.6	12.924	0.686	4.28	62.8	D 46
20.0	57.3	33.5	23.9	2.2	16.252	0.312	4.67	58.6	D 46
25.0	70.6	46.8	23.9	2.9	19.071	0.256	4.99	55.7	D 46
30.0	84.6	60.7	23.9	3.7	21.519	0.130	5.31	53.5	D 46
35.0	99.2	75.3	23.9	4.5	23.222	0.060	5.62	51.0	D 46
40.0	394.3	90.3	304.1	25.0	32.579	0. <mark>6</mark> 11	8.14	43.5	D 46
45.0	431.9	105.2	326.7	28.7	32.730	0.552	8.30	43.5	D 46
50.0	470.5	121.2	349.3	33.1	33.112	0.561	8.43	43.8	D 46
55.0	695.3	138.2	557.1	79.4	36.158	1.414	9.28	48.2	D 46
58.0	728.9	148.8	580.1	93.5	36.246	1.008	9.31	48.4	D 46

Driveability Analysis Summary
ain/Loss Factor at Shaft/Toe = 0.500/1.000

Total driving time: 24 minutes; Total Number of Blows: 965 (starting at penetration 5.0 ft)

		Gain/	Loss Fa	ctor at Sh	naft/Toe =	1.000/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	23.8	12.6	11.1	0.0	0.000	0.000	0.00	0.0	D 46
10.0	37.0	25.8	11.1	0.0	0.000	0.000	0.00	0.0	D 46
15.0	65.5	41.7	23.9	2.6	18.129	0.189	4.87	56.8	D 46
20.0	90.8	67.0	23.9	4.0	22.522	0.217	5.44	52.5	D 46
25.0	117.4	93.6	23.9	5.6	25.418	0.145	5.94	49.5	D 46
30.0	145.3	121.4	23.9	7.5	27.179	0.314	6.38	46.7	D 46
35.0	174.5	150.6	23.9	9.6	28.616	0.227	6.78	45.0	D 46
40.0	482.4	178.3	304.1	35.5	34.476	1.468	8.58	44.8	D 46
45.0	522.9	196.2	326.7	42.2	34.429	1.171	8.69	44.9	D 46
50.0	564.7	215.3	349.3	50.4	34.762	0.854	8.78	44.7	D 46
55.0	792.9	235.7	557.1	172.7	35.246	0.730	9.19	45.9	D 46
58.0	828.7	248.5	580.1	246.3	35.083	0.330	9.15	45.3	D 46

Driveability Analysis Summary ain/Loss Factor at Shaft/Toe = 1.000/1.000

Total driving time: 47 minutes; Total Number of Blows: 1847 (starting at penetration 5.0 ft)

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 13, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER DITCH NO. 1 (SITE 3) ARDOT 101124 HWY. 135 STR. & APPRS. (S) POINSETT COUNTY, ARKANSAS

INTRODUCTION

Submitted herewith are the final results of the geotechnical investigation performed for the Hwy. 135 over Ditch No. 1 replacement bridge in Poinsett County, Arkansas. This bridge is Site 3 of the ARDOT 110124 Hwy. 135 Strs & Apprs (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by the Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on May 9, 2023. This revised report supersedes the previous submittal of September 9, 2023.

We understand the replacement bridge will be a prestressed concrete girder unit with four (4) bents, three (3) spans, and a total length of approximately 150 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed east of the existing bridge. Site grading will include about 10 ft of fill. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Site 3 replacement bridge alignment were explored by drilling four (4) sample borings to 110- to 125-ft depth (Borings C1 to C4). The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset, ft		ordinates grees)	Approx Surf El, ft	Completion Depth, ft
		11	Latitude	Longitude	π	
C1	122+15	CL	35.55741	-90.32252	224.4	110
C2	122+50	35 Rt	35.55754	-90.32242	224.9	110
C3	123+40	25 Lt	35.55778	-90.32259	217.9	110
C4	123+70	15 Lt	35.55786	-90.32255	223.9	125

Table 1: Summary of Exploration Program

The boring logs, presenting descriptions of the soil and rock strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 14. The centerline station

and offset of the boring locations and approximate ground surface elevation, as surveyed, are also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 15.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profile should be anticipated.

The borings were drilled with a truck-mounted SIMCO 2800 rotary-drilling rig and a trackmounted CME-55 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the appropriate energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 45 natural water content determinations were performed to develop data on in-situ soil water content for each boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 10 liquid and plastic (Atterberg) limit determinations and 31 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The location of 101124 Site 3 is on Hwy. 135 where the Ditch No. 1 channel crosses the highway approximately 4300 ft south of CR 86 in Poinsett County. The existing bridge is a twolane structure with a concrete deck, steel girders, and a concrete pile foundation system. The channel at this location is narrow with well-defined banks. The banks are steep and lined with grass, variable sparse to thick underbrush, and occasional trees. The project locale is primarily agricultural land consisting of woods or large, flat fields and occasional residential houses. The existing two-lane roadway is on embankment. The existing pavements are in very poor condition. Surface drainage along the roadway is poor to fair and standing water is common after rain events. <u>Site Geology</u>

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent Alluvium and variable Tertiary sediments. The <u>Geologic</u> <u>Map of Arkansas¹</u> indicates the alignment extends through exposures of Quaternary-aged Alluvium. The Alluvium is comprised of recent stream-deposited alluvial sediments which include gravel, sand, silt, clay and mixtures of all components. The thickness of the Alluvial deposits is variable. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

Seismic Conditions

In light of the results of the borings and the surface geology, a Seismic Site Class D (stiff soil profile) is considered applicable to the bridge location at Site 3 with respect to the criteria of the <u>AASHTO LRFD Bridge Design Specifications Seventh Edition 2014</u>². Given the location and AASHTO code-based values, preliminarily recommended seismic parameters are summarized below.

- Seismic Site Class D
- 1.0-sec period spectral acceleration coefficient $(S_1) = 0.513$
- Site amplification factor at 1.0 second $(F_v) = 1.5$
- 1.0-sec period spectral acceleration coefficient $(S_{D1}) = 0.770$
- Acceleration for a short (0.2 sec) period (S_s) = 1.815
- Site amplification factor for short period $(F_a) = 1.0$
- Design acceleration for a short (0.2 sec) period $(S_s) = 1.815$
- Peak ground acceleration (PGA) = 1.014
- Site amplification factor at PGA (F_{PGA}) = 1.0
- $A_s = 1.014$

Utilizing these parameters, AASHTO LRFD Seismic Bridge Design Specifications indicate that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Site 3 location of the Hwy. 135 bridge over Ditch 1.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 1.014 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Appendix D as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the analyses results are shown on the generalized subsurface profile also provided in Appendix D. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix D.

² <u>AASHTO LRFD Bridge Design Specifications</u>, 7th Edition; AASHTO; 2014.

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

Subsurface Conditions

Based on the results of the borings, the surface and near-surface soils to 18- to 33-ft are comprised of brown, gray, tan, and reddish brown very loose to medium dense silty fine sand (SM and SP-SM) and clayey fine sand (SC and SC-SM) with interbedded very soft to stiff clay (CH) and sandy clay (CL) layers. The silty, clayey sand and clay/sandy clay exhibit low to moderate relative density or shear strength and moderate to high compressibility. The granular soils typically classify as A-3, A-4, and A-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to fair subgrade support for pavement structures.

The silty and clayey surface soil units are underlain below 18 to 33 ft to in excess of the completion depth of the borings by medium dense to very dense grayish tan and brownish gray fine to medium sand strata (SP and SP-SM). Some coarse sand, sandy clay seams, organic inclusions, and fine gravel are present at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth.

Groundwater Conditions

Groundwater was not encountered within the range of dry-auger drilling in the borings in April and May 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the ditch and other surface water features.

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 3 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors, such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

Piling

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 16-in.-diameter steel shell piles are planned for bridge ends and 24-in.-diameter steel shell piles are planned for the interior bents. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix E. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength is mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (φ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (φ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects. The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical.

We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix F.

End Slope Stability

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 4) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 23 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020⁴ and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.507. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 214 to El 205 was assumed.

Stability analyses results are summarized and presented graphically in Appendix G. The results of the stability analyses indicate that plan configurations of the embankment end and side slopes are acceptable with respect to stability of all loading conditions evaluated. This includes stability in seismic loading. A suitable factor of safety against lateral flow was calculated for all cases.

Subgrade Support

It is understood that "standard" pavement sections for the approach roads will be developed by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-4 and A-6. These classifications correlate with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

⁴ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 3 – DITCH NO. 1

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, localized undercuts or improvement depths on the order of 2 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. in cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, localized undercutting could be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 6 to 13 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix H. Where embankment heights are less than about 4 ft, undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow. An example special provision for cohesive embankment fill is provided in Appendix I.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Density and water content of all earthwork should be maintained until the retaining wall, embankments, and bridge work is completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation. Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

Piling

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered. Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁵. In the driveability analyses, the steel shell piles were assumed to be driven from the plan cap bottom elevation or existing grade. Graphical and tabulated results of these analyses are provided in Appendix J.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 66 ft-kips per blow for driving the steel shell piles at the end bents. For the intermediate bents, we recommend a hammer system capable of delivering at least 122 ft-kips per blow for driving the steel shell piles. A specific review and analysis of the pile-hammer system

⁵ <u>GRLWEAP 2014;</u> Pile Dynamics, Inc.

proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

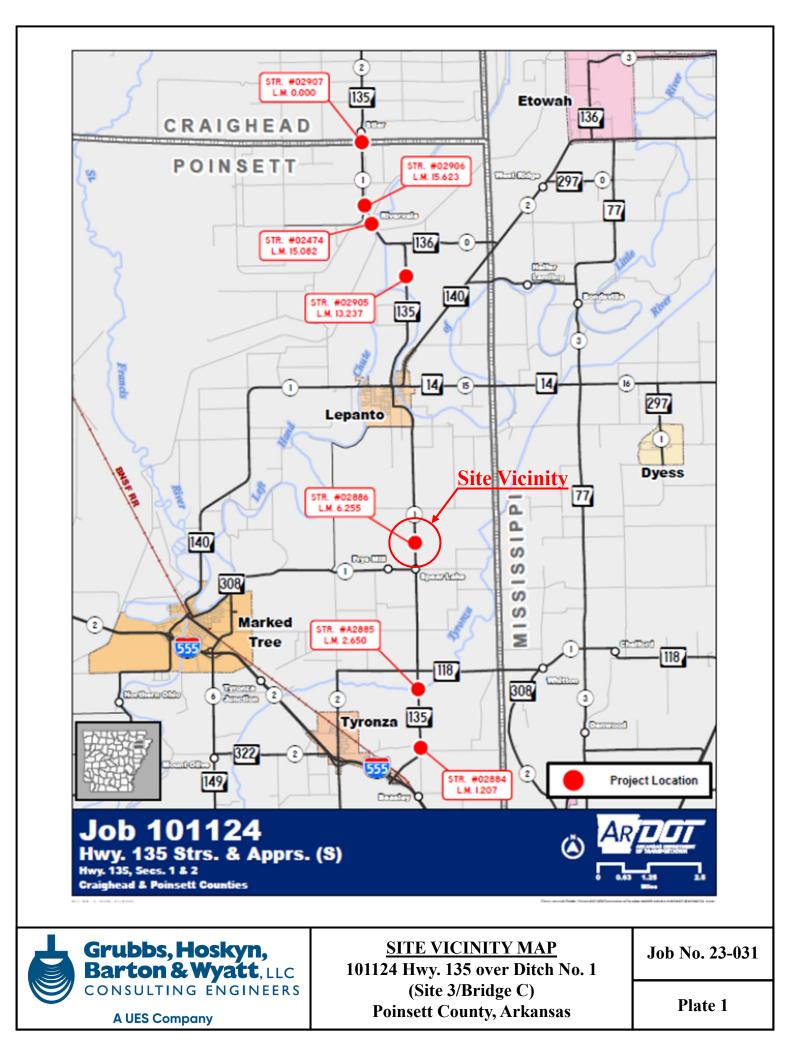
The following attachments are included and complete this submittal.

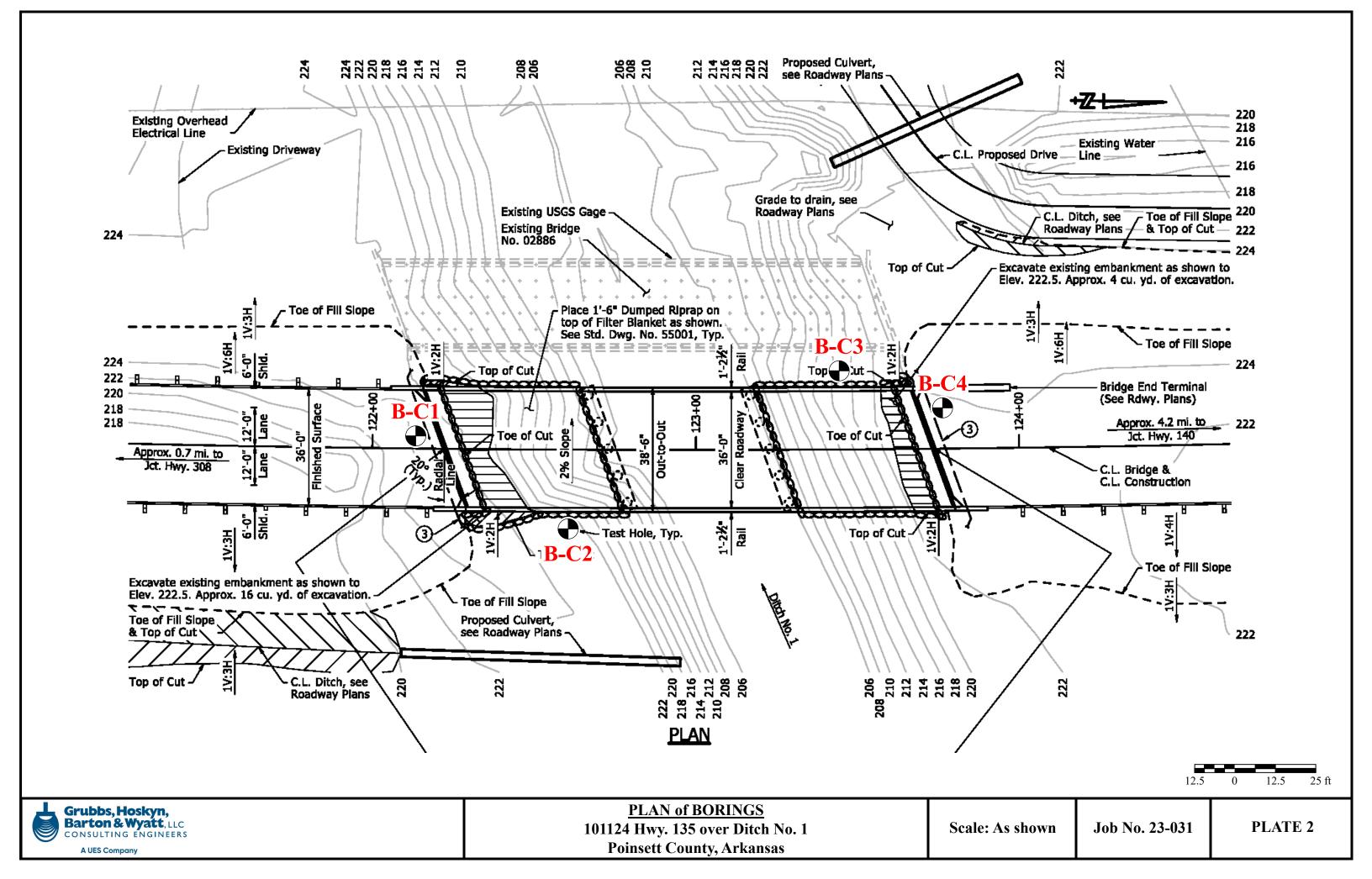
Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 14	Boring Logs
Plate 15	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Liquefaction Analysis Results
Appendix E	Nominal Pile Capacity Curves
Appendix F	Lateral Load Parameters
Appendix G	Results of Stability Analyses
Appendix H	Example SP – Woven Geotextile
Appendix I	Example SP - Cohesive Embankment Fill Special
	Provision
Appendix J	Driveability Analysis Results

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,


GRUBBS, HOSKYN, BARTON &WYATT, LLC


Vellets M. Sett

Velleta M. Scott, P.E. Sr. Project Engineer ARMANSAS REGISTERED PROFESSIONAL Mark E. Wyatt, P.E. ENGINEER President No. 7791

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

TYPE:	Auger to 15 ft /Wash	LC	CATIO	DN:	Appro	x Sta	122+2	15. CL			
	DESCRIPTION OF MATERIAL	BLOWS PER FT	UNIT DRY WT LB/CU FT	0 PL/			ESION	, TON	/SQ F1	2 1.4 LIQUI	D .
•/• /• /•	SURF. EL: 224.4	ВГ	⊃	1	+ - · 0 2	20	30	• 40 :	50 6	- 0 70)
	Loose brown clayey fine sand (SC)	9				•					
		7			+		₽				3
5		7									
	Stiff gray, grayish brown and reddish tan clay, slightly sandy (CH) w/ferrous stains	26				•					
10	√(CH) w/ferrous stains Medium dense gray, tan and reddish brown silty fine sand (SM)	23				G _s =	2.56 -	NON-	PLAST	ïC-	3
11111	Medium dense gray and tan clayey fine sand (SC)	23			•						
20 -	Stiff brownish gray and reddish tan fine sandy clay (CL) w/ferrous stains and organic inclusions	24			+•			#			5
25 -	Medium dense brown and tan silty fine sand (SM)	37									
30 -	- more silt below 28 ft	21				•	-NOF	J-PLAS 5 = 2.5	STIC-		3
35 -	Dense grayish tan fine to medium sand, slightly silty (SP-SM)	64									
40	- brownish gray with occasional organic inclusions below 38 ft	51									

_		23-03	1														
		Gru Bar _{Const}		bs, Hoskyn, a Wyatt, Inc. ^{g Engineers} LOGOFB 101124 Hwy. Poinsett C	135 o	ver D	itch	No.									
		TYP	Ξ:	Auger to 15 ft /Wash	LC	CATI	ON:	Арр	rox S	Sta 12	22+1	5, CL	_				
					FT	Γ			СО	HES	ION		I/SQ	FT			
	L L	ğ	LES LES		ËR	× F F F		0.2	0.4	0.6	0	.8	1.0	1.2	1.4	1	% 00
Ĭ	DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	BLOWS PER	UNIT DRY WT LB/CU FT	Р	LASTI LIMIT	С		WA CON	TER TENT		l		D T	- No. 200
.				(continued)	BLo	5		+ 10	 20	30) — — - 10	 50	 60	+ 70		1
	50 -		X		50												-
- 6	<u>- 0</u>		X	Dense grayish tan fine to medium sand (SP) w/trace coarse fine sand and gravel - with less coarse sand below 63 ft	48												-
- 6	65 -		X		72				•								4
- 7	70 -		X	Dense to very dense brownish gray fine sand (SP) w/organic inclusions	84												-
- 7	75 -		X	- with fewer organic inclusions below 73 ft	99												-
	30 -		X	Dense grayish tan fine to coarse sand, slightly silty (SP-SM) w/occasional clay pockets	55												-
GBNEW 23-031 BRIDGE C.GPJ 7-26-23	35 -		X	- with occasional fine sandy clay pockets and seams below 83 ft	50							•					5
23-031			X	Dense to very dense brownish gray fine sand, slightly silty (SP-SM)	87												
NEW 3			PLE	TION DEPTH: 110.0 ft D	EPTH '							I				00/-	
LGB		DATE	: 4	-26-23 IN	BORI	NG: D	ry to	15 ft						DATE		20/20	

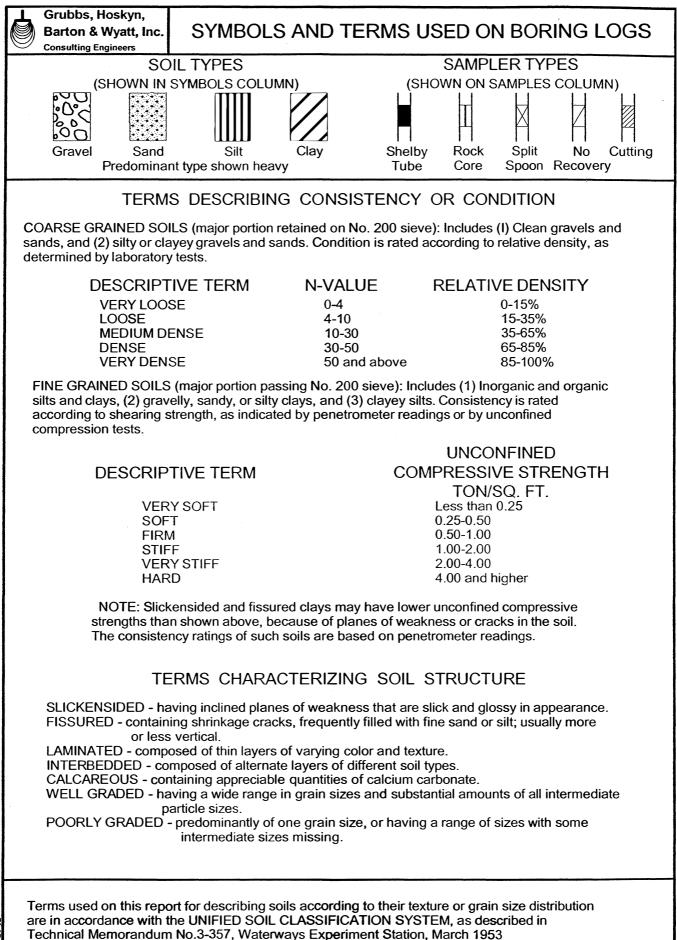
TYP	E: Auger to 15 ft /Wash	LC	OCATIO	ON:	Approx	Sta 122	2+15, CL	_		
<u>ь</u>		FT				OHESIC			Т	
DEPTH, F	DESCRIPTION OF MATERIAL	BLOWS PER	UNIT DRY WT LB/CU FT	PL/	.2 0.4 ASTIC	1	0.8 VATER ONTENT		LIQUID	
	(continued)	BL		1	0 20	30	40	50 6		
95 -	w/occasional organic inclusions - grayish tan below 93 ft	84			•					
100	Dense grayish tan fine to medium x sand, slightly silty (SP-SM)	58			•					
105		61								
110 ***** 115-	NOTE: Drilled with CME-55 ECF=									
120-										
125-										
130-										

	23-031				
	Grubb Bartor Consulting	bs, Hoskyn, n & Wyatt, Inc. g Engineers L O G O F B 101124 Hwy. Poinsett C	135 o	ver D	Ditch No. 1
	TYPE:	Auger to 30 ft /Wash	LC	OCATIO	ON: Approx Sta 122+50, 35 ft Rt
DEPTH , FT	SYMBOL SAMPLES	DESCRIPTION OF MATERIAL	BLOWS PER FT	UNIT DRY WT LB/CU FT	COHESION, TON/SQ FT % 0.2 0.4 0.6 0.8 1.0 1.2 1.4 08 PLASTIC WATER LIQUID 2 2 2 1 1 1 1 PLASTIC WATER LIQUID 1 1 1 1 1 1 PLASTIC WATER LIQUID 1 1 1 1 1 1 IMIT CONTENT LIMIT IMIT - - - - -
		Very soft to soft brown fine sandy			
		claý (CL) - firm with more sand below 2 ft	6		
	Δ		10		
- 5 -	19999999	Very loose to loose tan and brown silty fine sand (SM) - loose from 6 to 8 ft - with fine sandy clay seams and layers below 6 ft - medium dense below 8 ft	6 7		++ G _g = 2.76 44
- 10 -			16		
- 15 -		Medium dense gray and reddish brown clayey fine sand (SC) w/ferrous stains	16		• 28
- 20 -			26		
- 25 -] - -	Medium dense brown fine sand, slightly silty (SP-SM)	28		• 10
- 30 -		Medium dense grayish tan fine sand, slightly silty (SP-SM)	40		
- 35 -			41		8
- 40 -		- medium dense to dense with occasional organic inclusions at 38 to 43 ft	43		
		- medium dense from 43 to 48 ft	41		
			EPTH		
	DATE: 4	-19-23 IN	ROKI	NG: D	Dry to 30 ft DATE: 4/10/2023

L TO TO <t< th=""><th></th><th>TYPE:</th><th>Auger to 30 ft /Wash</th><th>LC</th><th>OCATIO</th><th>DN:</th><th>Аррг</th><th>ox St</th><th>a 122+</th><th>50, 3</th><th>5 ft R</th><th>t</th><th></th><th></th></t<>		TYPE:	Auger to 30 ft /Wash	LC	OCATIO	DN:	Аррг	ox St	a 122+	50, 3	5 ft R	t		
L O2 0.4 0.5 0.6 1.0 1.2 1.4 DESCRIPTION OF MATERIAL H														
10 20 30 40 50 60 70 50 - - - 60 - <t< th=""><th>H, FT</th><th>BOL</th><th></th><th></th><th>L FΤ W</th><th></th><th>0.2</th><th>0.4</th><th>0.6</th><th>0.8</th><th>1.0</th><th>1.2</th><th>1.4</th><th></th></t<>	H, FT	BOL			L FΤ W		0.2	0.4	0.6	0.8	1.0	1.2	1.4	
- dense from 48 to 53 ft 60 - medium dense below 53 ft 60 - medium dense gravish tan fine to medium sand, slightly silty (SP-SM) and trace fine gravel 26 - dense below 63 ft 61 - dense below 63 ft 62 - dense below 63 ft 64 - dense below 63 ft 62 - dense below 63 ft 64 - dense below 63 64 - dense below 63 64 - dense below 64 62	DEPT	SYM		SMOJ	UNIT DI LB/CI	PI	LIMIT	C	W CO	ATER NTEN	Т		LIMIT	
50 60 60 60 60 55 7 7 7 7 60 7 7 7 7 60 7 60 7 7 60 7 60 7 7 60 7 60 7 7 60 7 60 7 7 60 7 60 7 7 60 7 61 7 7 61 61 61 61 61 62 7 64 7 7 63 7 64 62 64 62 64 62 64 62 64 64 63 7			(conunued)		+		10	20	30	40	50	60	70	+
55 31 1 1 1 1 60 Medium dense gravish tan fine to medium sand. slightly silty (SP-SM) w/occasional organic inclusions and trace fine gravel 26 - dense below 63 ft 61 65 0 70 Dense brownish grav fine sand. slightly silty (SP-SM) w/occasional clay pockets and organic inclusions 67 75 64 62 80 Medium dense to dense gravish tan fine to medium sand (SP) w/trace fine to coarse gravel 43	50 -	X	- dense from 48 to 53 ft	60										
 - dense below 63 ft - dense below 63 ft - dense below 63 ft - dense brownish gray fine sand, slightly silty (SP-SM) w/occasional clay pockets and organic inclusions 	55 -	X	- medium dense below 53 ft	31										
65 <td>60 -</td><td>X</td><td>Medium dense grayish tan fine to medium sand, slightly silty (SP-SM) w/occasional organic inclusions and trace fine gravel</td><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	60 -	X	Medium dense grayish tan fine to medium sand, slightly silty (SP-SM) w/occasional organic inclusions and trace fine gravel	26										
75 64 75 64 80 62 80 62 80 62 80 62 80 62 62 62 63 62 64 62 65 62 66 62 61 62 62 62 63 62 64 62 65 62 66 62 61 62 62 62 63 62 64 62 65 62 66 62 61 62 62 62 63 64 64 65 65 62 66 62 61 62 62 62 63 64 64 65 65 64 66 64 64 64	65 -	X		61			•							
75 62 80 62 81 62 82 62 83 62 85 62 85 62 85 62 85 62 85 62 85 62 85 62 85 62 85 62 85 62 85	70 -	X	Dense brownish gray fine sand, slightly silty (SP-SM) w/occasional clay pockets and organic inclusions	67										
80 Image: Second seco	75 -			64										
	80 -			62										
	85 -	X	Medium dense to dense gravish tan fine to medium sand (SP) w/trace fine to coarse gravel	43			•							

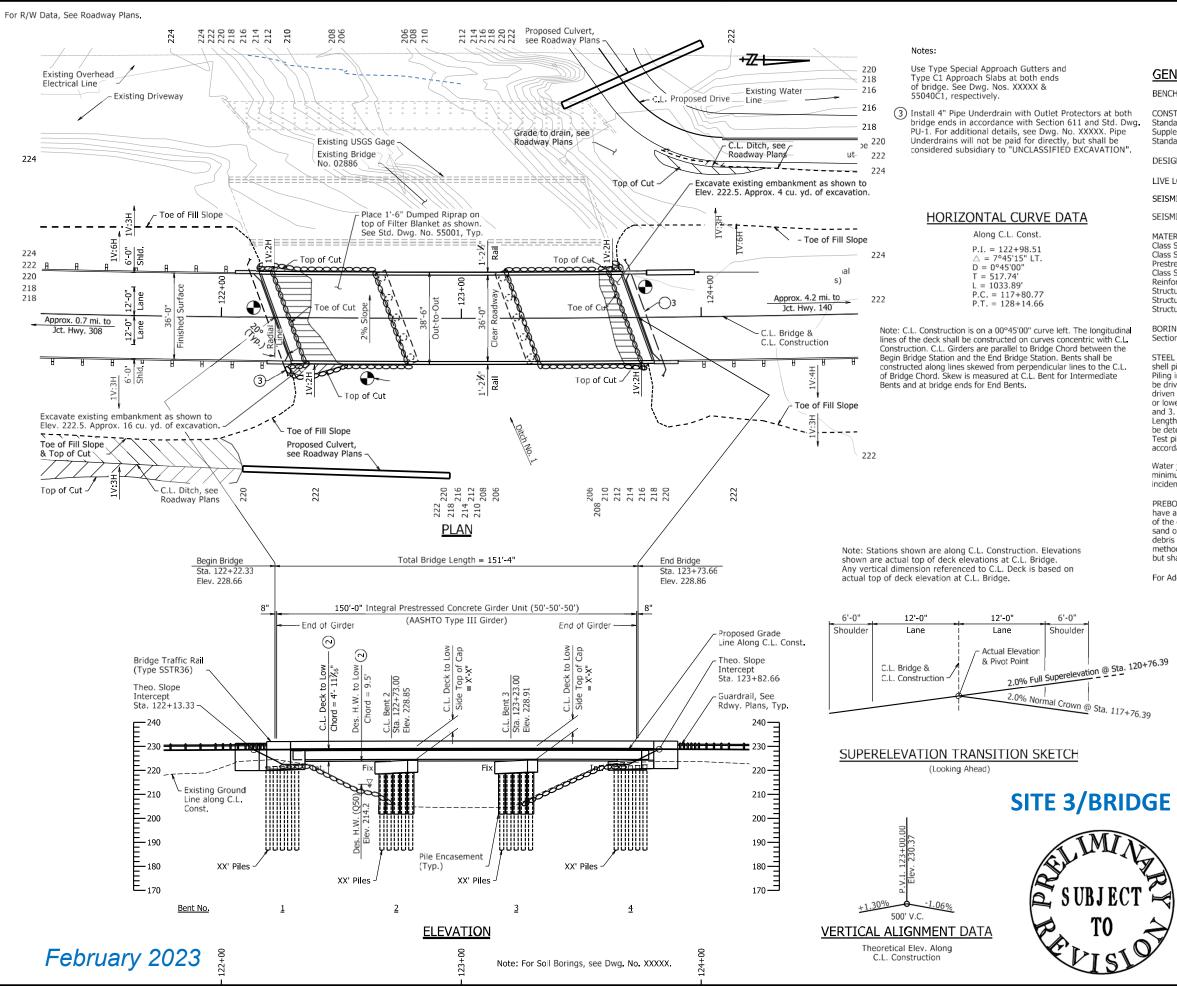
Lag Image: Continued bit is a second continued bit	TYPE: A	uger to 30 ft /Wash	LC	CATIC	DN:	Appro	ox Sta	a 122+	50, 3	5 ft R	t		
100 (contracto) 10 20 30 40 50 60 70 10 contracto)			2 FT	×_			COH	IESIO	N, TO	N/SQ	FT		
10 20 30 40 50 60 70 inclusions 95 48 48 48 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TH, F MBOL	DESCRIPTION OF MATERIAL	S PEF	DRY -		1	1			I			
10 20 30 40 50 60 70 inclusions 95 48 48 48 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SYI SAN	/	LOW:	UNIT LB/	PL L	ASTIC .IMIT		W CO	ATER	Г	LI(L		
95 95 100 105 105 105 105 105 105 105 105 10			B			10	20	30	40	50	60	•	+
		Aedium dense brownish gray fine o coarse sand (SP) w/trace fine ravel and occasional organic inclusions Aedium dense grayish brown fine o medium sand (SP) w/numerous	33										

\bigcirc			Poinsett C	·											
	TYP	E:	Auger to 10 ft /Wash			ON:	Арр								—
F	.	S		2 FT	UNIT DRY WT LB/CU FT			CC		ION,		I/SQ F	•		à
ОЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	BLOWS PER	ЧЧ		0.2	0.4	0.6	0.	.8	1.0	1.2	1.4	
EPT	SYN	MM	DESCRIPTION OF MATERIAL	MS		PĻ	_ASTI _IMIT	С		WA ⁻	TER TENT		LIQ	UID	
			SURF. EL: 217.9	BLC	5		+)			┣	
			Loose brown clayey fine sand (SC)	7			10	20	30	4	0	50	60	70	
			(fill) Very loose to loose tan and grav												1
		A	Very loose to loose tan and gray clayey fine sand, silty (SC-SM) w/occasional decayed organics	6											
5	-	X	Loose tan, reddish tan and brownish gray fine sand, slightly	7			•								_
			SIIIV (SP-SIVI)	/ 10											5
		\wedge	Firm gray, brown and reddish tan fine sandy clay (CL) w/occasional ferrous nodules and stains	10			-				Т				
10		X	ferrous nodules and stains	11				•							
10															
			- stiff below 13 ft												
15		X		23											-
			Medium dense brown fine sand					_							-
20		X	Medium dense brown fine sand, slightly silty (SP-SM)	23											
20															
				37					-			STIC-			
25				57			-	╀		1011					
			- dense below 28 ft												
30		X		37											_
	-														
			Madium dance grouish ten fine te												
2E		X	Medium dense grayish tan fine to medium sand, slightly silty (SP-SM)	48											
35]
			- dense at 38 to 43 ft												
40		Å		41				-							
			- medium dense below 43 ft												
		X		57											


	Bar	bb toi	s, Hoskyn, & Wyatt, Inc. ^{Engineers} LOGOFB 101124 Hwy. 1 Poinsett Co	35 o	ver D	itch N	lo. 1							
	TYPE	≣:	Auger to 10 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	123+4	40, 25	ft Lt			
H, FT	BOL	PLES		PER FT	J FT	0.			ESION 0.6	0—	1.0	FT 1.2	1.4	200 %
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL (continued)	BLOWS PER	UNIT DRY WT LB/CU FT	LI	ASTIC IMIT +			ATER NTENT 	 50		QUID IMIT + 70	- No. 2
- 50 -		X	- with organic inclusions below 48 ft	41										
- 55 -		X	Medium dense grayish tan fine to coarse sand, slightly silty (SP-SM) w/a little fine to coarse gravel	34			•							7
- 60 -		X	Medium dense to dense grayish tan fine to medium sand, slightly silty (SP-SM)	43										_
- 65 -		X	- dense with organic inclusions below 63 ft	65										_ 5
- 70 -		X		57										_
- 75 -			Dense to very dense gray silty fine sand (SM) w/occasional organic inclusions	105				•						18
- 80 -		X	Dense gray fine sand, slightly silty (SP-SM) w/occasional organic inclusions	45										_
- 85 -		X		57										_
	COMI	اللا PLE	TION DEPTH: 110.0 ft DE	<u>71</u> PTH	 TO W <i>A</i>	ATER		1						
	DATE	: 5	-4-23 IN	BORI	NG: D	ry to 1	0 ft				[DATE	: 5/2/20)23

	23-03	1												
	Gru Bar _{Consu}	bb toi	s, Hoskyn, h & Wyatt, Inc. Bengineers J Engineers Poinset	y. 135 o	ver D	itch N	No. 1	23						
	TYPE	<u>:</u>	Auger to 10 ft /Wash	LC	OCATI	ON:	Appro	ox Sta	123+4	10, 25	ft Lt			
				ET										
H, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	PER	RY V U FT	0	.2 0).4 ().6 ().8 	1.0	1.2 1	.4	200 %
DEPTH,	SYN	SAM	DESCRIPTION OF MATERIAL	BLOWS PER	UNIT DRY WT LB/CU FT	PL/ L	ASTIC						JID IT	- No. 200 %
			(continued)	BL		1	+	 20 :	30 ·	40 ·	50		'0	
- 95 -		X	Dense to very dense gravish tan fine to medium sand, slightly silty (SP-SM) w/occasional organic inclusions and trace fine gravel	74			•							7
-100-		X		92										-
-105														-
-110-		×	NOTE: Drilled with CME-55 ECF=	107 =										-
	-		1.42											
-115-														_
-120														_
-125														
-92-1 130-														-
LGBNEW 23-031 BRIDGE C.GPJ 7-26-23														
NEW 23-03			TION DEPTH: 110.0 ft	DEPTH										
LGB	DATE	: 5	-4-23	IN BORI	NG: D	ry to 1	iu ft				DA	ATE: 5	LATE	

😂 Barto	bs, Hoskyn, on & Wyatt, Inc. ^{ng Engineers} LOGOFB 101124 Hwy. 1 Poinsett Co	35 o	ver D	itch	No. 1						
TYPE:	Auger to 30 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	123+7	'0, 15 ft Lt			
DEPTH, FT SYMBOL SAMDI ES	DESCRIPTION OF MATERIAL	BLOWS PER FT	UNIT DRY WT LB/CU FT	PL	0.2 (ASTIC .IMIT ╋ −).4 	0.6 0 WA CON	, TON/SQ	1.2 LIQ LIN	ИТ Н	
		6			10	20	30 4	10 50	60	70	+
	Loose tan and brown fine sand, slightly silty (SP-SM) w/fine sandy clay seams										
		5					-NON	PLASTIC	;-		
5		8						s= ∠.04			
X	- with occasional organic inclusions below 6 ft	8									
	- medium dense below 8 ft	15									
10- 											
											_
15	Medium dense gray and reddish tan clayey fine sand (SC) w/ferrous stains	17			+	- • •					
	- silty below 18 ft	32									
20											-
25	Medium dense tan fine sand (SP)	26		•							
23											
	Dense brown silty fine sand (SM)								_		_
30 -		55							_		2
	Dense brownish gray fine to medium sand (SP)										-
35 -	medium sand (SP)	45									-
		74									
40 - 😳 🖓		71									-
		57									
COMPL			TOWA	TER	1	_	1	<u>ı l</u>	1	4/13/2	


Image: Continued DESCRIPTION OF MATERIAL Image: Continued	Barto	os, Hoskyn, n & Wyatt, Inc. g Engineers LOGOFBO 101124 Hwy. 1 Poinsett Co	35 oʻ	ver Di	tch N	lo. 1	24						
10 20 30 40 50 60 70 50 48 49 <t< th=""><th></th><th></th><th>ЕТ</th><th></th><th>DN: /</th><th></th><th></th><th></th><th></th><th></th><th>FT</th><th></th><th>%</th></t<>			ЕТ		DN: /						FT		%
10 20 30 40 60 60 70 50 48 <t< td=""><td></td><td></td><td>LOWS PEF</td><td>UNIT DRY / LB/CU F1</td><td>PLA</td><td>STIC</td><td>.4 (</td><td>1</td><td>1</td><td></td><td>LIQ</td><td>UID</td><td>- No. 200</td></t<>			LOWS PEF	UNIT DRY / LB/CU F1	PLA	STIC	.4 (1	1		LIQ	UID	- No. 200
	- 55 - X	- with occasional organic inclusions below 53 ft Dense brownish gray fine to coarse sand (SP) - tan with less coarse sand and	48 37 61							50	60		4
The second sec	- 75 X - 80 X - 85 X		37 68 58 74				•						14

	23-03 Gru Bar Consu	bb	s, Hoskyn, h & Wyatt, Inc. J Engineers 101124 Hv	wy. 135 o	ver D	itch	No.								
			Poinse	ett County	, Arka	ansa	as								
	TYPI	<u>=:</u>	Auger to 30 ft /Wash	LC		ON:	Арр			3+70,					1
Ŀ		0		R FT	۲.			СО	HESI	ON, T(ON/SC	≬FT			%
	BOL	ШЧ	DESCRIPTION OF MATERIAL	PEF	RY F D		0.2	0.4	0.6	0.8	1.0	1.2	1.4		200
DEPTH,	SYMBOL	SAMPLES		BLOWS PER	UNIT DRY WT LB/CU FT	P		с	C		R NT			₽	- No. 200 %
	 		(continued)		Ľ		10	20	30	40	50	60	70		
- 95 -		X		56											
-100		X	Dense tan fine to medium sand, slightly silty w/trace coarse sand and fine gravel and occasional organic inclusions	43											6
-105		X	Dense grayish tan fine to mediu sand (SP) w/occasional organic inclusions	m 52											
-115				71				•							4
		X	 with trace coarse sand and fine gravel below 123 ft 	67											
BRIDGE C.GPJ 7-26-23			NOTE: Drilled with SIMCO 2800 ECF= 1.19												-
23-031 B	-														
GBNEW 2			TION DEPTH: 125.0 ft -27-23	DEPTH IN BORI					I	I	1	DAT	E: 4/	13/20)23
														ATE	

(EY 9-26-02

APPENDIX A

10 SCALE I5:35 13 1/26 ISER: bc5100 ESIGN FILE: LOTTED: 1/26 JSER:

T	DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
			6	ARK.	101124	98	183
ł			XXXXX		LAYOUT		XXXXX

GENERAL NOTES

BENCH MARK: Vertical Control Data are shown on Survey Control Sheets.

CONSTRUCTION SPECIFICATIONS: Arkansas State Highway and Transportation Department Standard Specifications for Highway Construction (2014 edition) with applicable Supplemental Specifications and Special Provisions. Section and Subsection refer to the Standard Construction Specifications unless otherwise noted in the Plans.

DESIGN SPECIFICATIONS: AASHTO LRFD Bridge Design Specifications, 9th Edition (2020).

LIVE LOADING: HL-93

SEISMIC ZONE: XX S $_{D1}$ = XX SITE CLASS: XX

SEISMIC OPERATIONAL CLASS: OTHER

MATERIALS AND STRENGTHS: Class S(AE) Concrete (superstructure) Class S Concrete (prestressed concrete girders) Prestressing Strands (AASHTO M 203, Gr. 270) Class S Concrete (substructure) Reinforcing Steel (AASHTO M 31 or M 322, Type A) Structural Steel (ASTM A709, Gr. 50) Structural Steel (ASTM A709, Gr. 50W) Structural Steel (ASTM A709, Gr. 36)	fc = 4,000 psi fc = 6,000 psi fpu = 270,000 psi fc = 3,500 psi fy = 60,000 psi Fy = 50,000 psi Fy = 50,000 psi Fy = 36,000 psi
--	---

BORING LOGS: Boring logs may be obtained from the Construction Contract Development Section of the Program Management Division.

STEEL SHELL PILING: Piling in Bents 1 and 4 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. Piling in Bents 2 and 3 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. All piling shall be driven with an approved air, steam, or diesel hammer to a minimum tip elevation of or lower at Bents 1 and 4 and to a minimum tip elevation of or lower at Bent or lower at Bents 2 and 3. Piling in end bents shall be driven after embankment to bottom of cap is in place. Lengths of piling shown are assumed for estimating quantities only. Actual lengths are to be determined in the field. No additional payment will be made for cut-off or build-up. Test piles are not required but may be driven for the Contractor's information in accordance with Subsection 805.08(g).

Water jetting or other methods as approved by the Engineer may be required to achieve minimum penetration. This work shall not be paid for directly, but shall be considered incidental to the item "Steel Shell Piling (___ Dia.)".

PREBORING: Preboring is required for all piling at Bents 1 and 4. Prebored holes shall have a diameter 6" greater than the diameter of the pile for a depth of 10' below the bottom of the cap. The void space around the pile after completion of driving shall be backfilled with sand or pea gravel. The Contractor shall be responsible for keeping prebored holes free of debris prior to backfilling which may require the use of temporary casings or other approved methods. Any related cost for backfilling and temporary casing will not be paid for directly, but shall be considered subsidiary to the item "Preboring".

For Additional General Notes, see Dwg. No. XXXXX.

LOOD

DESIGN

XTREME

OVERTOPPING

3ASE

DESCRIPTIC

HYDRAULIC DATA

REQUENCY DISCHARGE

YEARS

50

100

500

>500

1) NATURAL W.S. W.S. ELEVATION

WITH BACKWATER

FEET

214.2

214.5

215.3

ELEVATION

FEET

213.6

213.9

214.6

-
+20+76.39

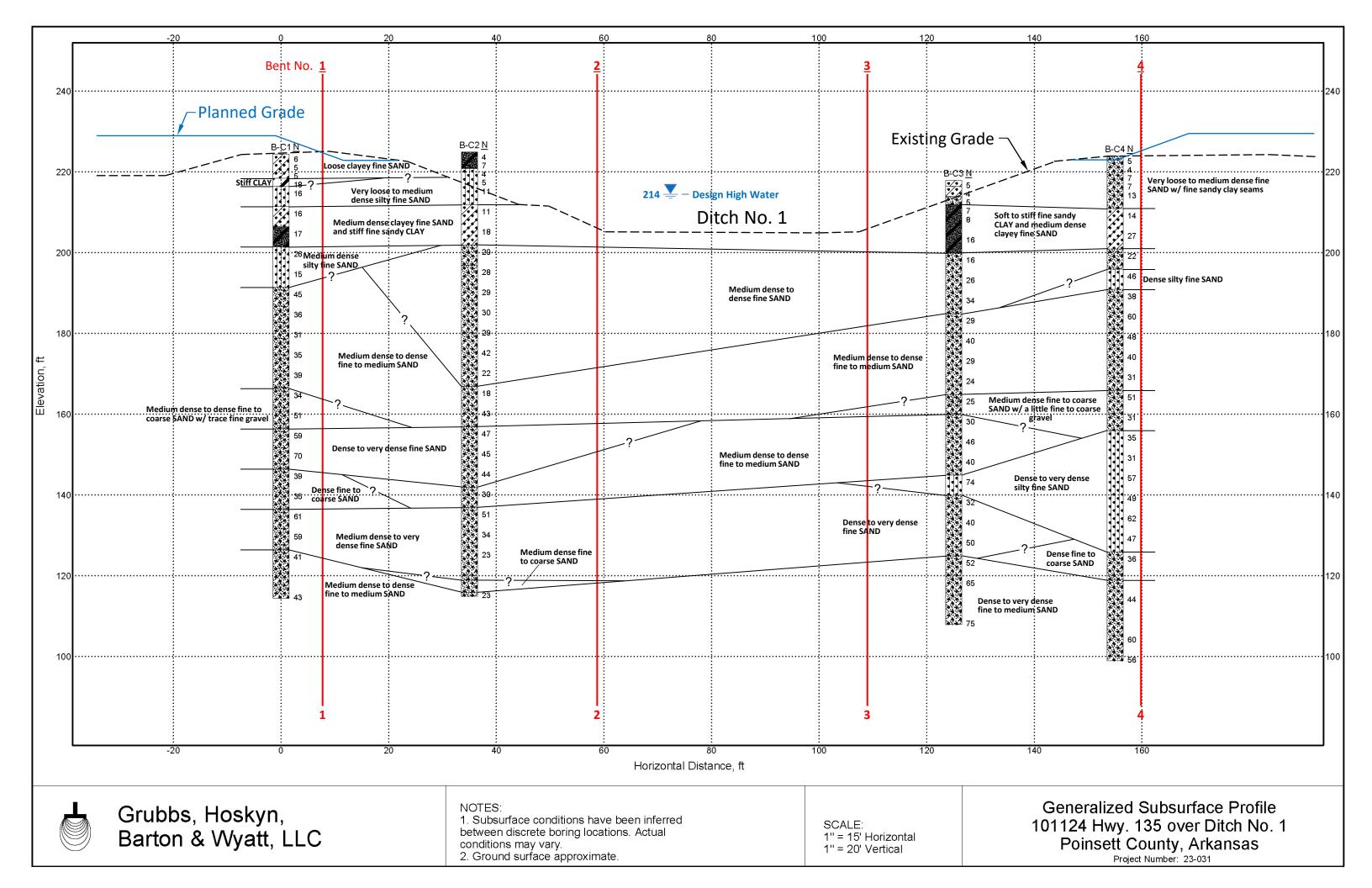
(1) Unconstricted water surface elevation without structure or roadway approaches

2 Proposed Low Bridge Chord Elev. = 223.7 feet at Station 122+21.66

CFS

1170

1280


1520

100 yr. backwater elevation for existing structure = 214.5 feet Drainage Area = 18.6 sq. miles Historical H.W. Elev. = N/A

EC	•			
	•	SHEE	ET 1 OF 1	
			OF BRID	GE
	HW	Y. 135 O	VER DITCH	NO. 1
	HW	7. 135 ST	RS. & APP	PRS. (S)
A			TT COUNT	. ,
=]			35 SEC.	
٦J	ARKANSAS			r commission
J		LITTLE	ROCK, ARK.	
/	DRAWN BY: MLC	DATE:	11-16-22 FILE	NAME: b101124x3_l1.dgn
	CHECKED BY: CAW	DATE:	12-06-22 S	CALE: 1" = 20'
	DESIGNED BY: MLC	DATE:	11-02-22	
	BRIDGE NO. XXX	xx	DRAWING N	IO. XXXXX

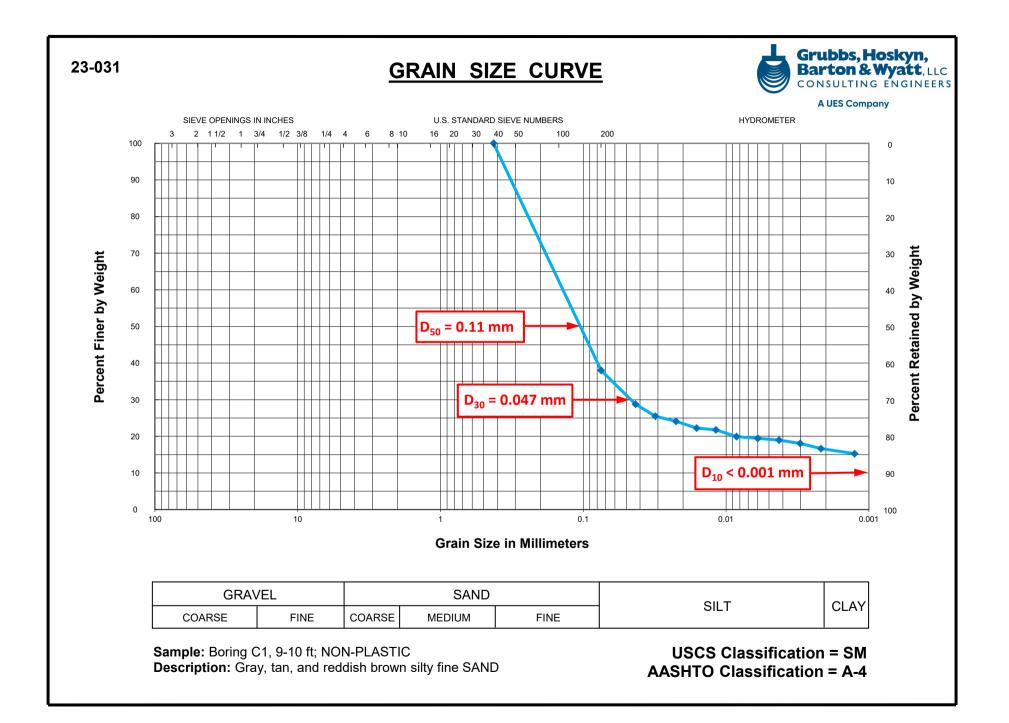
APPENDIX B

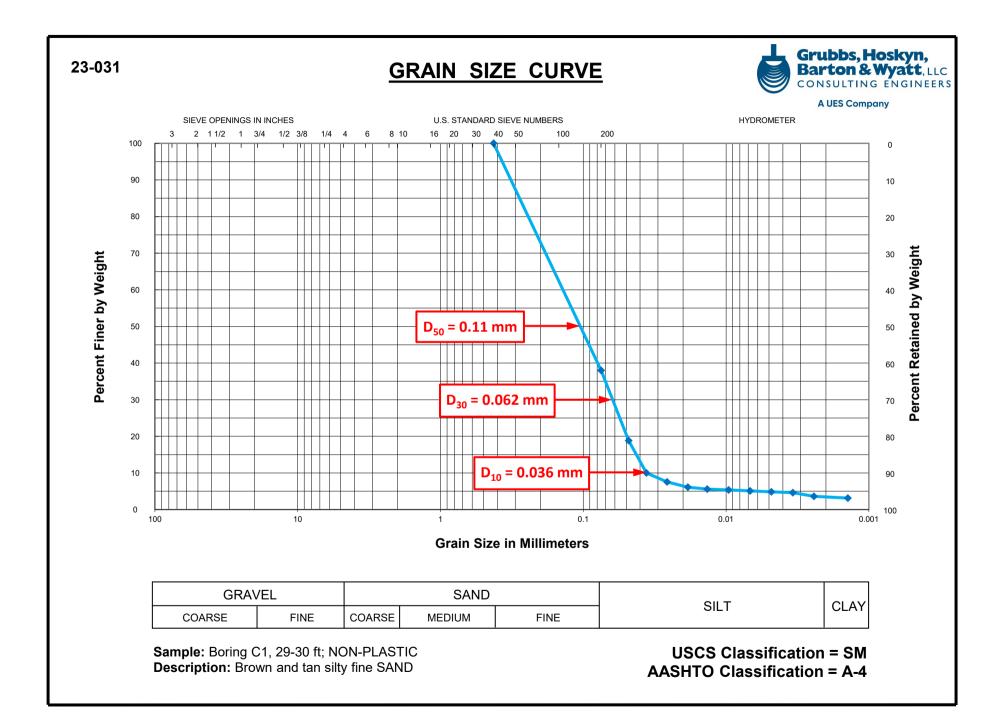
APPENDIX C

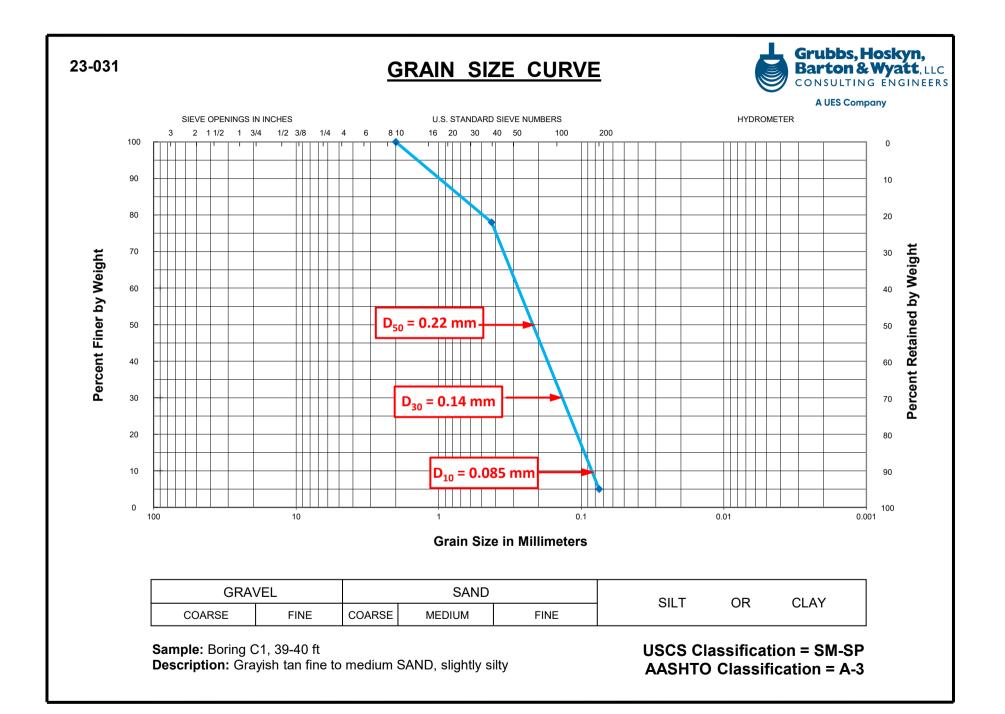
SUMMARY of CLASSIFICATION TEST RESULTS

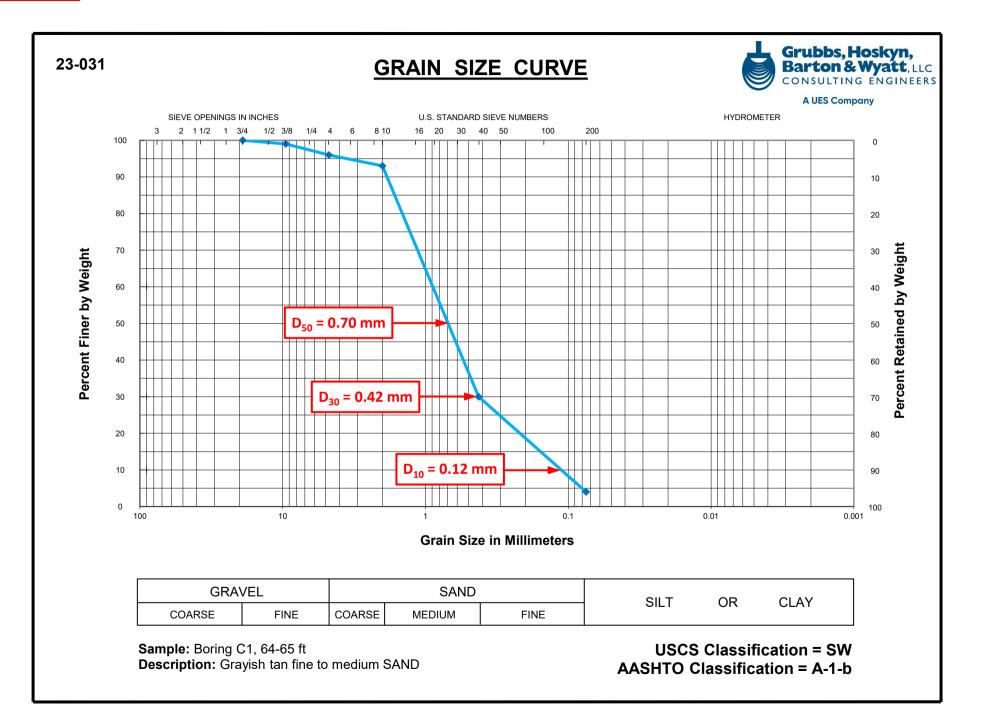
PROJECT: 101124 Hwy. 135 over Ditch No. 1 (Site 3) LOCATION: Poinsett County, Arkansas

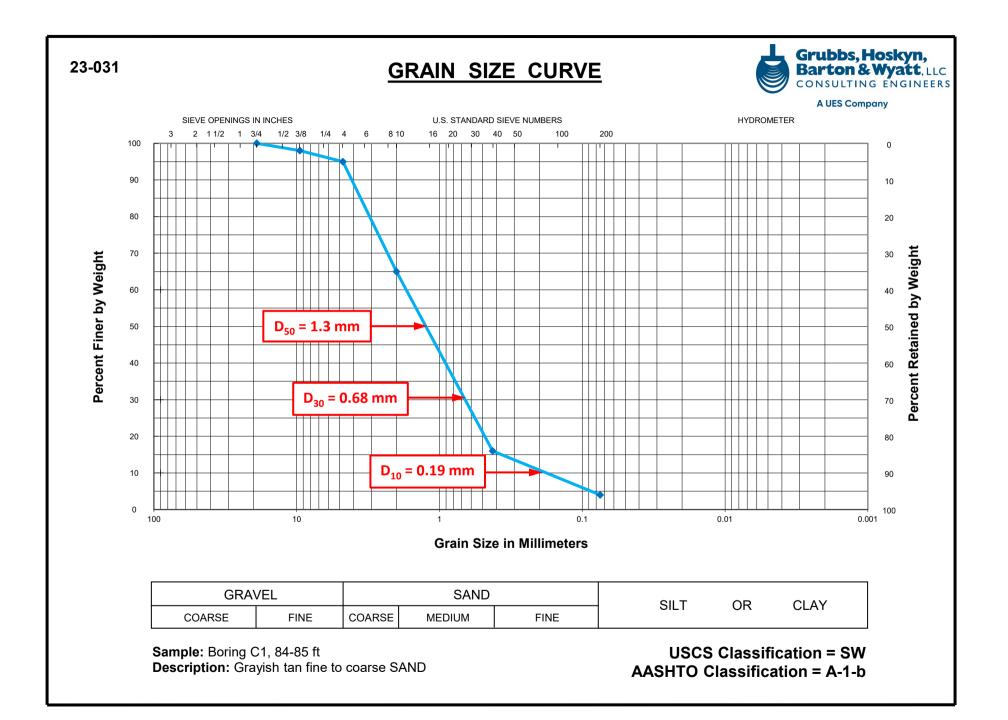
GHBW JOB NUMBER: 23-031

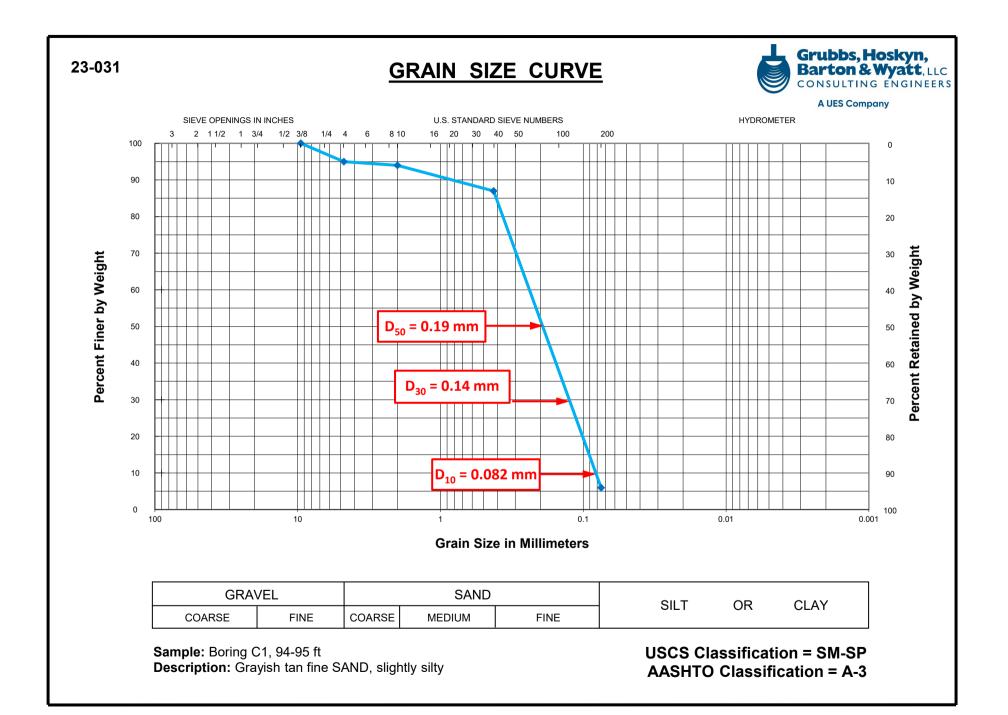

BORING	SAMPLE DEPTH (ft)	WATER CONTENT (%)	ATTERBERG LIMITS				SIEVE ANALYSIS								AASHTO
No.			LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	2 in.	1 in.	PER 3/4 in.	CENT 3/8 in.	PASS #4	ING #10	#40	#200	USCS CLASS.	CLASS.
C1	2.5-3.5	19	32	16	16					100			32	SC	A-6
C1	9-10	9	NON-PLASTIC			100	100	100	100	100	100	100	38	SM	A-4
C1	14-15	16	36	16	20									SC	A-6
C1	19-20	19	41	15	26					100			53	CL	A-7-6
C1	29-30	27	NON-PLASTIC			100	100	100	100	100	100	100	38	SM	A-4
C1	39-40	19				100	100	100	100	100	100	78	5	SM-SP	A-3
C1	64-65	18				100	100	100	99	96	93	30	4	SW	A-1-b
C1	84-85	40				100	100	100	98	95	65	16	4	SW	A-1-b
C1	94-95	20				100	100	100	100	95	94	87	6	SM-SP	A-3
C1	99-100	16				100	100	100	99	98	96	32	5	SM-SW	A-1-b
C2	6.5-7.5	20	26	17	9	100	100	100	100	100	100	99	44	SC	A-4
C2	14-15	16				100	100	100	100	100	99	92	28	SC	A-6
C2	24-25	7								100			10	SM-SP	A-3
C2	34-35	20				100	100	100	100	100	100	96	8	SM-SP	A-3
C2	64-65	12				100	100	100	92	87	81	27	6	SM-SW	A-1-b
C2	84-85	14				100	100	94	88	84	79	16	3	SW	A-1-b
C3	6.5-7.5	21	42	16	26					100			53	CL	A-7-6
C3	24-25	20	NON-PLASTIC							100			7	SM-SP	A-3
C3	34-35	17				100	100	100	99	98	97	59	7	SM-SP	A-3
C3	54-55	11				100	83	83	81	74	66	19	7	SM-SW	A-1-b
C3	64-65	19				100	100	100	99	98	97	51	5	SM-SP	A-3
C3	74-75	24								100			18	SM	A-2-4
C3	94-95	15				100	100	100	100	98	94	33	7	SM-SW	A-1-b

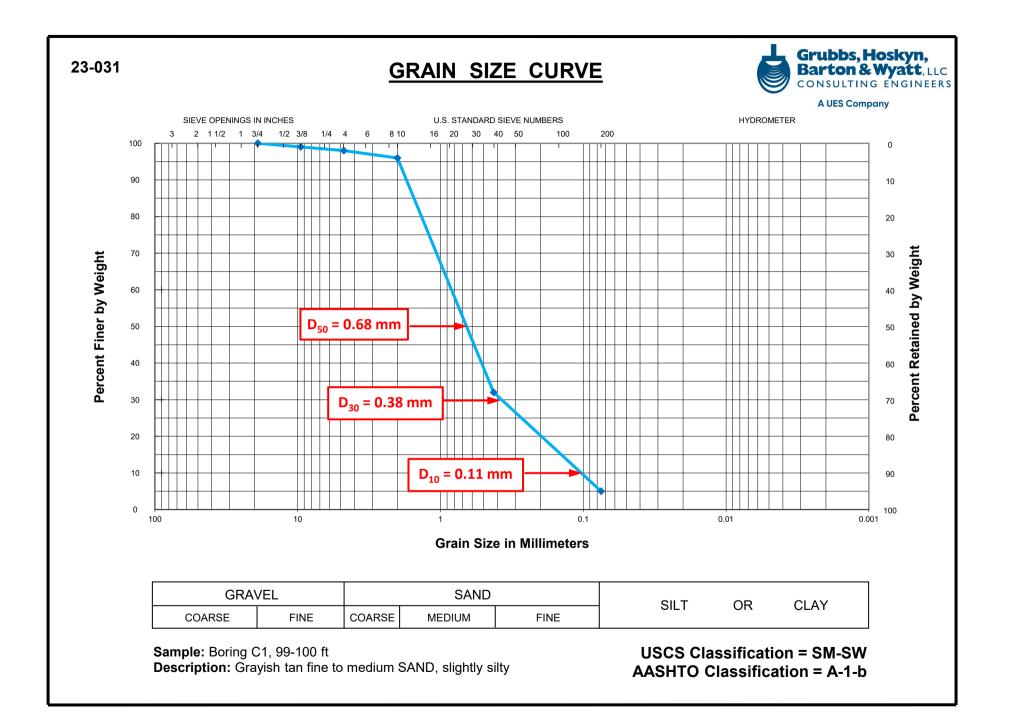

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

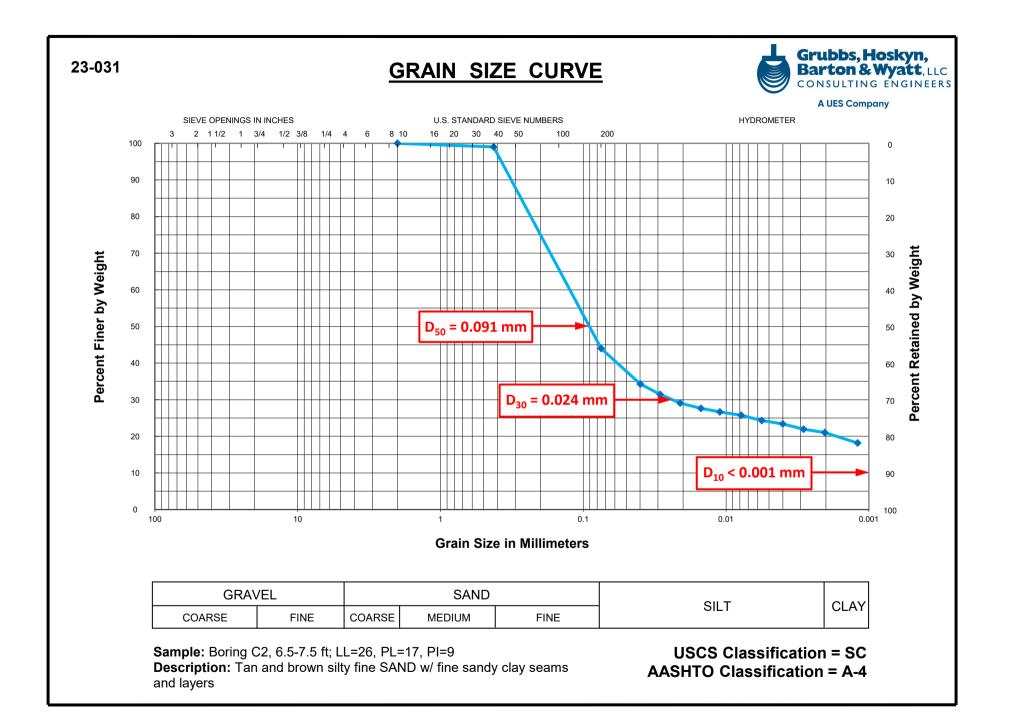

SUMMARY of CLASSIFICATION TEST RESULTS


PROJECT: 101124 Hwy. 135 over Ditch No. 1 (Site 3) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

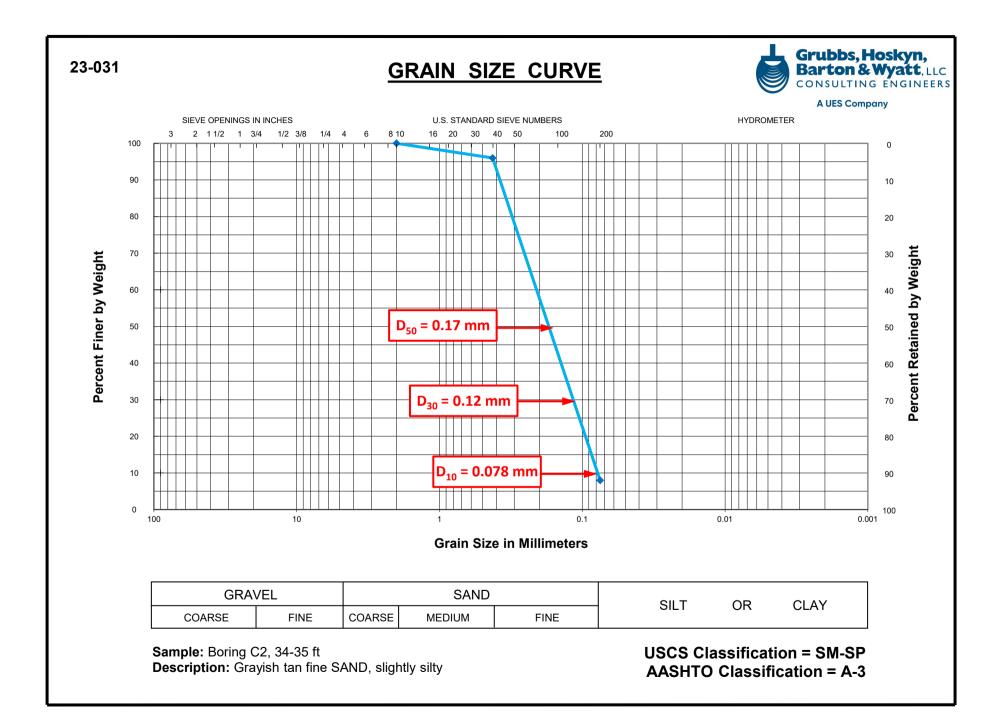

DODING	SAMPLE DEPTH	WATER CONTENT	ATTERBERG LIMITS			SIEVE ANALYSIS								USCS	
BORING No.			LIQUID	PLASTIC	PLASTICITY	PERCENT PASSING								USCS CLASS.	AASHTO CLASS.
1.00	(ft)	(%)	LIMIT	LIMIT	INDEX	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	CLASS.	CLINDD.
C4	4.5-5.5	9	NON-PLASTIC				100	100	100	100	100	82	8	SM-SP	A-3
C4	14-15	22	52	17	35					100			49	SC	A-2-7
C4	24-25	2								100			3	SP	A-3
C4	29-30	9								100			22	SM	A-2-4
C4	39-40	18				100	100	100	100	100	100	53	2	SP	A-3
C4	64-65	14				100	100	100	93	88	84	19	4	SW	A-1-b
C4	79-80	25				100	100	100	100	100	100	96	14	SM	A-2-4
C4	99-100	15								90			6	SW	A-1-b
C4	119-120	17				100	100	100	100	100	99	40	4	SP	A-1-b

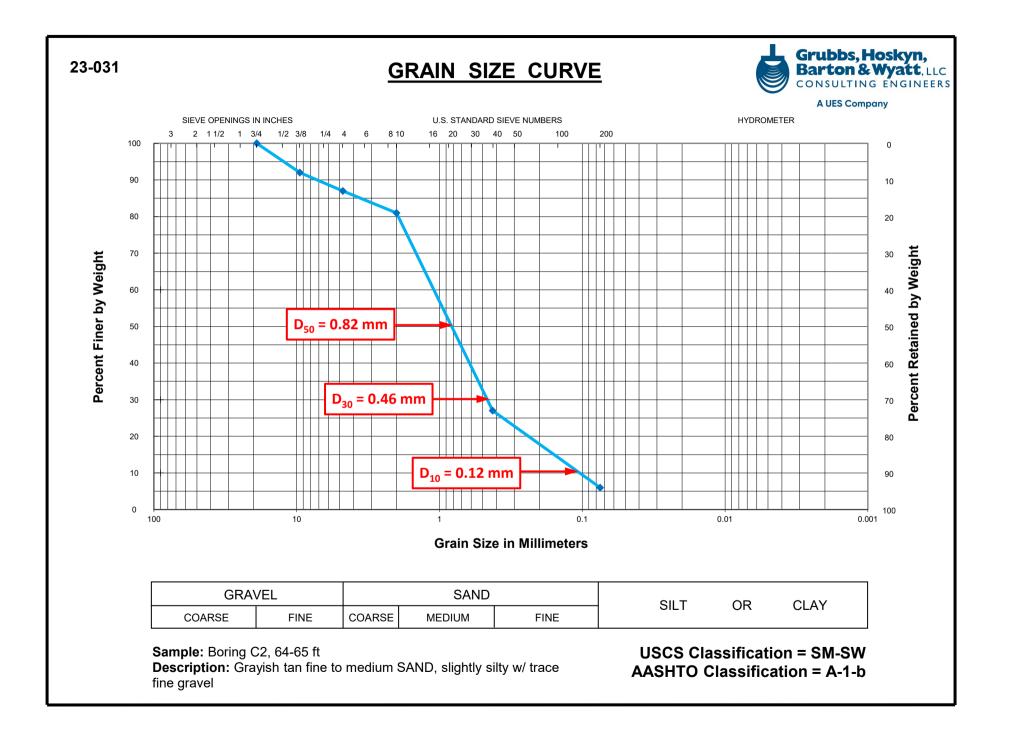


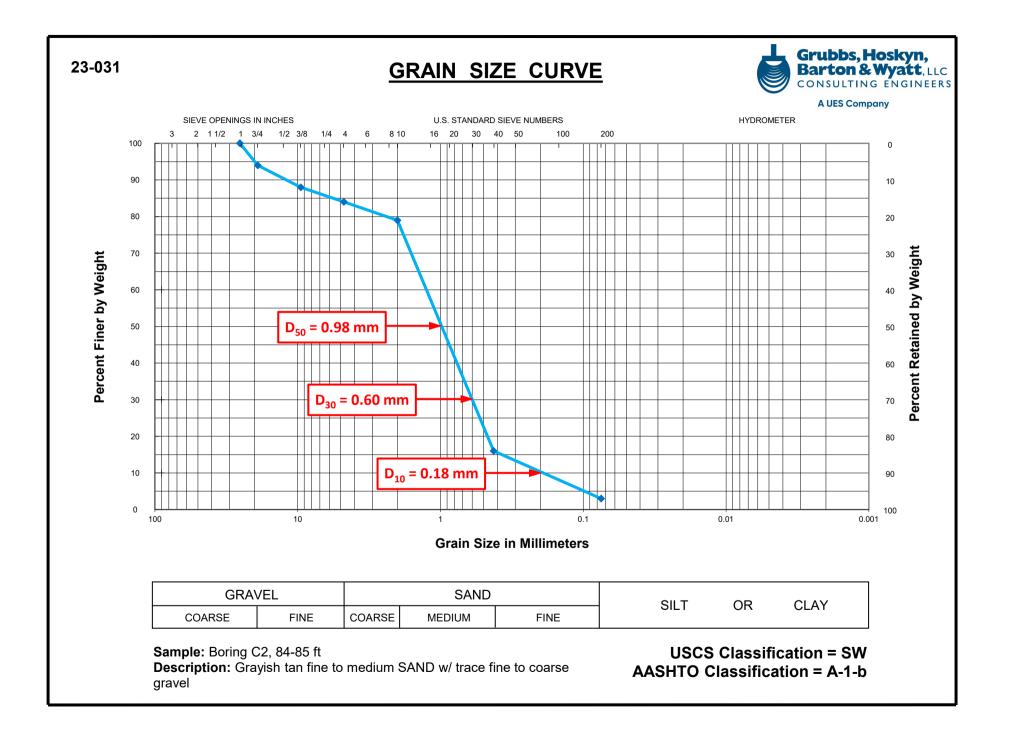


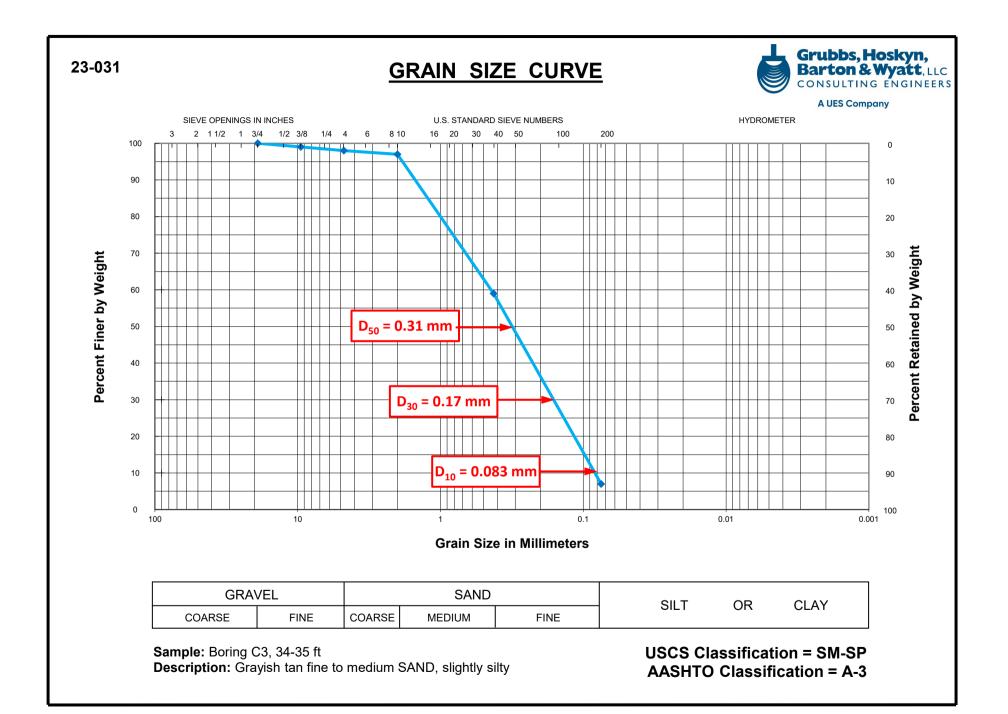


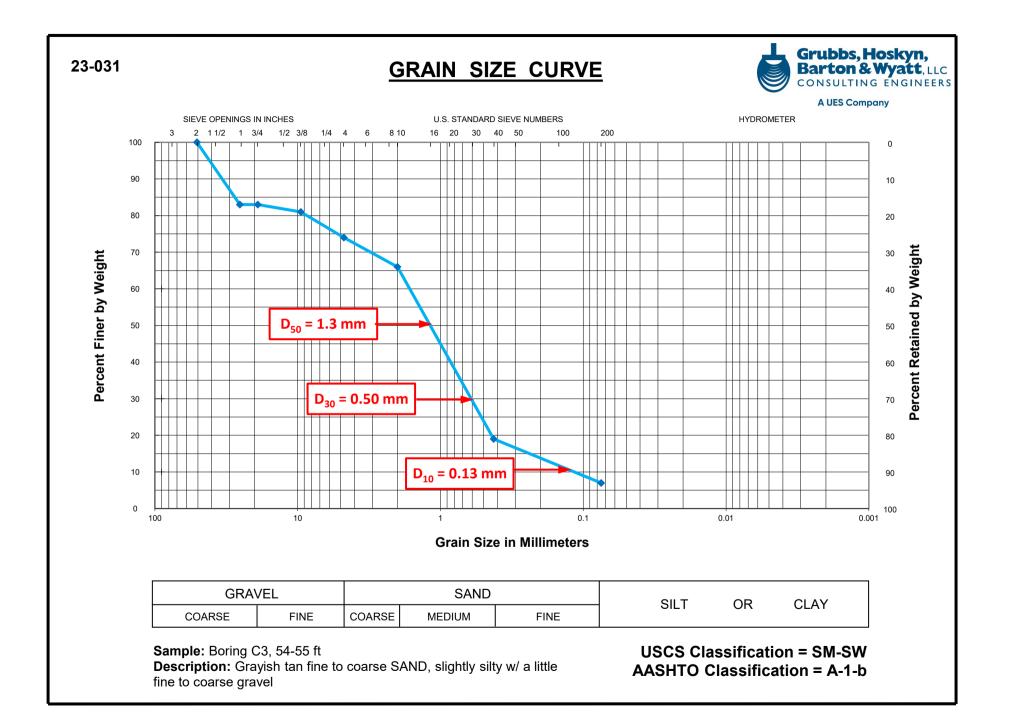


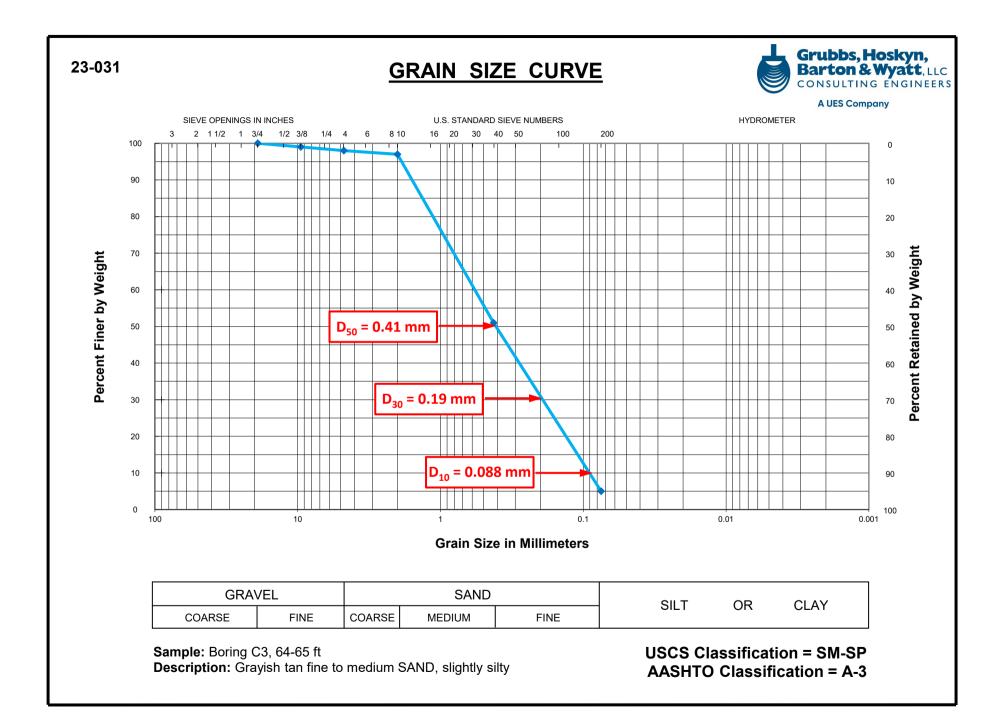


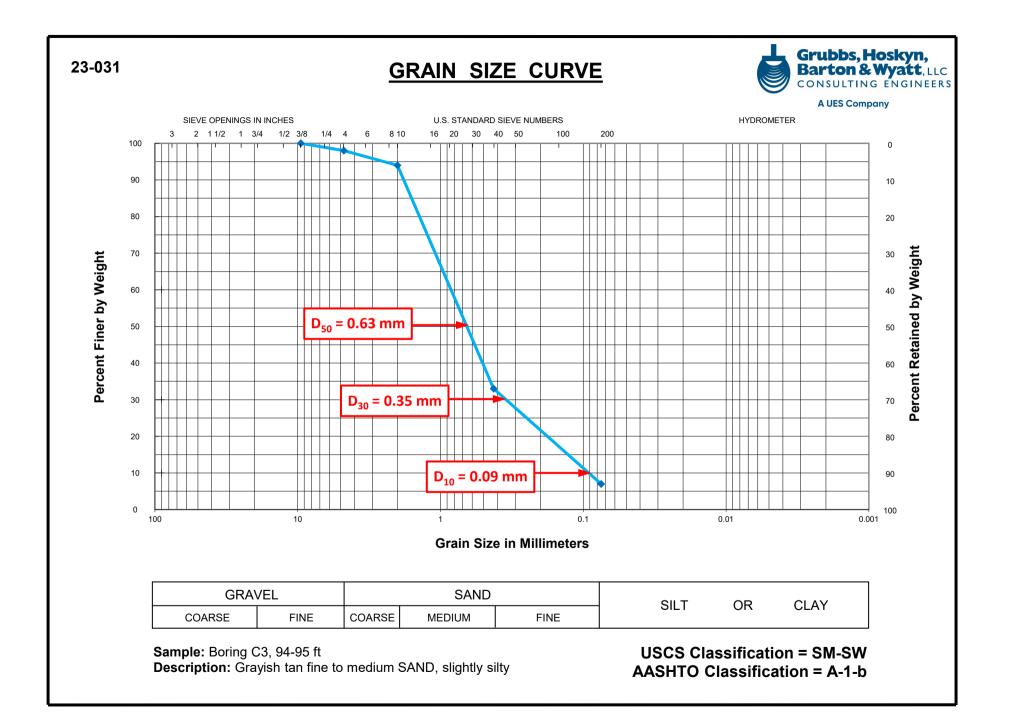


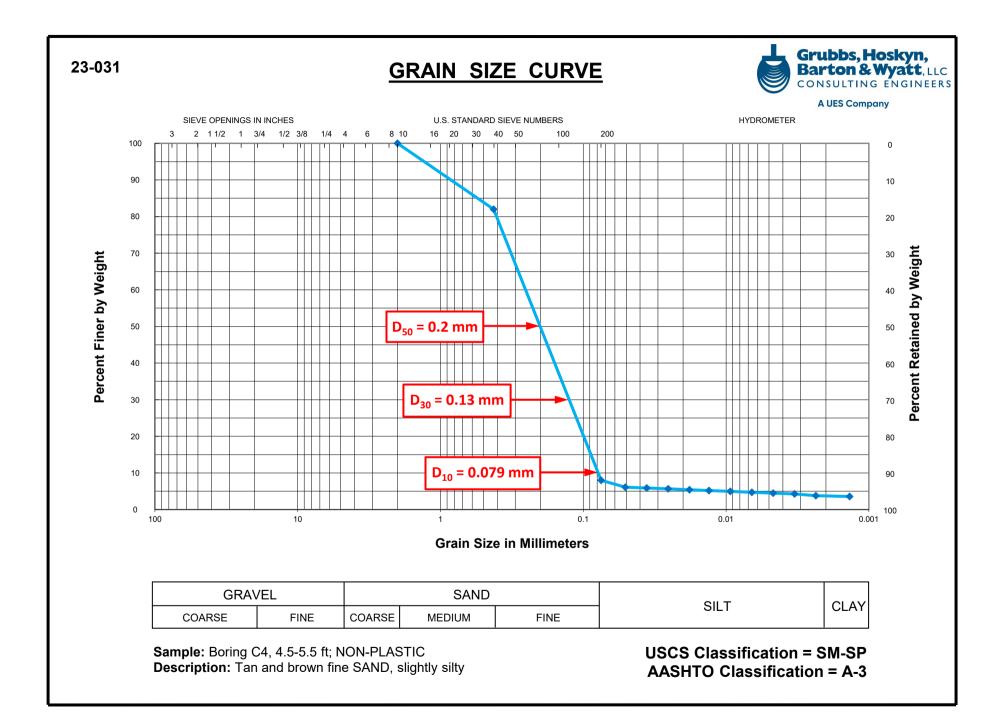


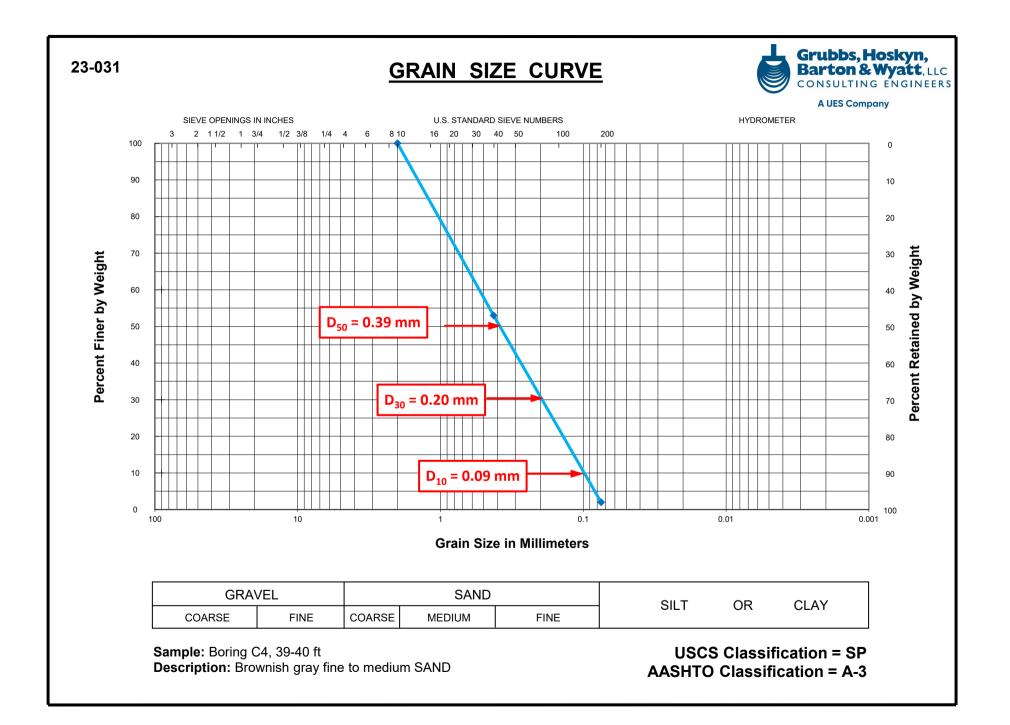


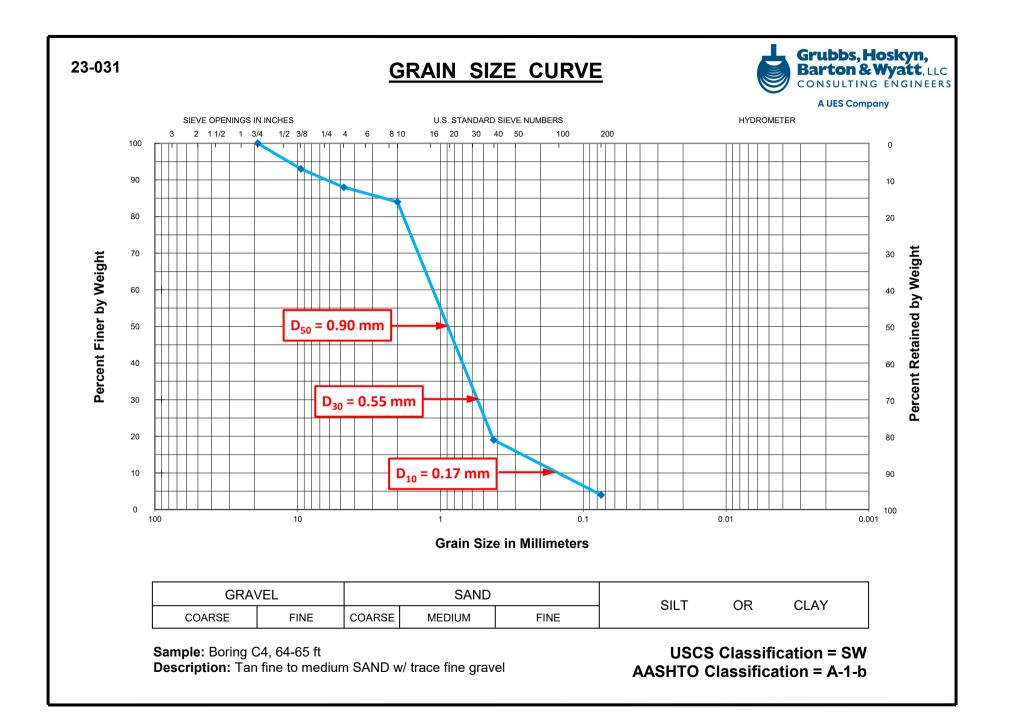


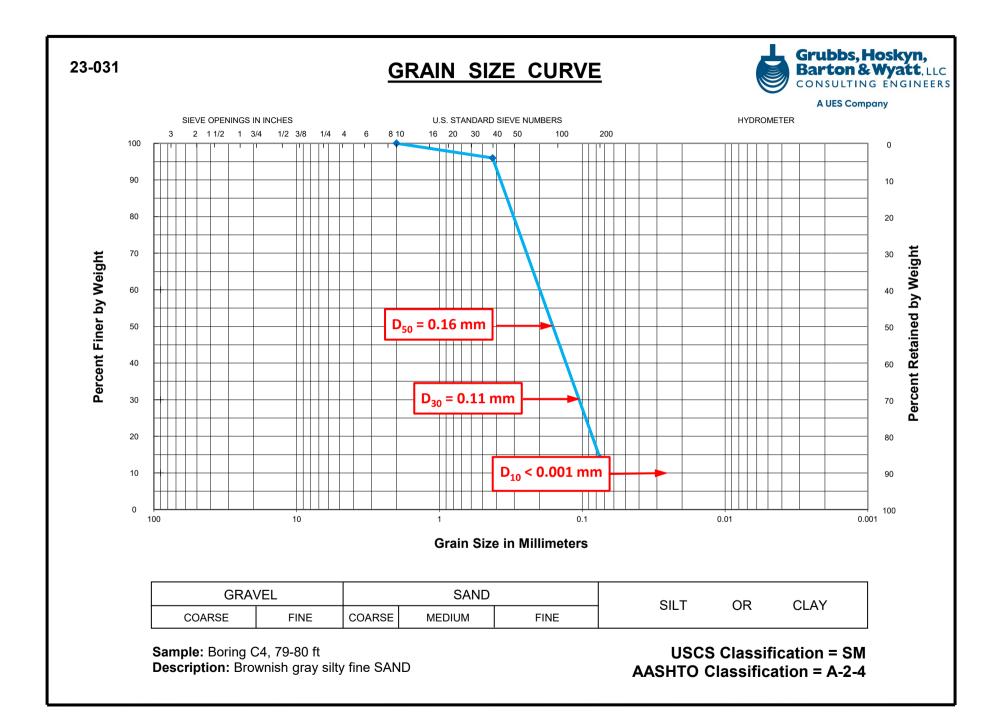


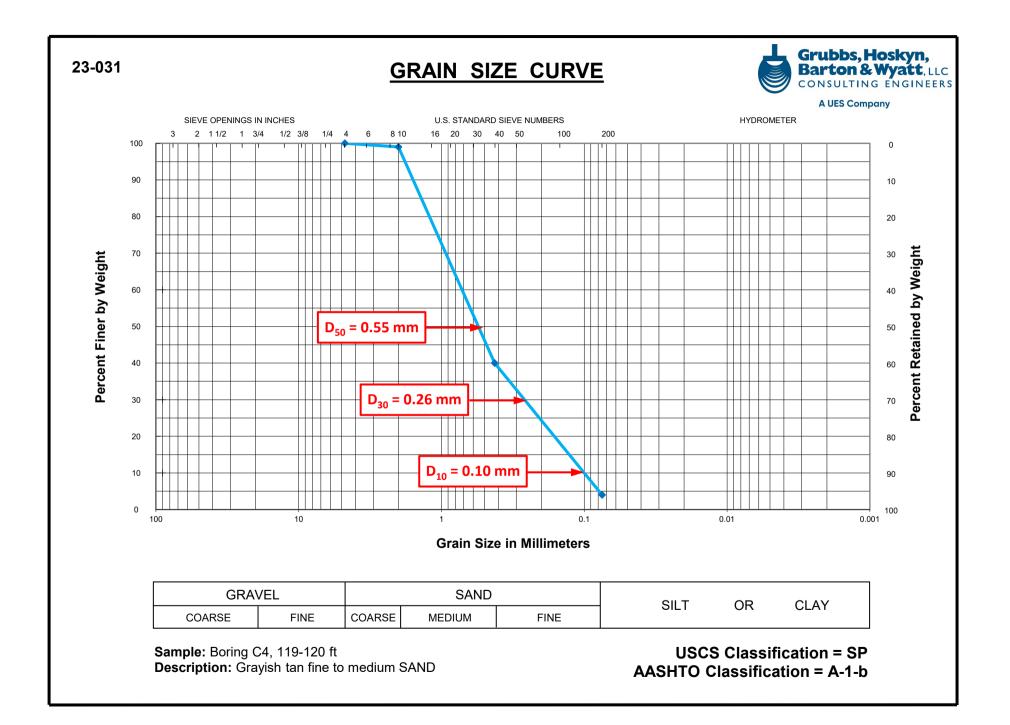


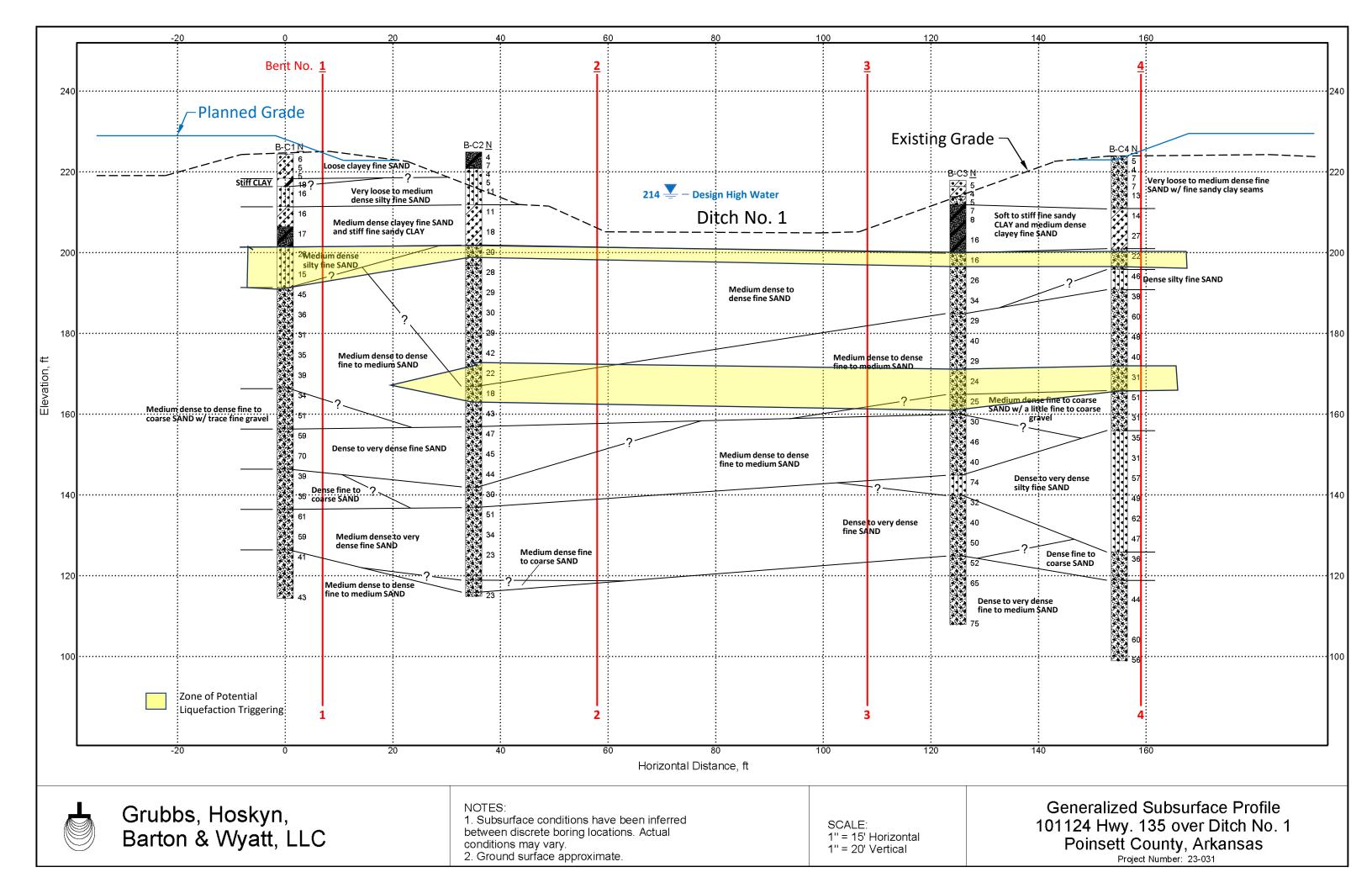


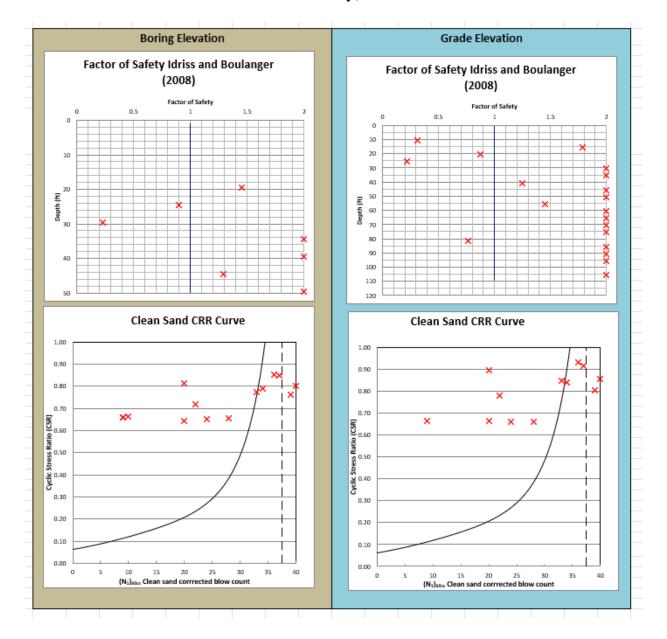




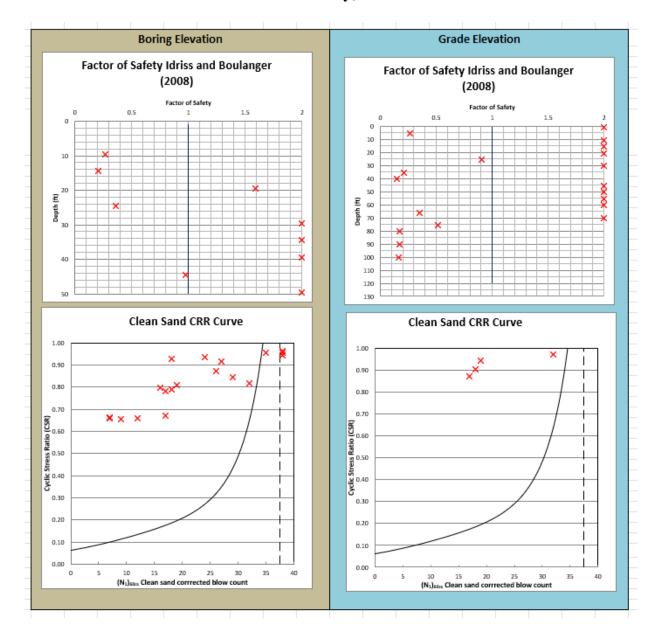




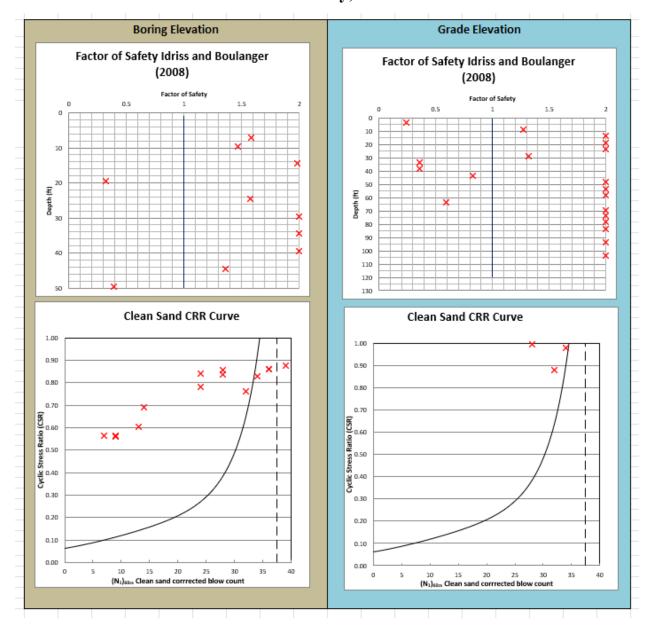




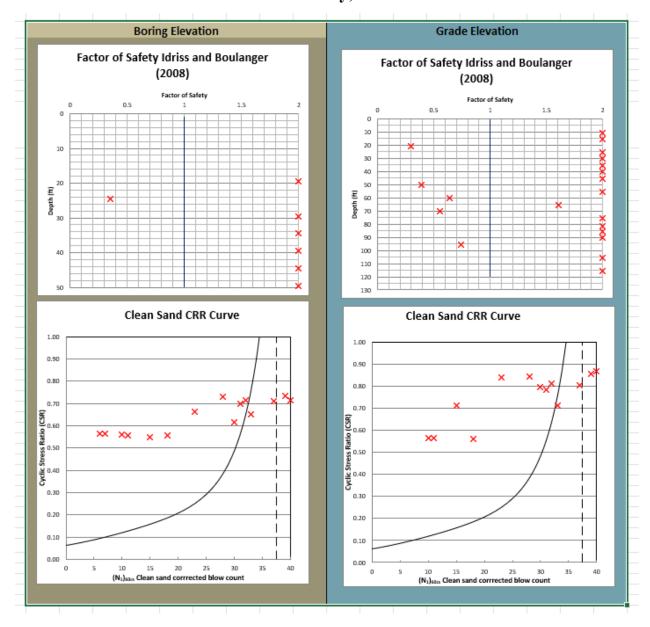
APPENDIX D



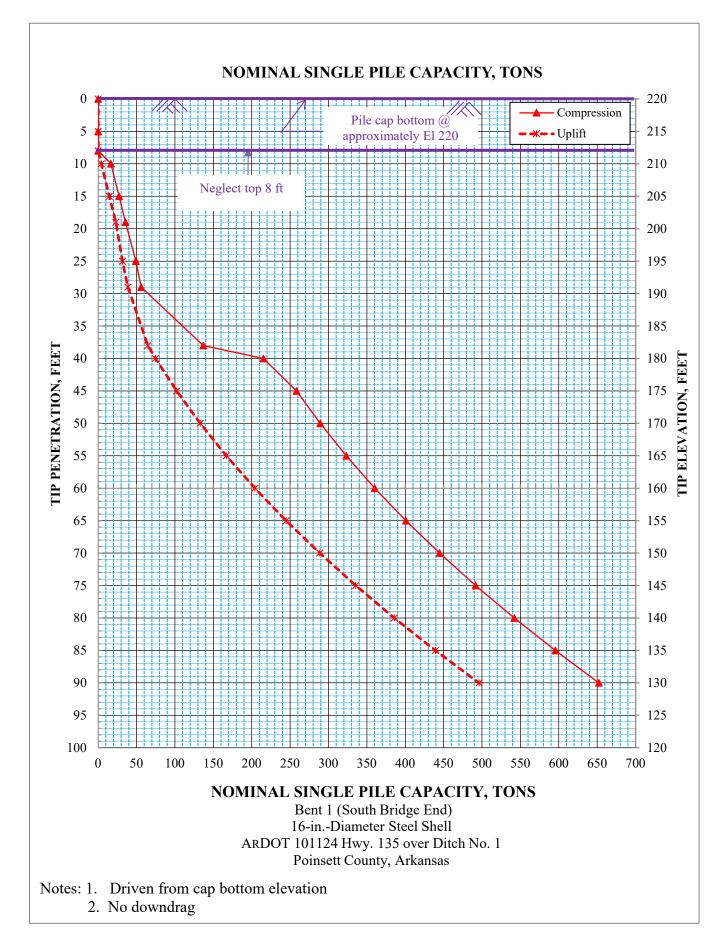
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 1 Bent 1 / Boring C1 GHBW Job No. 23-031 Poinsett County, Arkansas

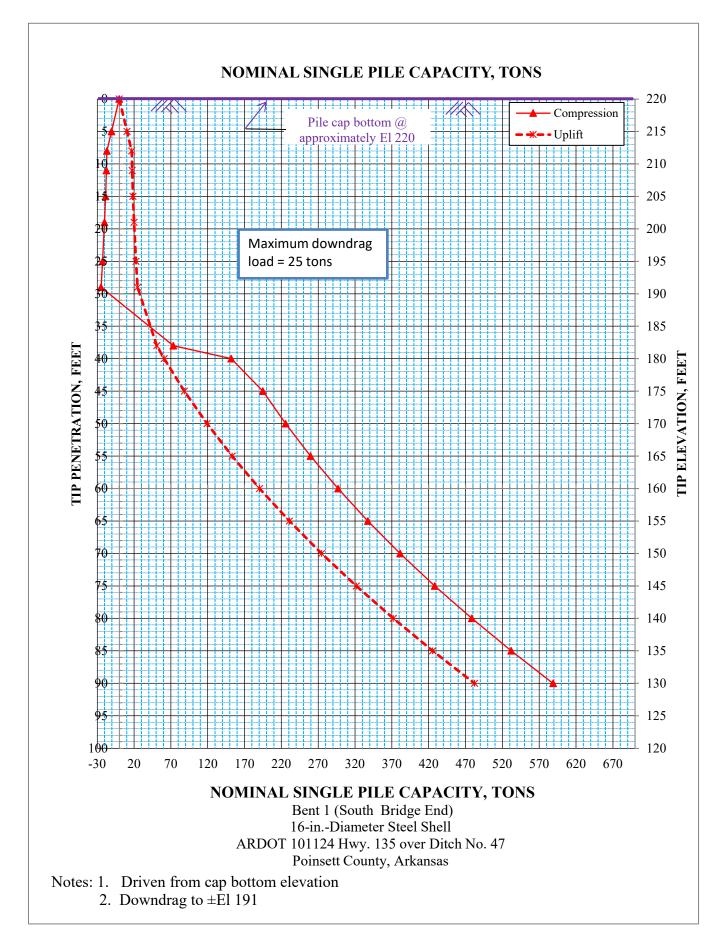


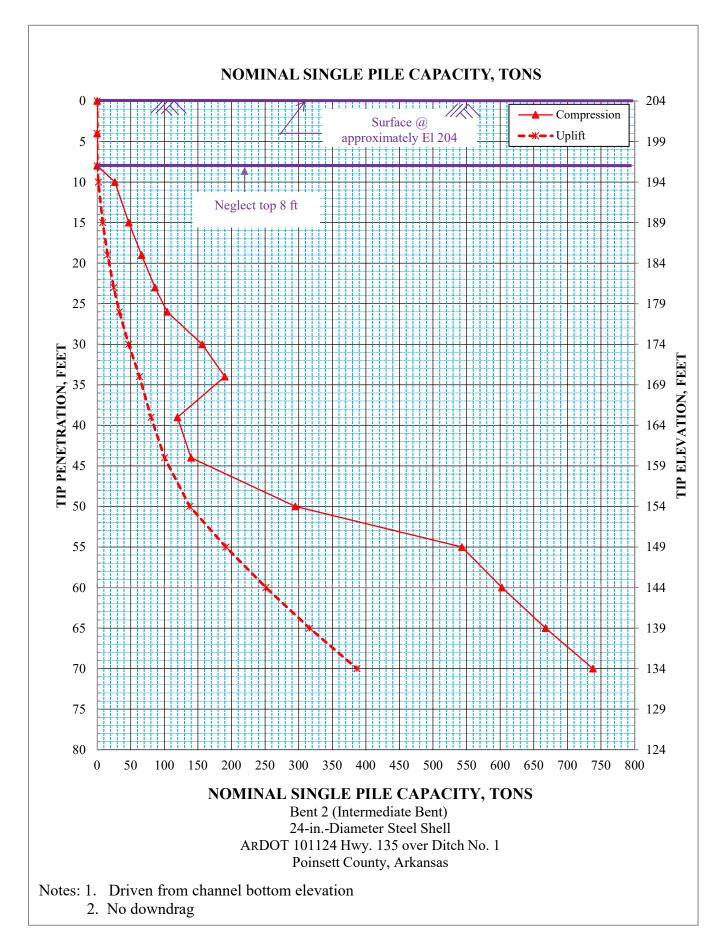
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 1 Bent 2 / Boring C2 GHBW Job No. 23-031 Poinsett County, Arkansas

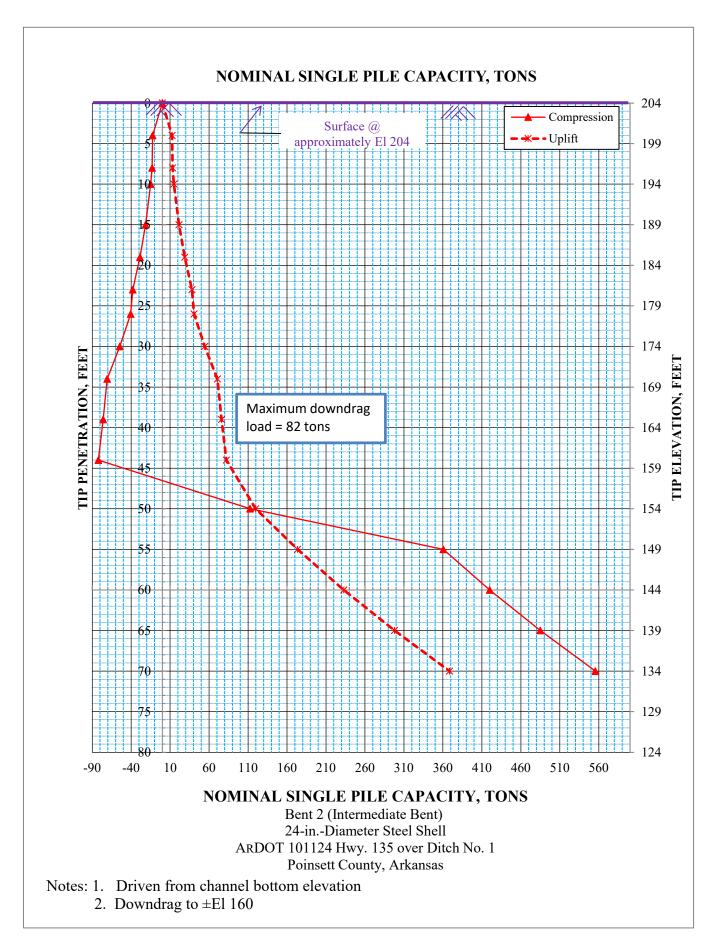


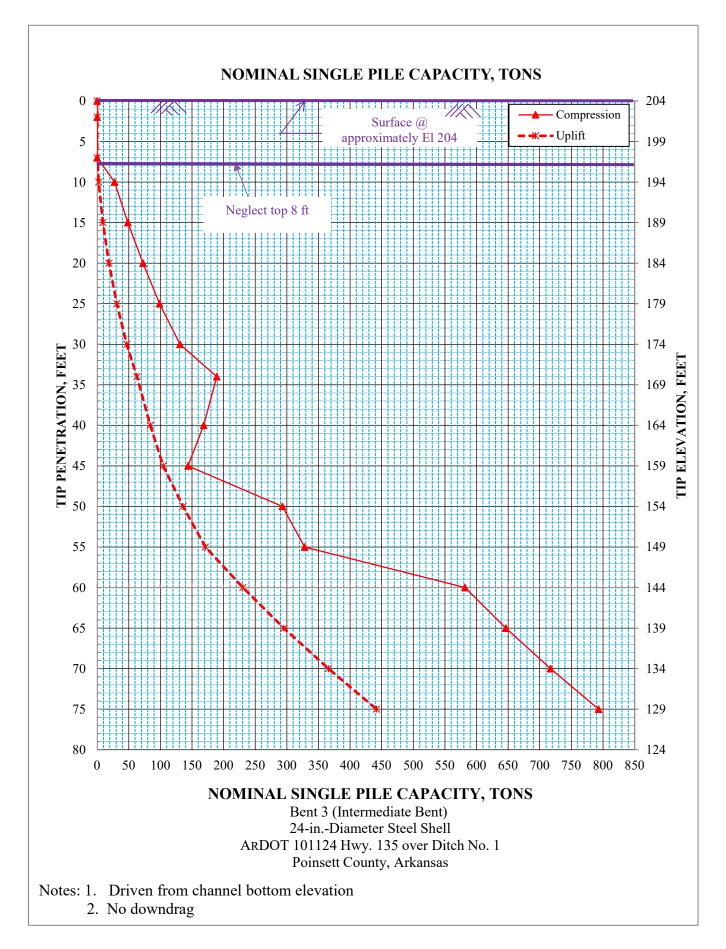
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 1 Bent 3 / Boring C3 GHBW Job No. 23-031 Poinsett County, Arkansas

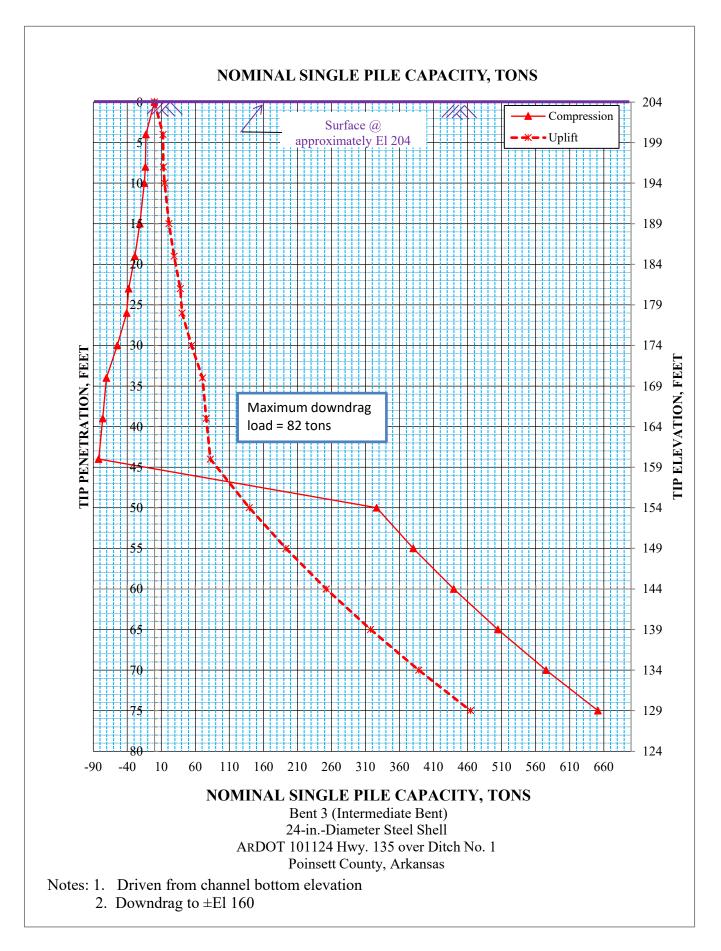


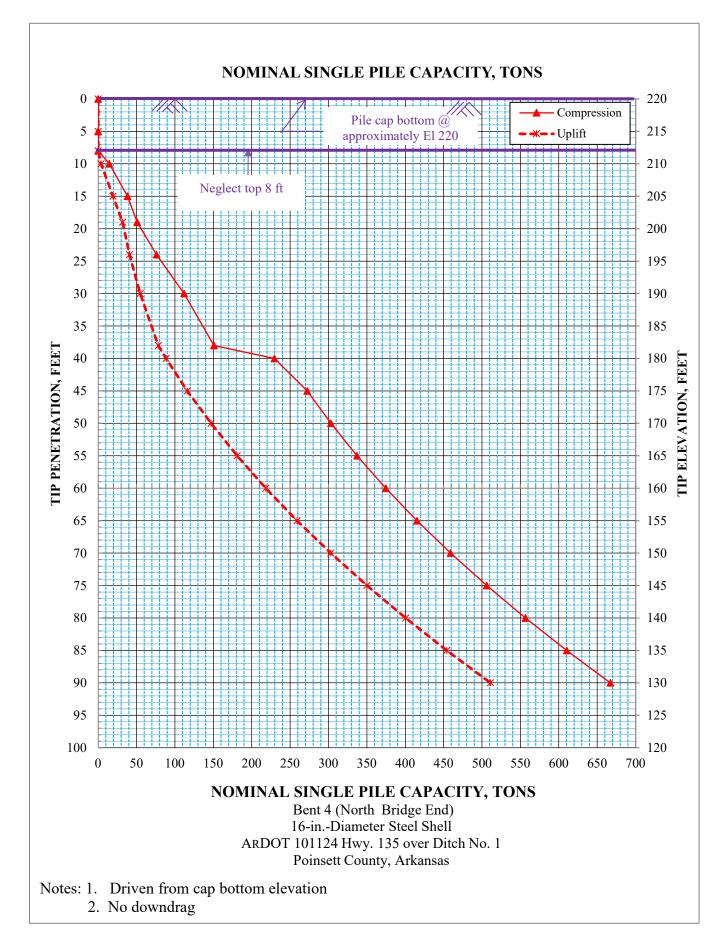

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 1 Bent 4 / Boring C4 GHBW Job No. 23-031 Poinsett County, Arkansas

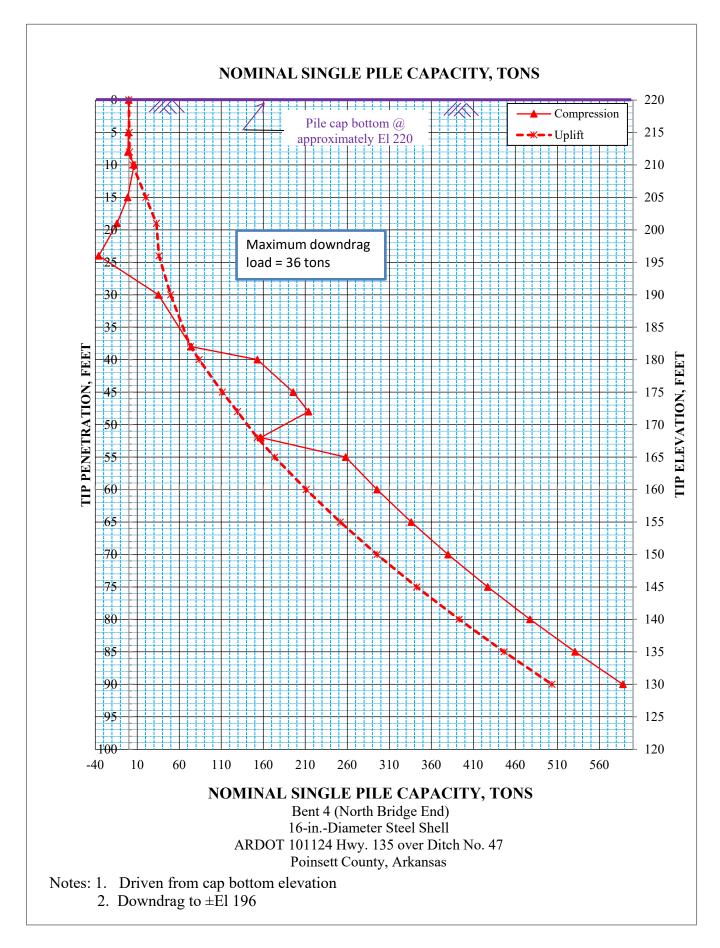





APPENDIX E







APPENDIX F

SUMMARY OF LATERAL LOAD PARAMETERS 101124 Hwy. 135 over Ditch 1 (Site 3 / Bridge C)

PROJECT: Project: 101124 - Hwy 135 over Ditch No. 1 - Bent 1 LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty, clayey fine SAND	Medium dense silty fine SAND	Dense fine SAND
Depth below pile cap bottom, ft	0-8	8-19	19-29	29 and deeper
Approximate El, ft	220-212	212-201	201-191	below 191
Recommend soil type	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ) , lbs per cu ft	110	59	59	68
Cohesion (c), lbs per sq ft	2000	0	0	0
Angle of internal friction (ϕ), °	0	32	32	38
Subgrade modulus (k), lbs per cu in.	500	60	60	125
Strain at 50% (EE50)	0.007	NA	NA	NA

Note: Pile cap bottom at ±El 220

Seismic Loading with Liquefaction

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty, clayey fine SAND (liquifiable)	Medium dense silty fine SAND (liquifiable)	Dense fine SAND
Depth below pile cap bottom, ft	0-8	8-19	19-29	29 and deeper
Approximate El, ft	220-212	212-201	201-191	below 191
Recommend soil type	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ) , lbs per cu ft	110	59	59	68
Cohesion (c), lbs per sq ft	2000	0	0	0
Angle of internal friction (ϕ), °	0	8	8	38
Subgrade modulus (k), lbs per cu in.	500	20	20	125
Strain at 50% (EE50)	0.007	NA	NA	NA

Note: Pile cap bottom at ±El 220

SUMMARY OF LATERAL LOAD PARAMETERS 101124 Hwy. 135 over Ditch 1 (Site 3 / Bridge C) PROJECT: Project: 101124 - Hwy 135 over Ditch No. 1 - Bent 2

LOCATION: Poinsett County, Arkansas

GHBW JOB NUMBER: 23-031

Static Loading

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty fine SAND	Medium dense to dense fine SAND	Medium dense silty fine SAND	Dense fine SAND	Medium dense fine SAND	Medium dense to very dense fine to medium SAND
Depth below surface grade, ft	0-4	4-8	8-23	23-26	26-34	34-44	44 and deeper
Approximate El, ft	204-200	200-196	196-181	181-178	178-170	170-160	below 160
Recommend soil type	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	48	59	59	68	59	68
Cohesion (c), lbs per sq ft	2000	0	0	0	0	0	0
Angle of internal friction (ϕ), °	0	32	34	32	35	32	38
Subgrade modulus (k), lbs per cu in.	500	60	60	60	125	60	125
Strain at 50% (EE50)	0.007	NA	NA	NA	NA	NA	NA

Note: Ground surface at ±El 204

Seismic Loading with Liquefaction

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty fine SAND (liquifiable)	Medium dense to dense fine SAND	Medium dense silty fine SAND (liquifiable)	Dense fine SAND	Medium dense fine SAND (liquifiable)	Medium dense to very dense fine to medium SAND
Depth below surface grade, ft	0-4	4-8	8-23	23-26	26-34	34-44	44 and deeper
Approximate El, ft	204-200	200-196	196-181	181-178	178-170	170-160	below 160
Recommend soil type	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	48	59	59	68	59	68
Cohesion (c), lbs per sq ft	2000	0	0	0	0	0	0
Angle of internal friction (ϕ), °	0	8	34	11	35	8	38
Subgrade modulus (k), lbs per cu in.	500	20	60	60	125	20	125
Strain at 50% (EE50)	0.007	NA	NA	NA	NA	NA	NA

Note: Ground surface at ±El 204

SUMMARY OF LATERAL LOAD PARAMETERS 101124 Hwy. 135 over Ditch 1 (Site 3 / Bridge C)

PROJECT: Project: 101124 - Hwy 135 over Ditch No. 1 - Bent 3 LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty fine SAND	Medium dense to dense fine SAND	Medium dense silty fine SAND	Dense fine SAND
Depth below surface grade, ft	0-3	3-7	7-34	34-44	44 and deeper
Approximate El, ft	204-201	201-197	197-170	170-160	below 160
Recommend soil type	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	48	59	59	68
Cohesion (c), lbs per sq ft	2000	0	0	0	0
Angle of internal friction (ϕ), °	0	32	34	32	38
Subgrade modulus (k), lbs per cu in.	500	60	60	60	125
Strain at 50% (EE50)	0.007	NA	NA	NA	NA

Note: Ground surface at ±El 204

Seismic Loading with Liquefaction

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff fine sandy CLAY	Medium dense silty fine SAND (liquifiable)	Medium dense to dense fine SAND	Medium dense silty fine SAND (liquifiable)	Dense fine SAND	
Depth below surface grade, ft	0-3	3-7	7-34	34-44	44 and deeper	
Approximate El, ft	204-201	201-197	197-170	170-160	below 160	
Recommend soil type	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Effective unit weight (γ), lbs per cu ft	48	48	59	59	68	
Cohesion (c), lbs per sq ft	2000	0	0	0	0	
Angle of internal friction (ϕ), °	0	8	34	32	38	
Subgrade modulus (k), lbs per cu in.	500	20	60	20	125	
Strain at 50% (EE50)	0.007	NA	NA	NA	NA	

Note: Ground surface at ±El 204

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

SUMMARY OF LATERAL LOAD PARAMETERS 101124 Hwy. 135 over Ditch 1 (Site 3 / Bridge C)

PROJECT: Project: 101124 - Hwy 135 over Ditch No. 1 - Bent 4 LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Loose to medium dense silty fine SAND	Stiff fine sandy CLAY	Medium dense silty fine SAND	Dense fine SAND	Medium dense fine SAND	Dense fine SAND
Depth below pile cap bottom, ft	0-8	8-19	19-24	24-48	48-52	52 and deeper
Approximate El, ft	220-212	212-201	201-196	196-172	172-168	below 168
Recommend soil type	Sand (Reese)	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	59	56	68	68	68
Cohesion (c), lbs per sq ft	0	1750	0	0	0	0
Angle of internal friction (φ), °	28	0	34	35	32	38
Subgrade modulus (k), lbs per cu in.	20	500	60	125	60	125
Strain at 50% (EE50)	NA	0.007	NA	NA	NA	NA

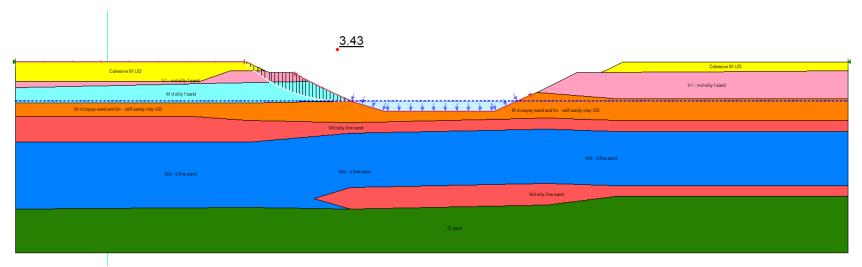
Note: Pile cap bottom at ±El 220

Seismic Loading with Liquefaction

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE $\ensuremath{\mathbb{C}}$

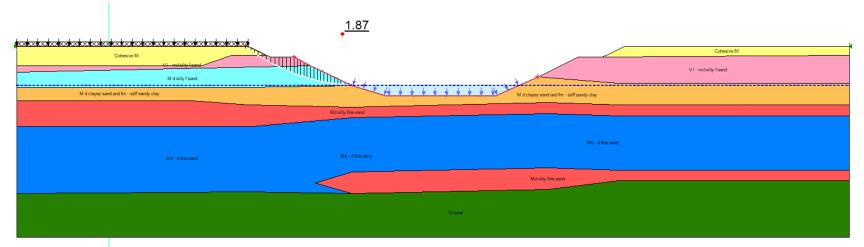
Generalized Stratigraphy	Loose to medium dense silty fine SAND	Stiff fine sandy CLAY	Medium dense silty fine SAND (liquifiable)	Dense fine SAND	Medium dense fine SAND (liquifiable)	Dense fine SAND
Depth below pile cap bottom, ft	0-8	8-19	19-24	24-48	48-52	52 and deeper
Approximate El, ft	220-212	212-201	201-196	196-172	172-168	below 168
Recommend soil type	Sand (Reese)	Stiff clay with free water	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ) , lbs per cu ft	110	59	56	68	68	68
Cohesion (c), lbs per sq ft	0	1750	0	0	0	0
Angle of internal friction (ϕ), °	28	0	34	35	20	38
Subgrade modulus (k), lbs per cu in.	20	500	60	125	20	125
Strain at 50% (EE50)	NA	0.007	NA	NA	NA	NA

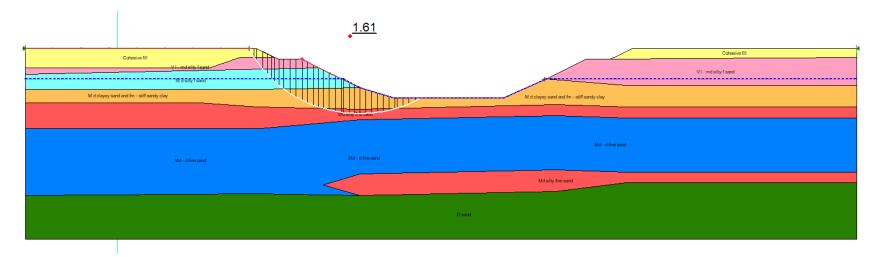
Note: Pile cap bottom at ±El 220

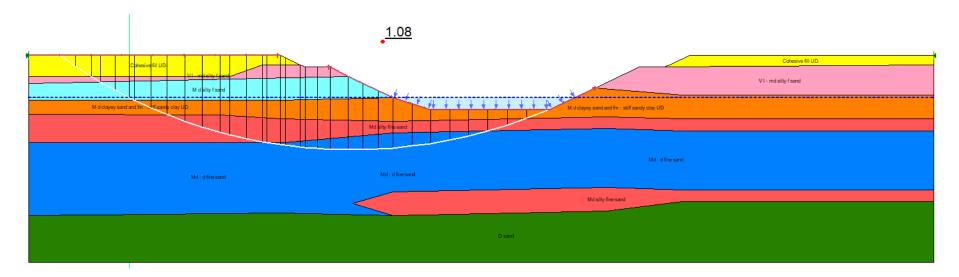

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

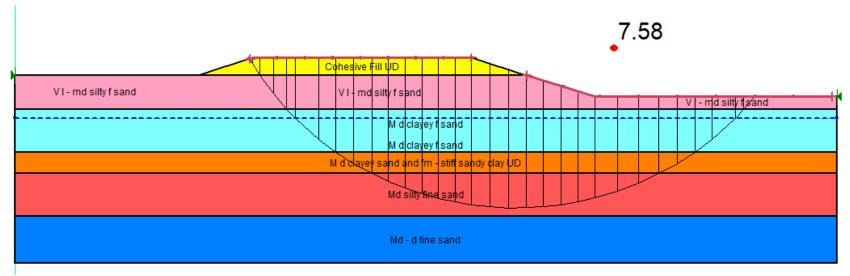
APPENDIX G

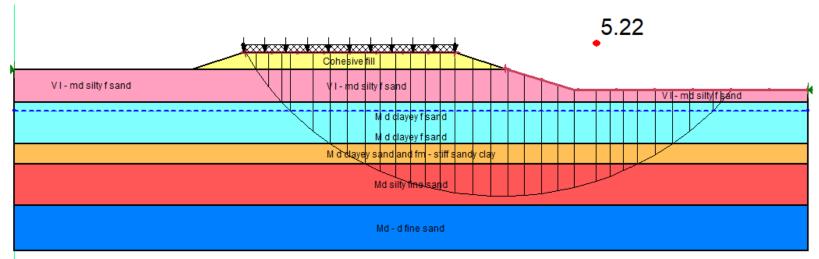
Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 1 GHBW Job No. 23-031 Poinsett County, Arkansas

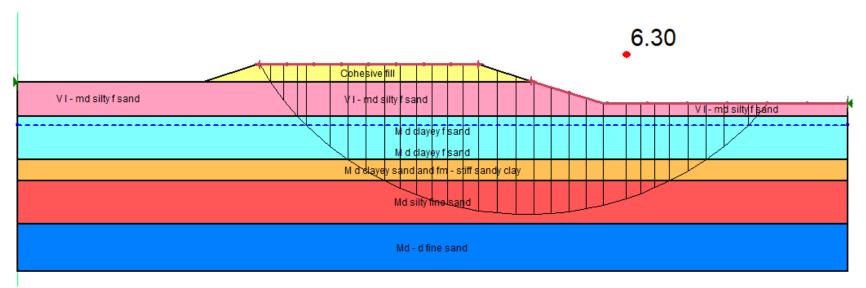

Embankment Slope	Design Loading Condition	Calculated Minimum Factor of Safety
	End of Construction	3.43
South End Slope (Bent 1)	Long Term	1.87
(2H:1V)	Rapid Drawdown from El 214 to El 205	1.61
	Seismic ($k_h = A_s/2 = 0.507$)	1.08
	End of Construction	7.58
South Side Slope (Bent 1)	Long Term	5.22
(3H:1V)	Rapid Drawdown from El 214 to Existing Grade	6.30
	Seismic ($k_h = A_s/2 = 0.507$)	1.38
	End of Construction	3.48
North End Slope (Bent 4)	Long Term	1.92
(2H:1V)	Rapid Drawdown from El 214 to El 205	1.53
	Seismic ($k_h = A_s/2 = 0.507$)	1.09
	End of Construction	7.00
North Side Slope (Bent 4)	Long Term	2.39
(3H:1V)	Rapid Drawdown from El 214 to Existing Grade	3.02
	Seismic ($k_h = A_S/2 = 0.507$)	1.35

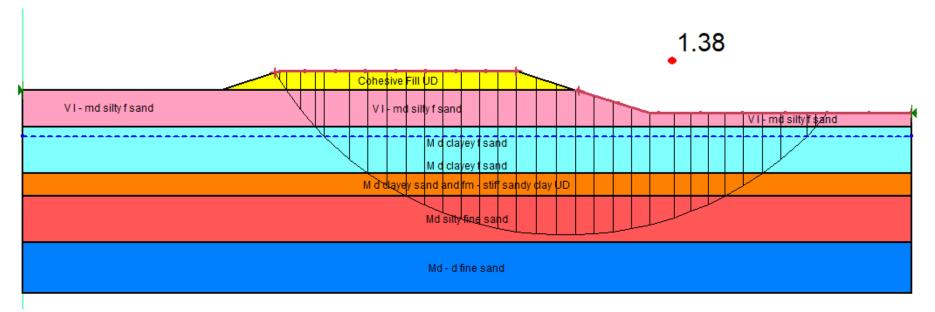

Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

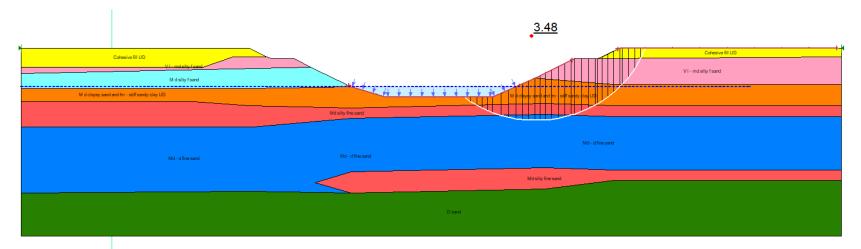

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

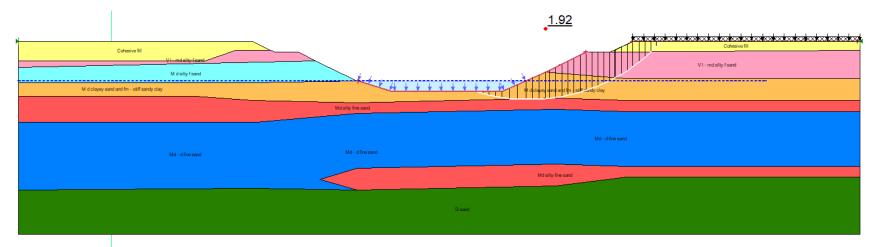

Results of Stability Analyses – Rapid Drawdown Condition from El 214 to El 205 Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

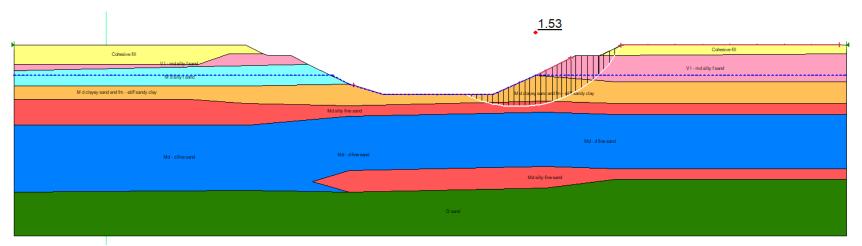

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2= 0.507) \\ \mbox{Bent 1 End Slope} \\ \mbox{2H:1V Slope, H=23 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Ditch No. 1} \end{array}$

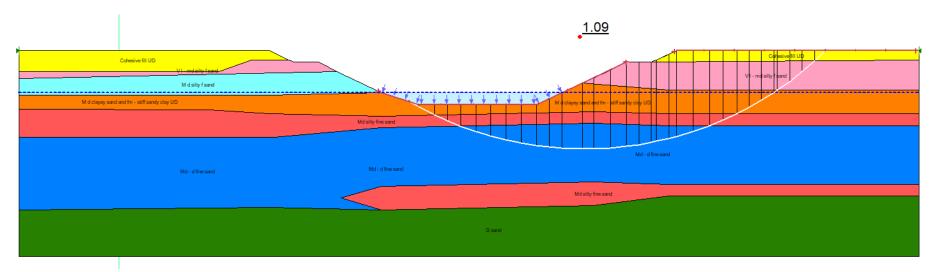

Results of Stability Analyses – End of Construction Bent 1 Side Slope 3H:1V Slope, H=9 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

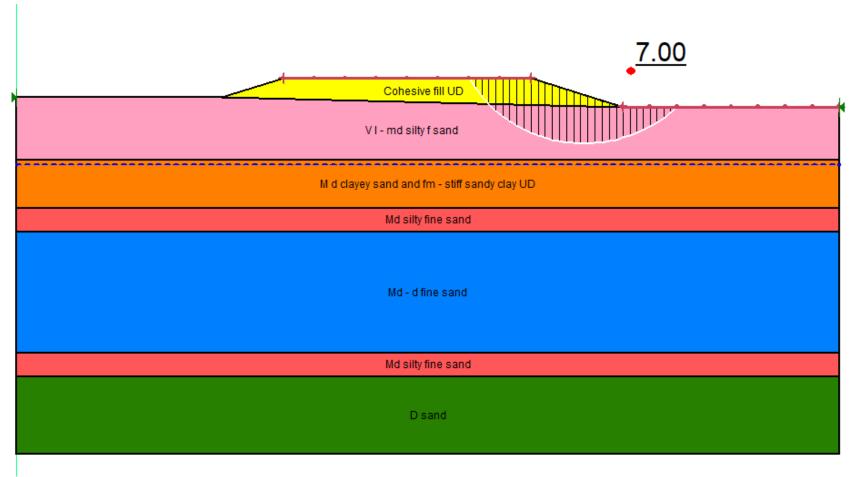

Results of Stability Analyses – Long Term Condition Bent 1 Side Slope 3H:1V Slope, H=9 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

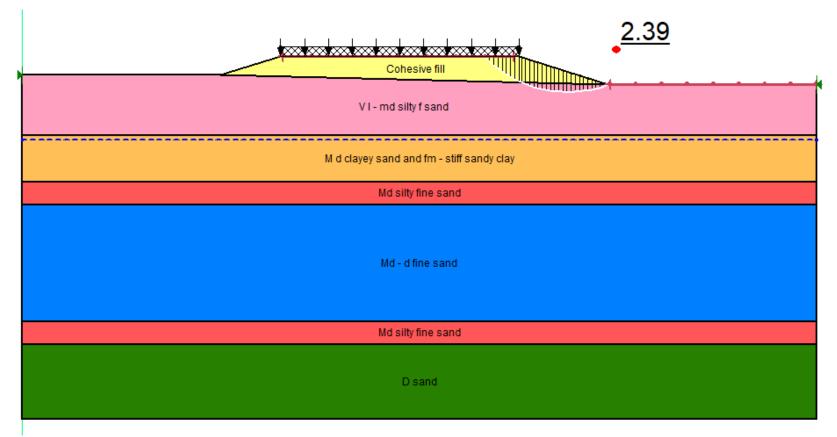

Results of Stability Analyses – Rapid Drawdown El 214 to Existing Grade Bent 1 Side Slope 3H:1V Slope, H=9 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

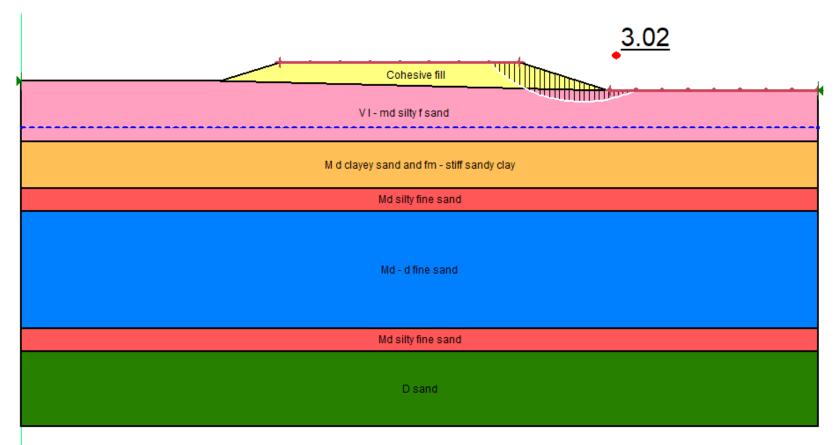

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.507) \\ \mbox{Bent 1 Side Slope} \\ \mbox{3H:1V Slope, H=9 ft \pm} \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Ditch No. 1} \end{array}$

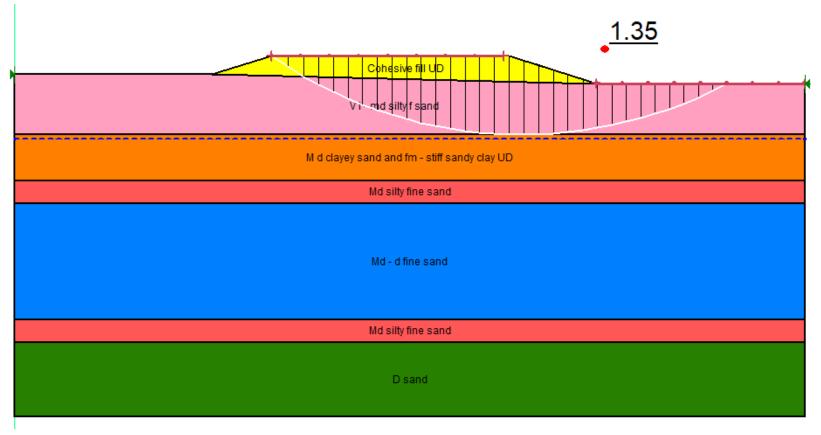

Results of Stability Analyses – End of Construction Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1


Results of Stability Analyses – Long Term Condition Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1


Results of Stability Analyses – Rapid Drawdown Condition, El 214 to El 205 Bent 4 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1


 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2= 0.507) \\ \mbox{Bent 4 End Slope} \\ \mbox{2H:1V Slope, H=23 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Ditch No. 1} \end{array}$


Results of Stability Analyses – End of Construction Bent 4 Side Slope 3H:1V Slope, H=6 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1


Results of Stability Analyses – Long Term Condition Bent 4 Side Slope 3H:1V Slope, H=6 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

Results of Stability Analyses – Rapid Drawdown Condition, El 214 to Existing Grade Bent 4 Side Slope 3H:1V Slope, H=6 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 1

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2= 0.507) \\ \mbox{Bent 4 Side Slope} \\ \mbox{3H:1V Slope, H=6 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Ditch No. 1} \end{array}$

APPENDIX H

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX I

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \le 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

Payment will be made under:

Pay Item

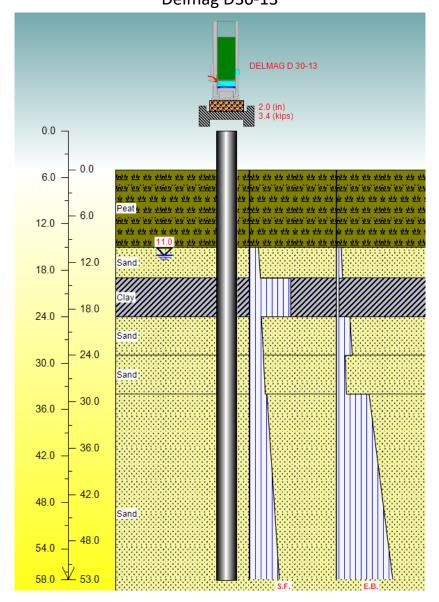
Pay Unit

Compacted Embankment

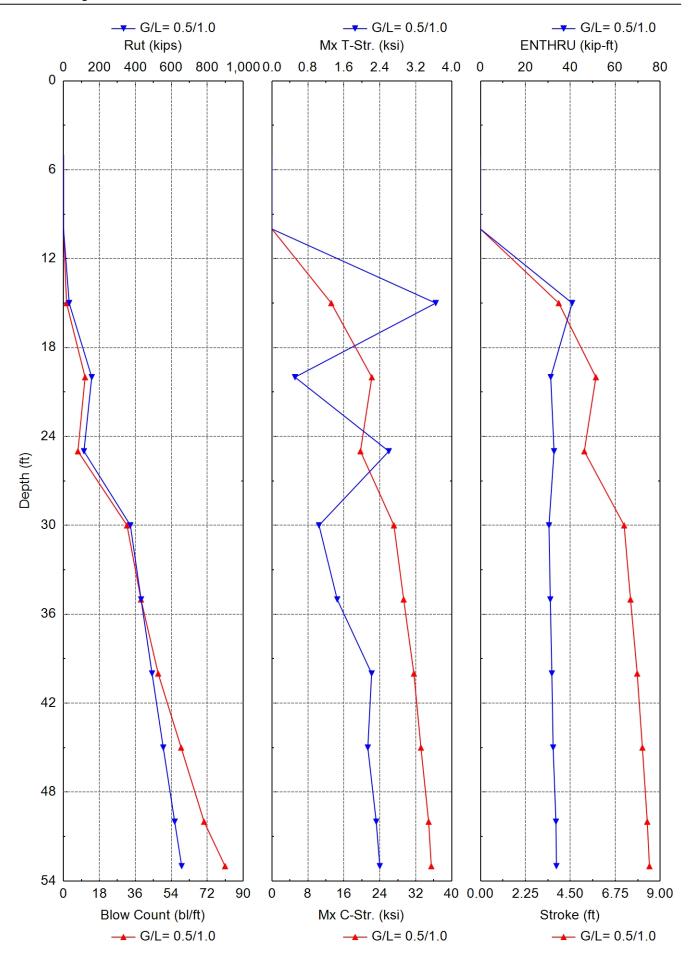
Cubic Yard

APPENDIX J

SUMMARY of DRIVEABILITY ANALYSIS RESULTS

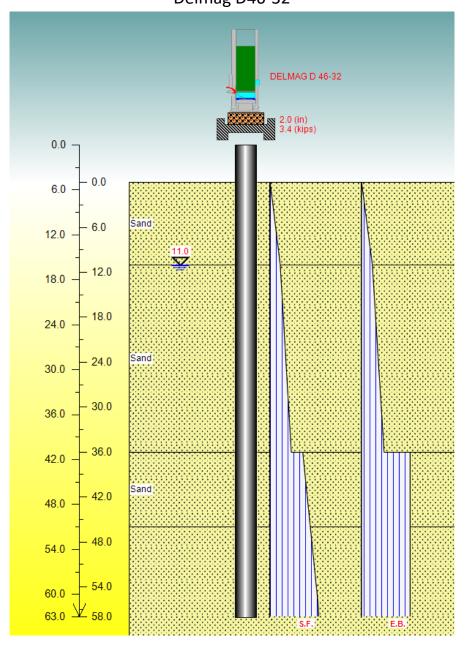

Project: 101124 - Hwy 135 Poinsett County, Arkansas GHBW Project No: 23-031

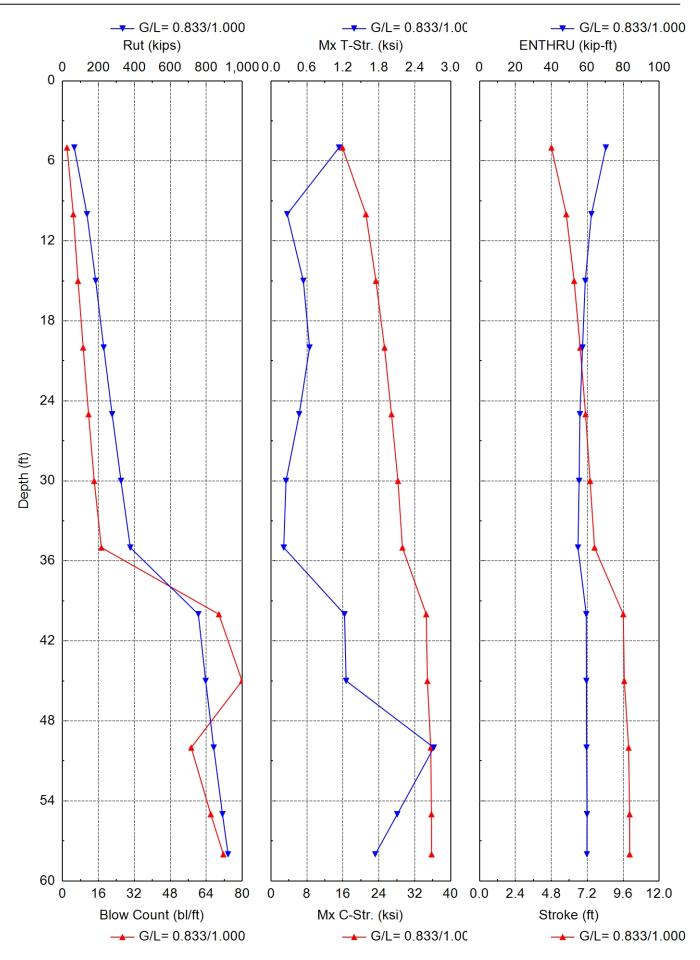
Site	Bridge	Bent	Pile Diameter (in.)	Wall Thickness (in.)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El, ft	Min Tip El, ft	Pile Length, ft	Minimum Hammer Energy (ft- kip)	Max Comp Stress, ksi
		1	16	0.75	270	220	167	53	66	35.5
Site 3 - Ditch	С	2	24	0.50	455	208	150	58	122	35.7
No. 1	U	3	24	0.50	450	206	146	60	122	35.7
		4	16	0.75	230	220	161	59	66	34.5


Notes: 1. Driveability analyses performed utilizing <u>GRLWEAP 2014</u>; Pile Dynamics, Inc.

2. All piles are steel shells.

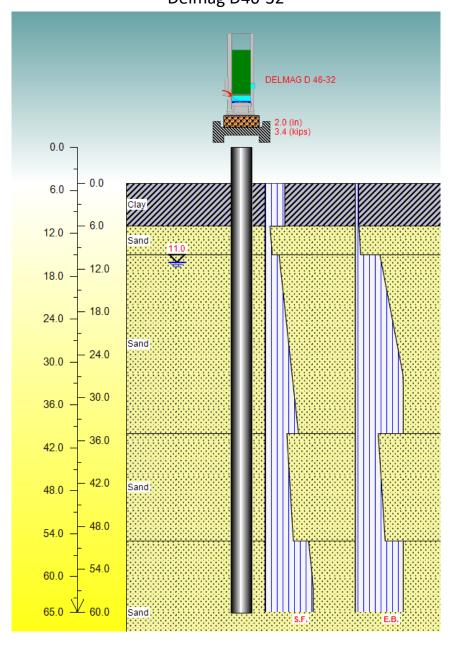
ArDOT 101124 Hwy 135 over Ditch No. 1 Bent 1 16-in-diameter Steel Shell Pile Delmag D30-13

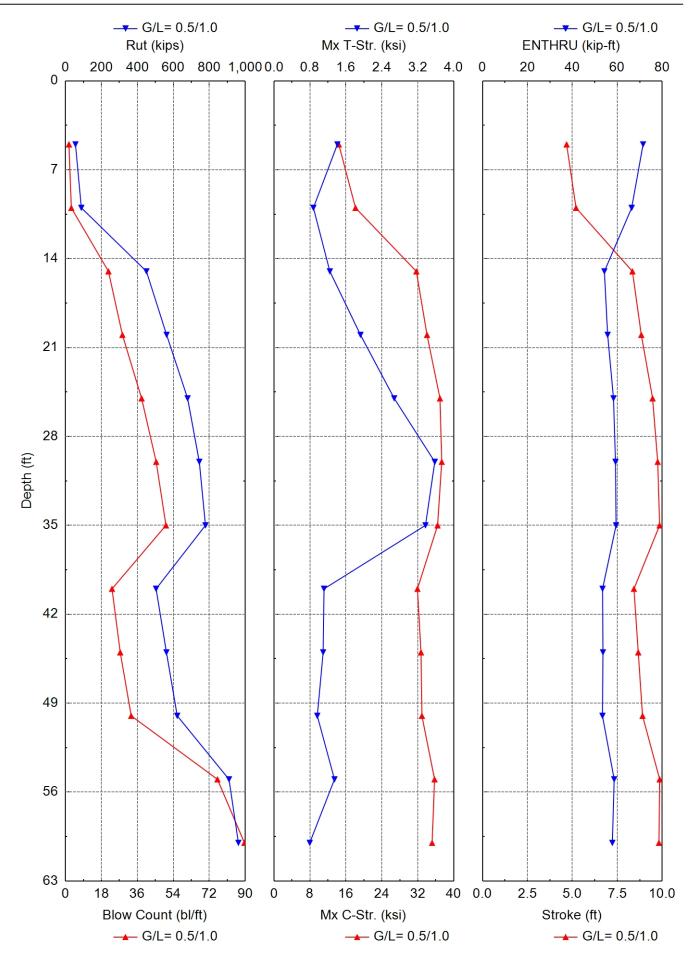



	Gain/Loss Factor at Shaft/Toe = 0.500/1.000								
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	10.03	0.0	D 30-13
10.0	0.0	0.0	0.0	0.3	0.000	0.000	10.03	0.0	D 30-13
15.0	31.5	6.4	25.1	1.5	13.188	3.644	3.92	40.8	D 30-13
20.0	157.0	17.7	139.3	10.8	22.219	0.512	5.78	31.3	D 30-13
25.0	113.7	24.3	89.3	7.2	19.685	2.600	5.20	32.7	D 30-13
30.0	372.0	32.1	339.9	31.8	27.142	1.046	7.19	30.5	D 30-13
35.0	431.7	41.8	389.9	38.8	29.297	1.451	7.51	31.1	D 30-13
40.0	492.7	52.7	439.9	47.4	31.581	2.218	7.85	31. <mark>8</mark>	D 30-13
45.0	555.0	65.0	490.0	58.9	33.145	2.132	8.11	32.3	D 30-13
50.0	618.6	78.6	540.0	70.4	34.861	2.320	8.35	33.6	D 30-13
53.0	657.5	87.4	570.0	80.9	35.4 <mark>5</mark> 6	2.399	8.46	33.8	D 30-13

Total driving time: 32 minutes; Total Number of Blows: 1386 (starting at penetration 5.0 ft)

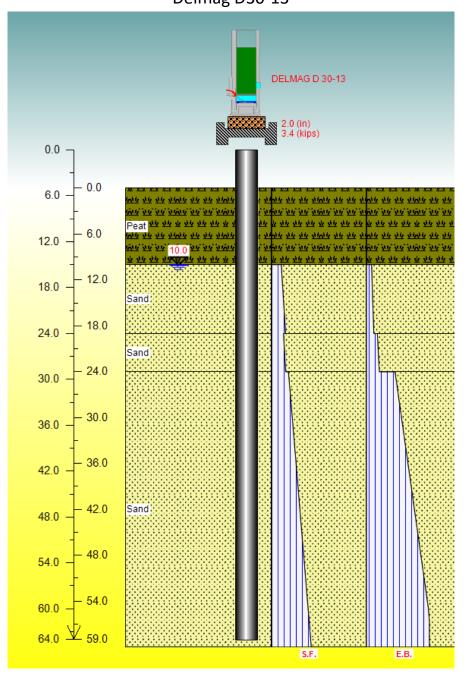
ArDOT 101124 Hwy 135 over Ditch No. 1 Bent 2 24-in-diameter Steel Shell Pile Delmag D46-32

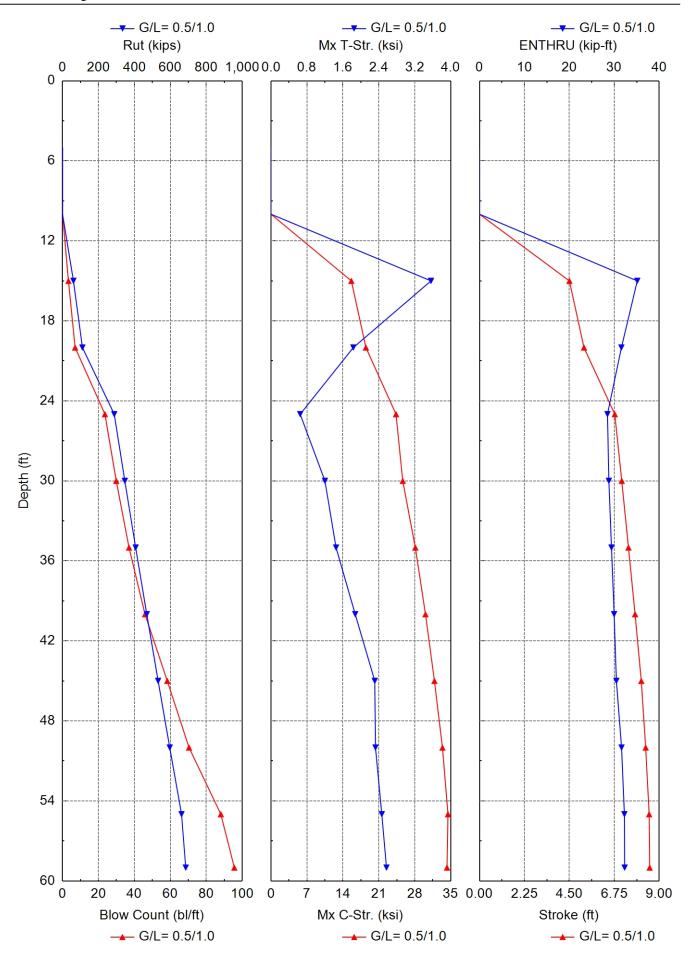



		Gain/	'Loss Fa	ctor at Sł	naft/Toe =	0.833/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	65.6	2.5	63.1	2.0	15.898	1.136	4.80	70.3	D 46-32
10.0	136.1	9.9	126.2	4.8	21.128	0.270	5.80	62.3	D 46-32
15.0	184.7	21.5	163.2	6.9	23.347	0.540	6.32	58.9	D 46-32
20.0	229.2	35.5	193.7	9.2	25.263	0. <mark>6</mark> 43	6.72	57.3	D 46-32
25.0	276.1	51.9	224.2	11.6	26.816	0.471	7.08	55.9	D 46-32
30.0	325.4	70.7	254.7	14.1	28.261	0.251	7.38	55.4	D 46-32
35.0	377.1	91.9	285.2	17.3	29.251	0.212	7.68	54.8	D 46-32
40.0	755.9	126.0	629.9	69.6	34.551	1.227	9.60	59.4	D 46-32
45.0	796.6	166.7	629.9	79.9	34.805	1.254	9.67	59.5	D 46-32
50.0	841.3	211.4	629.9	57.3	35.553	2.718	9.96	59.6	D 46-32
55.0	890.2	260.3	629.9	66.0	35.708	2.108	10.02	59.8	D 46-32
58.0	921.3	291.4	<mark>6</mark> 29.9	71.6	35.732	1.741	10.03	<mark>59.8</mark>	D 46-32

Total driving time: 44 minutes; Total Number of Blows: 1728 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Ditch No. 1 Bent 3 24-in-diameter Steel Shell Pile Delmag D46-32




		Gain/	Loss Fa	ctor at Sł	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	55.4	12.8	42.6	1.7	14.417	1.411	4.68	71.5	D 46-32
10.0	88.0	20.4	67.7	2.9	18.139	0.877	5.21	66.4	D 46-32
15.0	450.2	37.5	412.6	21.5	31.681	1.243	8.34	54.3	D 46-32
20.0	562.6	59.0	503.6	28.5	34.054	1.924	8.84	55.7	D 46-32
25.0	679.3	84.7	594.6	38.1	36.942	2.675	9.47	58.3	D 46-32
30.0	744.5	114.6	629.9	45.4	37.337	3.578	9.75	59.2	D 46-32
35.0	778.7	148.9	629.9	50.3	36.413	3.372	9.86	59.5	D 46-32
40.0	503.9	173.6	330.3	23.3	31.928	1.113	8.43	53.4	D 46-32
45.0	561.6	200.8	360.8	27.4	32.713	1.094	8.67	53.6	D 46-32
50.0	621.7	230.3	391.3	32.9	32.924	0.963	8.91	53.4	D 46-32
55.0	909.7	279.8	629.9	76.1	35.737	1.346	9.86	58.6	D 46-32
60.0	962.0	332.1	629.9	89.6	35.189	0.796	9.82	57.8	D 46-32

Total driving time: 50 minutes; Total Number of Blows: 1960 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Ditch No. 1 Bent 4 16-in-diameter Steel Shell Pile Delmag D30-13

		Gain/	'Loss Fa	ctor at Sł	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	10.03	0.0	D 30-13
10.0	0.0	0.0	0.0	0.3	0.000	0.000	10.03	0.0	D 30-13
15.0	60.7	3.0	57.7	3.3	15.647	3.561	4.50	35.1	D 30-13
20.0	110.8	7.0	103.8	7.0	18.481	1.832	5.23	31.6	D 30-13
25.0	287.8	13.4	274.4	23.6	24.350	0.649	6.77	28.5	D 30-13
30.0	346.6	22.2	324.4	29.9	25.652	1.200	7.12	28.8	D 30-13
35.0	406.9	32.5	374.4	37.0	28.108	1.448	7.46	29.4	D 30-13
40.0	468.7	44.3	424.5	45.9	30.084	1.874	7.79	30.0	D 30-13
45.0	532.0	57.5	474.5	58.3	31.829	2.310	8.10	30.5	D 30-13
50.0	596.7	72.2	524.5	70.4	33.396	2.325	8.32	31.6	D 30-13
55.0	662.3	88.4	574.0	88.1	34.465	2.466	8.50	32.3	D 30-13
59.0	685.6	102.4	583.2	95.6	34.276	2.571	8.52	32.3	D 30-13

Total driving time: 47 minutes; Total Number of Blows: 1966 (starting at penetration 5.0 ft)

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 15, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION ARDOT 101124 HWY. 135 OVER DITCH No. 12 SITE 4 / BOX CULVERT POINSETT COUNTY, ARKANSAS

INTRODUCTION

Submitted herewith are the results of the geotechnical investigation performed for the Hwy. 135 over Ditch No. 12 box culvert planned in Poinsett County, Arkansas. This box culvert is Site 4 of the ARDOT 110124 Hwy. 135 Strs. & Apprs. (S) project. ARDOT Job 110124 geotechnical investigation was authorized by the Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023.

We understand the reinforced concrete box culvert will replace the existing highway bridge. The box will be a quadruple 12-ft by 10-ft reinforced concrete structure with a total length of approximately 60 feet. Simple slopes will be utilized at the box culvert with slopes at approximate 3-horizontal to 1-vertical (3H:1V) configurations. Site grading is expected to be minor with existing grades utilized to the extent possible. The maximum embankment height is understood to be about 12 feet.

SUBSURFACE INVESTIGATION

Subsurface conditions at the Hwy. 135 over Ditch No. 12 location were investigated by drilling one (1) sample boring (Boring D1) to a depth of 40 ft below existing grades. The project vicinity is shown on Plate 1 of Attachment 1. The approximate boring location is shown on the Plan of Boring, Plate 2 of Attachment 1. The subsurface conditions encountered in the boring, and the results of field and laboratory tests, are shown on the boring log, Plate 3. The surveyed ground

surface elevation is also shown on the log, as well as GPS coordinates. A key to the terms and symbols used on the log is presented on Plate 4.

LABORATORY TESTING

To evaluate pertinent physical and engineering characteristics of the foundation and subgrade strata, laboratory tests consisting of natural water content determinations and classification tests were performed on selected representative soil samples. Laboratory test results are shown on the log. The laboratory testing program is discussed in the following report sections.

The laboratory testing program included three (3) natural water content determinations performed to develop information on *in-situ* soil water content for the boring. The results of these tests are plotted on the log as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field visual classification and to evaluate soil plasticity, two (2) liquid and plastic limit (Atterberg limits) determinations and three (3) sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as pluses inter-connected with a dashed line using the water content scale. The percentage of soil passing through the No. 200 Sieve is noted in the "- No. 200 %" column on the appropriate log forms. Classification test results, along with soil classification by the Unified Soil Classification System and AASHTO designations, are summarized in Attachment 2. Grain-size distribution curves are also provided in Attachment 2.

SEISMIC CONDITIONS

Based on the results of the boring drilled at this location and the surface geology, a Seismic Site Class D (stiff soil profile) is considered fitting for the Hwy 135 Site 4 location with respect to the criteria of the <u>AASHTO LRFD Bridge Design Specifications Eighth Edition 2017</u>¹.

Given the site location and AASHTO code-based values, recommended seismic parameters are summarized below.

- Seismic Site Class D
- 1.0-sec period spectral acceleration coefficient $(S_1) = 0.549$
- Site amplification factor at 1.0 second $(F_v) = 1.5$
- 1.0-sec period spectral acceleration coefficient (S_{D1}) = 0.823
- Acceleration for a short (0.2 sec) period (Ss) = 1.883
- Site amplification factor for short period $(F_a) = 1.0$

¹ <u>AASHTO LRFD Bridge Design Specifications</u>, 8th Edition; AASHTO; 2017.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - Hwy 135 OVER DITCH NO. 12 (SITE 4)

- Peak ground acceleration (PGA) = 1.047
- Site amplification factor at PGA (F_{PGA}) = 1.0
- $A_s = 1.047$

Utilizing these parameters, Table 3.10.6-1² indicates that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Hwy. 135 bridge over Ditch No. 12 site.

LIQUEFACTION POTENTIAL

Liquefaction analyses were performed to evaluate the liquefaction potential of the foundation soils in the box culvert alignment. The analyses were performed utilizing the results of the boring drilled at the box culvert and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 1.047 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Attachment 3 as plots of calculated factors of safety against liquefaction potential. Liquefaction in these zones would result in immediate liquefaction settlement during a seismic event. Liquefaction settlement values on the order of 1 to 2 in. were calculated based on the results of the liquefaction analyses.

SUBSURFACE CONDITIONS

Based on the results of the boring performed at Site 4, the surface soils to 4-ft depth are comprised of soft to stiff reddish brown and gray fine sandy clay embankment <u>fill</u>. The embankment fill contains minor amounts of fine to coarse gravel and asphalt fragments. The fill has poor compaction and exhibits low shear strength and high compressibility. These soils typically classify as A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with very poor subgrade support for pavement structures.

Below the existing embankment fill is soft to firm gray and brown clay and fine sandy clay extending to 19 ft below existing grades. The clay and fine sandy clay exhibit low shear strength, moderate to low plasticity, and high compressibility.

The clayey soil units are underlain below 18 ft by medium dense brown and brownish gray fine sand and silty fine sand. Some medium to coarse sand is present at depth. These granular units

² <u>AASHTO LRFD Bridge Design Specification</u>, AASHTO; 2012

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

exhibit medium relative density and low compressibility. Relative density typically increases with depth.

Groundwater was encountered at 18.8 ft in June 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the ditch and nearby surface water features.

ANALYSES and RECOMMENDATIONS

Reinforced Concrete Box Culverts

We recommend the box culvert foundation loads be supported on the culvert bottom mat or continuous footings. However, it will be necessary to support footings on a minimum thickness of select granular fill to develop suitable bearing and to limit the settlement potential.

The foundation loads of the box culvert can be supported on a mat or continuous footings founded in compacted select granular fill. All mats or footings should be underlain by a minimum of 3 ft of select granular fill. Granular fill should consist of stone backfill (ARDOT Standard Specifications Section 207), Select Granular Backfill (AASHTO M 43 Size 57), or alternates approved by the Engineer or Department. Where clean crushed stone backfill (Section 207 stone backfill or AASHTO M 43 clean stone) is used, the stone should be fully incapsulated by a geotextile filter fabric complying with ARDOT Subsection 625.02, Type 2. The culvert foundation depths must be adequate to resist scour or must be protected from scour.

Foundation undercuts should have a minimum width determined by a 1-horizontal to 2vertical (1H:2V) projection from the footing edge to the undercut bottom. Where site conditions warrant mass undercut, footings may be founded in the compacted undercut backfill.

Foundation recommendations for the RCB culvert are summarized below.

- Bearing Stratum: select granular backfill
- Maximum nominal bearing pressure (qult): 3500 lbs per sq ft
- Recommended resistance factor (φ_b): 0.45
- Factored bearing pressure (q_r): 1580 lbs per sq ft
- Maximum nominal sliding resistance (tan δ): 0.40
- Sliding resistance factor (φ_τ):

Uplift resistance of the bottom mat or footings will be developed by structure dead loads and the weight of foundation units. Resistance to lateral forces will be developed by the passive resistance of the foundation soil and sliding resistance at the mat or footing bottom. The passive resistance of the soil and within the upper 1 ft of embedment or above the scour depth, whichever

0.80

is greater, should be neglected. Below the 1-ft embedment or scour depth, whichever is greater, a nominal passive resistance value of 350 lbs per sq ft may be used for the undisturbed overburden soils. A resistance factor (φ_{ep}) of 0.50 is recommended for passive pressure resistance.

Liquefaction settlement values on the order of 1 to 2 in. have been calculated. Where seismic settlement is a design consideration, ground improvement or deep foundations may be considered. Recommendations for ground improvement or deep foundations can be provided upon request.

A minimum width of 24 in. is recommended for continuous footings. All culvert bottom and foundation excavations should be observed by the Engineer or Department to verify suitable bearing. Post-construction total and differential settlement of foundations supported as recommended is expected to be less than 1 inch.

Lateral Earth Pressures on Culvert Walls

It is anticipated that culvert walls and any wingwalls will be backfilled with either unclassified borrow or select granular fill. Unclassified borrow is expected to be locally available soils which could be silty, sandy clay or silty fine sand. Select granular fill should comply with ARDOT Standard Specifications Section 302 for SM-1 or Select Granular Backfill (AASHTO M 43 No. 57).

Recommendations for lateral earth pressures on box walls are summarized below.

- Total unit weight (γ) for unclassified backfill: 125 lbs per cu ft
- Angle of internal friction (ϕ) for unclassified backfill: 20°
- Equivalent fluid pressure for unclassified backfill:
 - At-rest condition for walls that are fixed against rotation, backfilled with unclassified borrow, and fully drained: 85 lbs per sq ft per ft depth.
 - At-rest condition for walls that are fixed against rotation, backfilled with unclassified borrow, and no provision for internal drainage: 105 lbs per sq ft per ft depth.
- Angle of internal friction (φ) for SM-1 backfill: 32°
- Total unit weight (γ) for SM-1: 125 lbs per cu ft
- Equivalent fluid pressure for SM-1 backfill:
 - At-rest condition for walls that are fixed against rotation, backfilled with SM-1 or clean granular backfill, and fully drained: 60 lbs per sq ft per ft depth.
 - At-rest condition for walls that are fixed against rotation, backfilled with SM-1 or clean granular backfill, and no provision for internal drainage: 92 lbs per sq ft per ft depth.

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - Hwy 135 OVER DITCH NO. 12 (SITE 4)

- Angle of internal friction (φ) for Select Granular Backfill: 38°
- Total unit weight (γ) for Select Granular Backfill: 105 lbs per cu ft
- Equivalent fluid pressure for Select Granular Backfill:
 - At-rest condition for walls that are fixed against rotation, backfilled with clean stone backfill, and fully drained: 40 lbs per sq ft per ft depth.
 - At-rest condition for walls that are fixed against rotation, backfilled with clean stone backfill, and no provision for internal drainage: 79 lbs per sq ft per ft depth.

To utilize the lower earth pressure values of the "drained" condition, positive and continuous drainage from behind walls must be provided. This may include a clean, free draining crushed stone, gravel, or granular soil zone or a geosynthetic drainage board approved by the Engineer. Drainage zones should be fully isolated from all soil by a suitable geotextile complying with ARDOT Standard Specifications Subsection 625.02, Type 2. Water should be discharged from backfill by a system of regularly-spaced, functioning weep holes or drain pipes.

Stability Analyses

The box culvert replacement project includes new box culvert end embankments at each box culvert end. Plan box culvert embankment configurations are expected to be 3-horizontal to 1-vertical (3H:1V) slope configurations. The embankment heights are expected to be a maximum of 12 feet.

To evaluate suitability of the plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the stability analyses. Stability analyses were performed using the computer program SLOPE/W 2021⁴ and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic.

For the analyses of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.5235. For evaluating the rapid drawdown condition, a water surface elevation drop from El 224 to El 215 was assumed. The results of the stability analyses of the end slopes are summarized in the table provided in Attachment 5. These results indicate acceptable stability for all cases evaluated.

The new box culvert end configurations will include some additional embankment fill. We recommend the use of cohesive fill for the embankments within at least 100 ft of the box culvert ends. An example special provision is provided in Attachment 6.

⁴ <u>Slope/W 2021;</u> GEOSLOPE Ltd.

CONSTRUCTION CONSIDERATIONS

Earthwork

Site grading and site preparation at the Site 4 RCB location should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. in cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected plan of the box culvert. All saturated and organic soils at the box bottom grade should be mucked out and replaced with suitable materials.

The mat bottom should be constructed on select granular fill. A minimum of 3 ft of select granular fill has been recommended below the box. All undercuts and foundation excavations should be observed by the Engineer.

General fill and backfill for embankments may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Diversion of the ditch will be required to allow construction in the dry. Use of sumps is likely to be required to maintain suitable subgrade conditions during the work.

Density and water content of all earthwork should be maintained until box construction and embankments are completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Groundwater was encountered at 18.8-ft depth in June 2023. The ditch channel will contain varying amounts of water. In addition, shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvement, and all foundation, culvert, and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

The following attachments are included and complete this submittal.

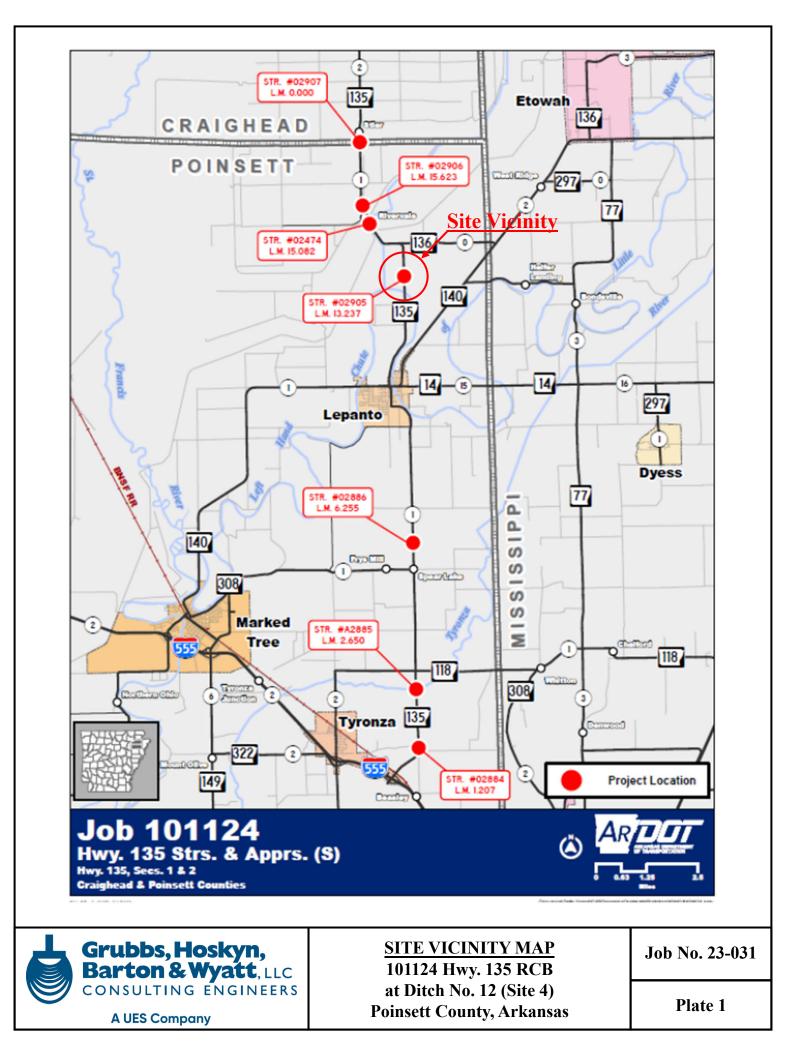
Attachment 1	Site Vicinity Map, Plans of Borings, Preliminary Boring
	Logs, Key to Terms and Symbols
Attachment 2	Laboratory Test Results
Attachment 3	Liquefaction Analysis Results
Attachment 4	Stability Analysis Results

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,

GRUBBS, HOSKYN, BARTON &WYATT, LLC

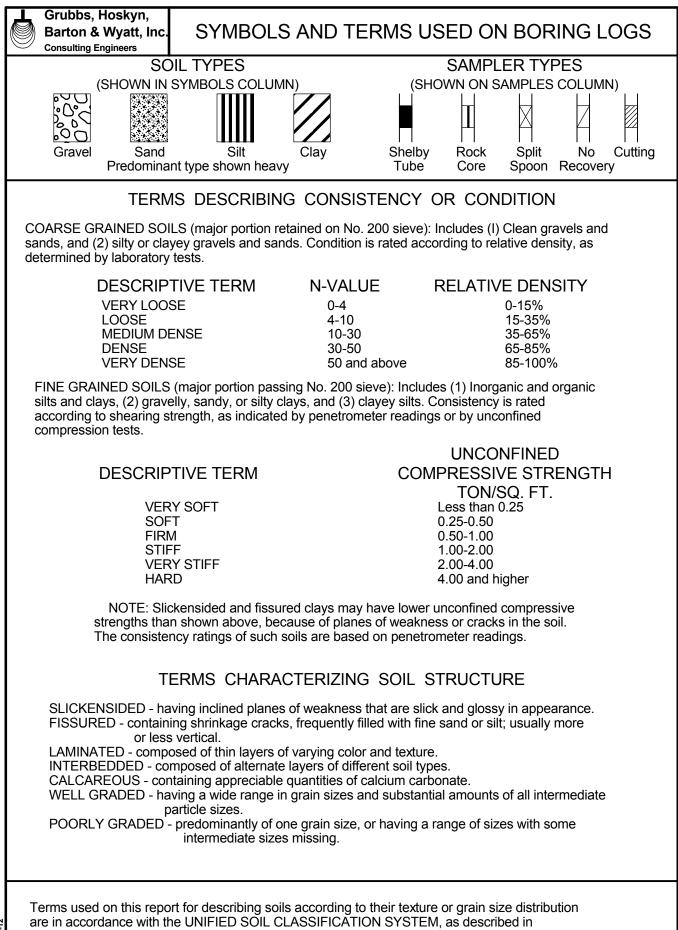

Vellets M. Sett

Velleta M. Scott, P.E. ITAT. Sr. Project Engineer DNAL Mark E. Wyatt, P.E. President

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

ATTACHMENT 1

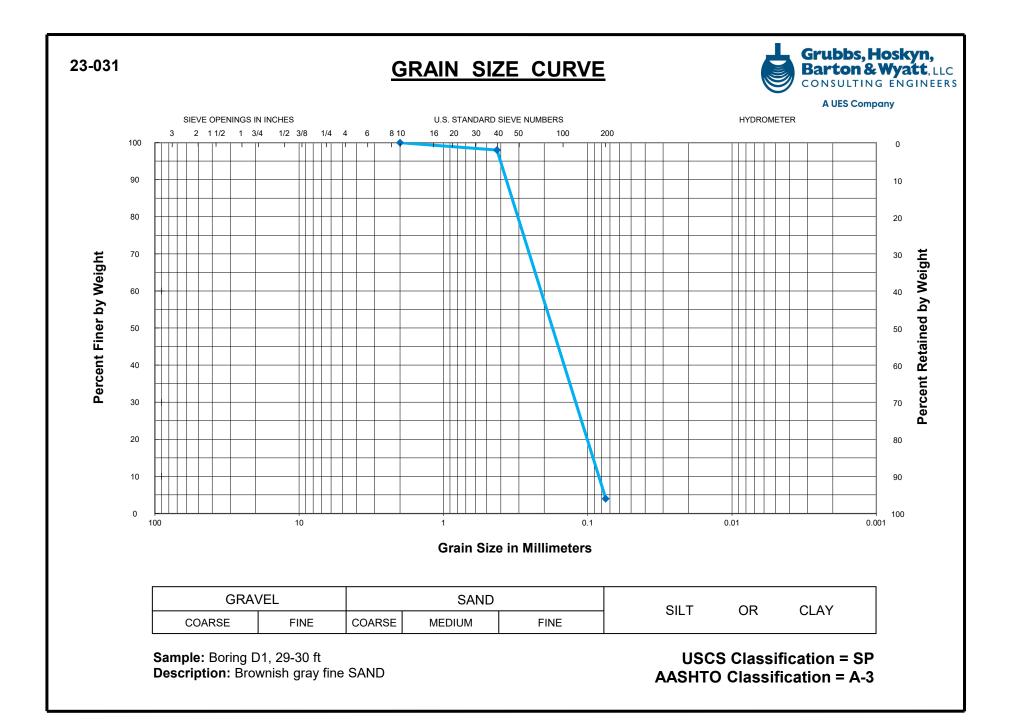


<u>PLAN of BORING</u> 101124 Hwy. 135 RCB at Ditch No. 12 (Site 4) Poinsett County, Arkansas

Scale: As Shown
Job No. 23-031
Plate 2

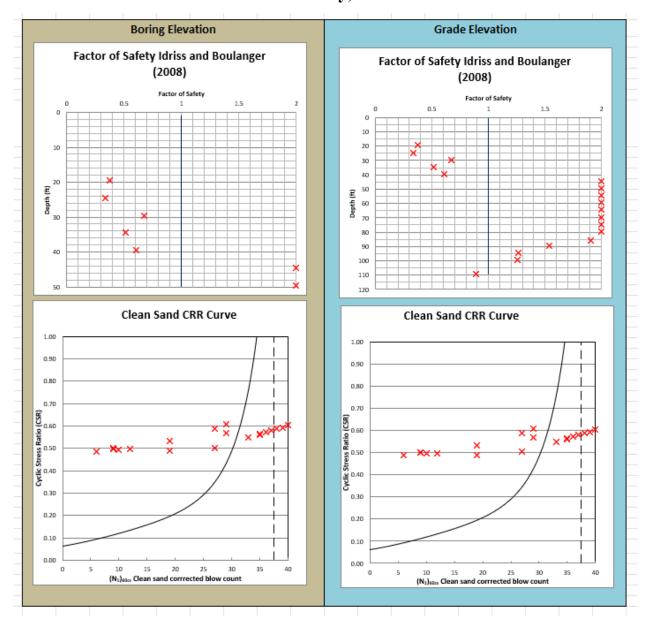
	TYP	Ξ:	HSA to 23 ft /Wash	LC	CATI	ON:	35.6	5230	° N, -9	0.3233	86° E			
⊢		0			۲× ۲			CO	HESIC	N, TO	N/SQ	FT		
ДЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	P	0.2 LASTIC	0.4 C	0.6 V CC		1.0 T	1.2 L		
	100000-10000		SURF. EL: 223.6				10	20	30	40	50	60	- + 70	
		X	Stiff reddish brown and gray fine sandy clay (CL) w/asphalt fragments and numerous fine to coarse gravel (fill) - soft below 2 ft	19 6										
5		7	Soft gray and brown clay (CH)	6										
		Ά	- firm below 6 ft	9					+-					· 1
10		X	Soft gray and brown fine sandy clay (CL)	8										
15			- silty (CL-ML) below 13 ft	6				+	•					į
20	-	Z	Medium dense brown silty fine sand (SM)	19										_
25		X	Medium dense brownish gray fine sand (SP) w/decayed organics	20										_
30		X		29										
35		X		29										
40		X	- with trace medium to coarse sand below 38 ft	32										

Technical Memorandum No.3-357, Waterways Experiment Station, March 1953


ATTACHMENT 2

SUMMARY of CLASSIFICATION TEST RESULTS

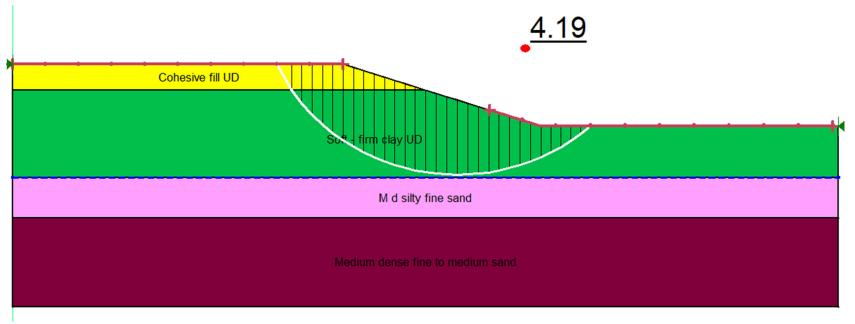
PROJECT: 101124 Hwy. 135 over Ditch No. 12 LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031


BORING	SAMPLE	WATER	AT	FERBERG LIM	PERCENT	USCS	AASHTO	
	DEPTH (ft)	CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PASSING #200	CLASS.	CLASS.
D1	6.5-7.5	35	76	29	47	100	СН	A-7-6
D1	14-15	29	29	22	7	59	CL-ML	A-4
D1	29-30	24				4	SP	A-3

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

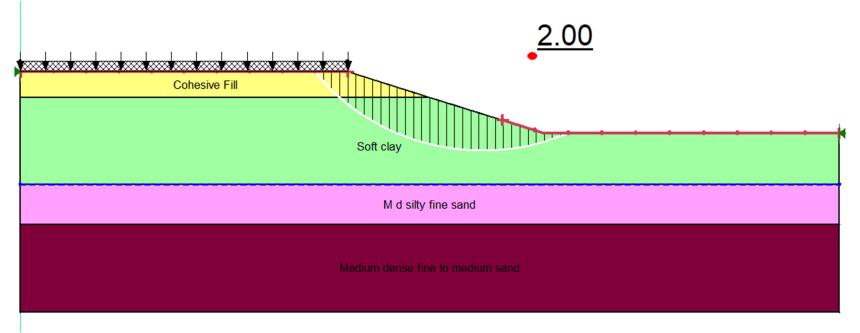
ATTACHMENT 3

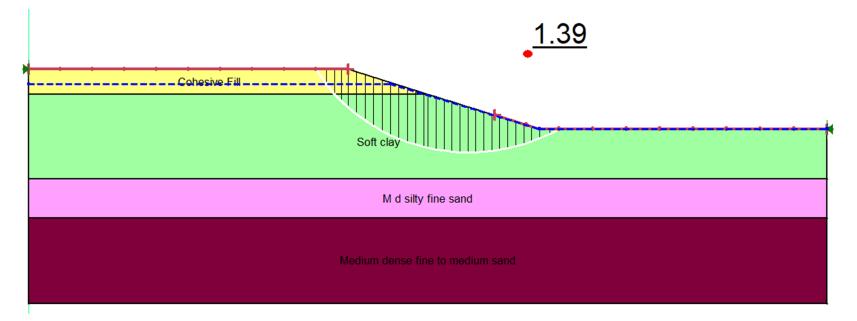
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 12 Boring D1 GHBW Job No. 23-031 Poinsett County, Arkansas

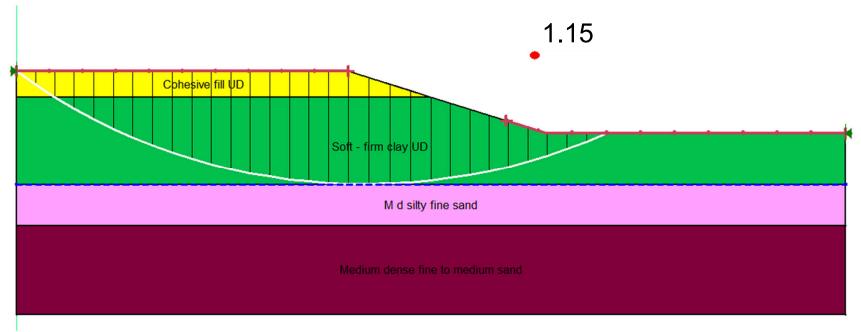


ATTACHMENT 4

Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Ditch No. 12 (Site 4) GHBW Job No. 23-031 Poinsett County, Arkansas


	Design Loading Condition	Calculated Minimum Factor of Safety
	End of Construction	4.19
Day Culvert (211-1V)	Long Term	2.00
Box Culvert (3H:1V)	Rapid Drawdown from El 224 to El 215	1.38
	Seismic ($k_h = A_s/2 = 0.5235$)	1.15


Results of Stability Analyses – End of Construction Box Culvert 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 12


Results of Stability Analyses – Long Term Condition Box Culvert 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 12

Results of Stability Analyses – Rapid Drawdown Condition from El 224 to El 215 Box Culvert 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Ditch No. 12

 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition} (k_h = A_S / 2 = 0.5235) \\ \mbox{Box Culvert} \\ \mbox{3H:1V Slope, H=12 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Ditch No. 12} \end{array}$

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 18, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER RIGHT HAND CHUTE OF LITTLE RIVER (SITE 5) ARDOT 101124 HWY. 135 STR. & APPRS. (S) POINSETT COUNTY, ARKANSAS

INTRODUCTION

This report provides the final results of the geotechnical investigation performed for the Hwy. 135 over Right Hand Chute of Little River replacement bridge in Poinsett County, Arkansas. This bridge is Site 5 of the ARDOT 110124 Hwy. 135 Strs & Apprs (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by the Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on May 31, 2023. Additional pile capacities and recommendations for ground improvement were submitted on August 14, 2023 and August 18, 2023, respectively.

We understand the replacement bridge will be a prestressed concrete girder unit with eight (8) bents, seven (7) spans, and a total length of approximately 667 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed east of the existing bridge. Site grading will include about 10 ft of fill. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Site 5 replacement bridge alignment were explored by drilling nine (9) sample borings to 100- to 130-ft depth (Borings E1 to E9). The bridge end borings, Borings E1 and E9, were offset south and north of the existing flood control levee to avoid drilling through the earth structure. These borings were backfilled with cement-bentonite grout after completion. One (1) boring drilled from the existing bridge deck, Boring E5, was abandoned when refusal on riprap was encountered at 4-ft depth. The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset, ft		ordinates rees)	Approx Surf El, ft	Completion Depth, ft
		10	Latitude	Longitude	п	
E1	319+50	20 Lt	35.671390	90.337669	233.8	130
E2	321+05	15 Lt	35.671773	90.337937	219.6	111
E3	321+20	25 Rt	35.671858	90.337853	220.3	110

Table 1: Summary of Exploration Program

Boring No.	Approx Sta	Approx Offset, ft		ordinates rees)	Approx Surf El, ft	Completion Depth, ft
		11	Latitude	Longitude	It	
E4	322+00	20 Lt	35.671984	90.338113	218.3	110
E5			35.672182	90.338321	234.1	4.5
E6	324+50	30 Lt	35.672546	90.338600	234.2	100
E7	326+20	20 Lt	35.672963	90.338858	219.1	110
E8	E8 326+20 25 Rt 35.67302		35.673025	90.338737	221.1	110
E9	327+60	30 Lt	35.673275	90.339143	233.8	110

The boring logs, presenting descriptions of the soil strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 27. The centerline station and offset of the boring locations and approximate ground surface elevation, as surveyed, are also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 28.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profile should be anticipated.

The borings were drilled with a truck-mounted CME-55 HTX rotary-drilling rig and a track-mounted Diedrich D-50 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.-diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the appropriate energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower

portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings. Borings E1 and E9 were backfilled with cement-bentonite grout after completion.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 58 natural water content determinations were performed to develop data on in-situ soil water content for each boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 6 liquid and plastic (Atterberg) limit determinations and 57 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The location of 101124 Site 5 is on Hwy. 77 where the Right Hand Chute of the Little River channel crosses the highway alignment just south of Highway 87 in Poinsett County. The existing bridge is a two-lane structure with a concrete deck, steel girders, and a concrete pile foundation system. The channel at this location is broad with variable well-defined to shallow banks. An existing weir is located downstream (southwest) of the new bridge alignment. A flood control levee is located on each side of the channel at the bridge location. The banks are fairly short and covered with grass, variable sparse to thick underbrush, and occasional trees. The project

locale is primarily agricultural land consisting of woods or large, flat fields. Several houses are located behind the levee north of the bridge. The existing two-lane roadway is on an embankment and is several feet higher than the adjacent terrain. The existing bridge deck and pavements are in poor condition. Surface drainage along the roadway is poor to fair and standing water is common after rain events.

Site Geology

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent alluvium and variable Tertiary sediments. The <u>Geologic Map of Arkansas¹</u> indicates the alignment extends through exposures of Quaternary Terrace Deposits and Alluvium. The Terrace deposits are comprised of a complex sequence of unconsolidated gravel, sand, silt and clay. Individual Terrace deposits are often lenticular and discontinuous. The Alluvium is comprised of recent stream-deposited alluvial sediments which include gravel, sand, silt, clay and mixtures of all components. The thickness of the Terrace and Alluvial deposits is variable. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

Seismic Conditions

A Site-Specific Ground Motion Response Analysis was performed for the 110124 project. The site-specific ground motion response analyses were performed by Geotechnology in accordance with Section 3.4.3.2 of the 2022 AASHTO Guide Specifications for LRFD Seismic Bridge Design 2nd Edition. Three (3) sites were analyzed for shear wave velocities: Sites 2, 5, and 7. The site-specific results from Site 5 were utilized in the current analysis.

Shear wave velocity profiles were developed for the Site-Specific Ground Motion Response Analysis. Summary results from the analysis are provided in Appendix D. An <u>average</u> shear wave velocity in the top 100 ft of subsurface soil was calculated to be 705 ft per second. In light of the shear wave velocity profile and the results of the borings, a Seismic Site Class D (stiff soil profile) is considered fitting for the Site 5 bridge location.

Based on the results of the site-specific seismic hazard analysis, design earthquake spectral response acceleration of 0.864g for PGA, 1.673g for S_{DS} , 1.247g for S_{D1} and 7.7 for Design Earthquake Moment Magnitude (Mw) were determined. These calculated design seismic accelerations utilizing the site-specific procedure are 67 percent or greater of the corresponding

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

counterparts as determined using the code-based procedure. A plot of design response spectra, showing the design earthquake spectral response accelerations versus period for both code-based and site-specific values, is also included in Appendix D. The design response spectra developed based on the results of the site-specific procedure are considered suitable for use in structural design.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger² in 2008. A design PGA value of 0.864 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Appendix E as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the analyses results are shown on the generalized subsurface profile also provided in Appendix E. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix E.

Subsurface Conditions

Based on the results of the borings, the surface soils are locally comprised of existing embankment fill extending to 13 to 23 ft below existing grades (see Borings E1 and E9). The embankment fill consists of loose to medium dense gray, dark gray, brown, and reddish brown silty fine sand and clayey fine sand (SM and SC) and firm to stiff gray and reddish brown clay and fine sandy clay (CH and CL). The silty, clayey sand and clay/sandy clay exhibit low to moderate relative density or shear strength and moderate to high compressibility. The fill soils typically classify as A-2-4, A-6, and A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to fair subgrade support for pavement structures.

Below the fill or at the surface to 17- to 38-ft is brown, gray, dark gray, and brownish gray very loose to medium dense silty fine sand (SM and SP-SM), clayey fine sand (SC), and fine sandy silt (ML) with interbedded very soft to soft clay (CH) and silty clay (CL) layers. The silty, clayey

² "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

sand and clay/silty clay exhibit low to moderate relative density or shear strength and moderate to high compressibility. The granular soils typically classify as A-2-6, A-3, A-4, and A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to fair subgrade support for pavement structures.

The silty and clayey surface soil units are underlain below 17 to 38 ft to in excess of the completion depth of the borings by medium dense to very dense gray, brown, grayish brown and brownish gray fine to medium sand strata (SP and SP-SM). Some coarse sand, sandy clay seams, organic inclusions, and fine gravel are present at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth. Groundwater Conditions

Groundwater was encountered in the borings at 4.7 to 28 ft depth in in May and June 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the river and other surface water features.

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 5 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors, such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

Additionally, stability of the northern embankment end slope is not expected to be adequate for the seismic condition. Lateral spread would also occur during some seismic events. Consequently, ground improvement will be warranted to mitigate deficient slope stability and prevent lateral spread during seismic events. Recommendations for piling and ground improvement are discussed in the following report sections.

Piling

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 24-in.-diameter steel shell piles are planned for bridge ends and 30-in.-diameter steel shell piles are planned for the interior bents. We also understand that piling at Bents 2, 3, and 4 will have isolation casing driven to El 192.6 prior to the steel shells being driven. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix F. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength is mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (φ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (φ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects. The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical. We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix G. <u>End Slope Stability</u>

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 8) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 33 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020^3 and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.432. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value from the site-specific seismic hazard analysis. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 231 to El 214 was assumed.

Given the anticipated liquefaction triggering with concomitant reduced shear strength and lateral spread in the liquefied zone, ground improvement will be required to develop sufficient stability in a seismic event. A minimum factor of safety against sliding of 1.05 is required for the seismic condition. Stability analyses were performed assuming ground improvement at bridge ends, as discussed in the <u>Ground Improvement</u> section of this report.

Stability analyses results are summarized and presented graphically in Appendix H. The results of the stability analyses indicate that plan configurations of the embankment end slopes are acceptable with respect to stability of all loading conditions evaluated. This includes stability in seismic loading.

Ground Improvement

The results of liquefaction analyses indicate significant risk of liquefaction triggering in the loose to medium dense fine to medium sand at relatively shallow depth. The zone of liquefaction adversely impacts the stability of the north bridge end embankment during a seismic

³ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

event as determined by stability analyses. Analyses indicate that stability at the north bridge end in the seismic loading condition would not be adequate without ground improvement. Analyses also indicate that stability at the south bridge end in the seismic loading condition will be acceptable without ground improvement.

The use of compaction piles is recommended for ground improvement at the north bridge end. The compaction piles will mitigate the liquefaction potential by densifying the surrounding granular soils and reinforcing the soil mass with stiffened elements. This will serve to both increase the resistance to liquefaction and to improve stability during seismic loading. With ground improvement, adequate north bridge end embankment slope stability and resistance to lateral spread during seismic loading are anticipated during seismic loading.

The concept for ground improvement was developed by evaluation of compaction piles at various spacings. The assumption of ground improvement was to provide densification through a sufficient depth of potential liquefaction triggering to provide adequate stability during seismic loading. The liquefaction analyses results and stability analyses were used to develop a minimum plan penetration and tip elevation for compaction piles. For evaluation of the general case of mitigating the liquefaction potential and improving stability for the seismic case, stability analyses were performed. Multiple iterations were performed until a minimum calculated factor of safety of 1.05 had been developed for the seismic case.

Displacement piles are recommended for ground improvement to maximize the effect of densification. Based on economic considerations, untreated timber piles complying with ARDOT Standard Specifications Section 818 are recommended. Other displacement pile types or sizes could be used if approved by the Engineer.

For ground improvement at the Site 6 north bridge end, the following are recommended.

- Untreated timber piles (nominal 14-in. butt, 10-in. tip), spaced at 8 ft on center each direction.
- Piling extending in a zone extending as shown on the conceptual layout drawing provided in Appendix I.
- Plan tip elevation varies. Piles driven to practical refusal may be terminated at shallower depths.
- Pile length: 40 feet.

The concept for compaction pile ground improvement is shown on the drawings included in Appendix I. Some field adjustment of the pile layout is considered acceptable. However, location adjustments in excess of the specified tolerance should be approved by the Engineer or Department.

We recommend that timber piles be driven with a pile hammer capable of delivering at least 12,500 ft lbs per blow. Where compaction piles are driven to practical refusal, we recommend that driving be terminated and the compaction pile accepted. Practical pile refusal may be defined as a penetration of 0.5 in. or less for the final 10 blows.

Subgrade Support

It is understood that "standard" pavement sections for the approach roads will be developed by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-4 and A-6. These classifications correlate with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, localized undercuts or improvement depths on the order of 2 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. in cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, localized undercutting could be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 13 to 18 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix J. Where embankment heights are less than about 4 ft, undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow. An example special provision for cohesive embankment fill is provided in Appendix K.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and

backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Density and water content of all earthwork should be maintained until the retaining wall, embankments, and bridge work is completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

<u>Piling</u>

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered. Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁴. In the driveability analyses, the steel shell piles were assumed to be driven from the plan cap bottom elevation or existing grade. Graphical and tabulated results of these analyses are provided in Appendix L.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 125 ft-kips per blow for driving the steel shell piles at the end bents. For intermediate bents 3 through 7, we recommend a hammer system capable of delivering at least 212 ft-kips per blow for driving the steel shell piles. A hammer system capable of delivering at least 248 ft-kips per blow is recommended for driving the steel shell piles at Bent 2. A specific review and analysis of the pile-hammer system proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

⁴ <u>GRLWEAP 2014; Pile Dynamics, Inc.</u>

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

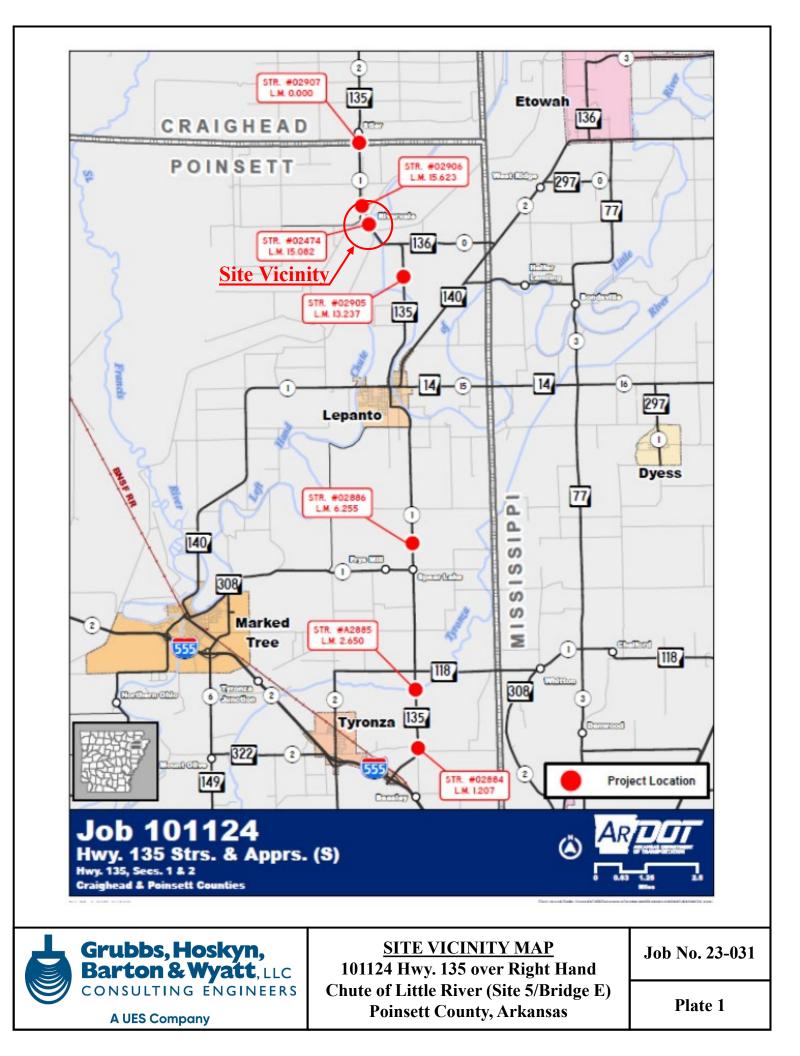
The following attachments are included and complete this submittal.

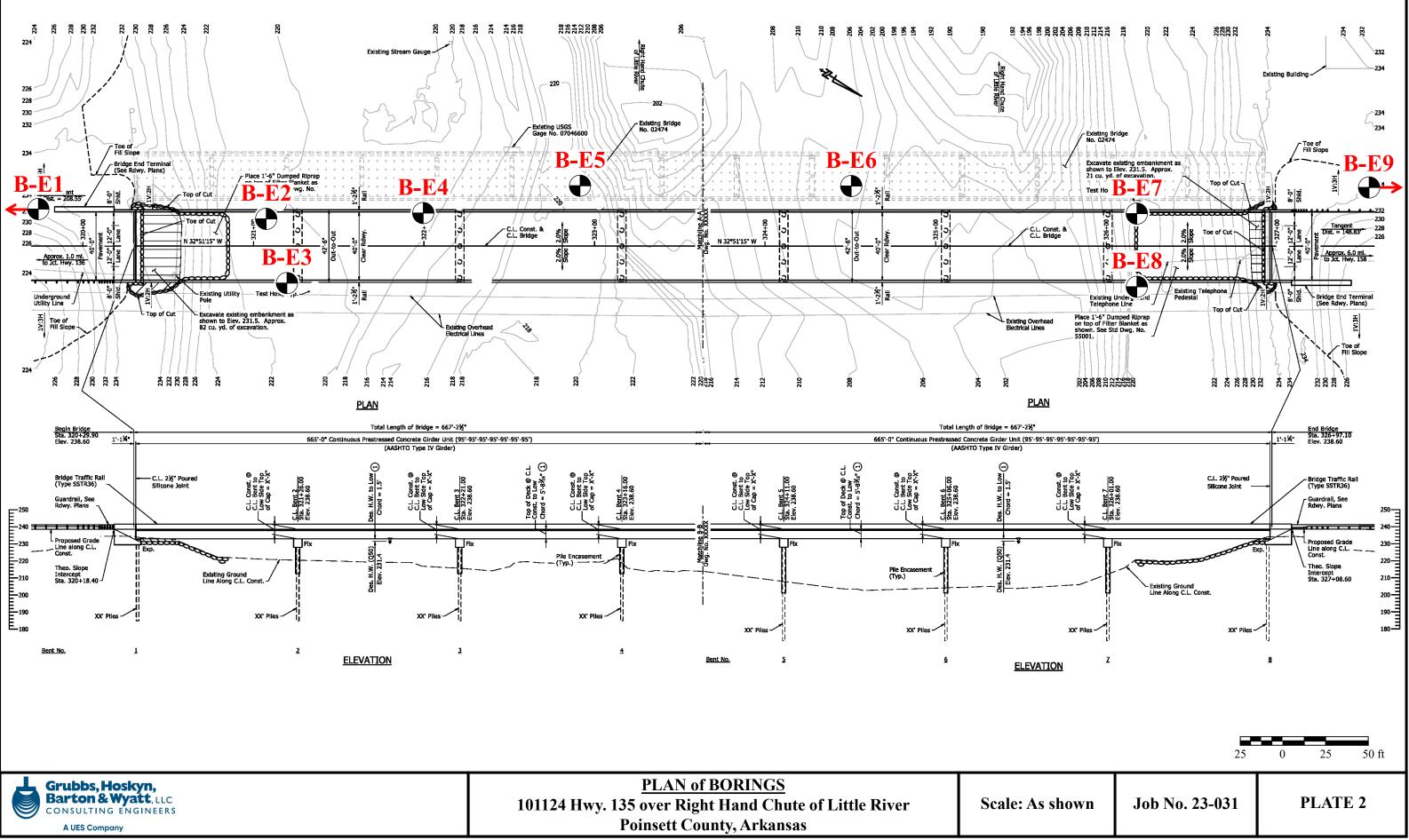
Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 27	Boring Logs
Plate 28	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Selected Results - Site-Specific Ground Motion
	Response Analysis
Appendix E	Liquefaction Analysis Results
Appendix F	Nominal Pile Capacity Curves
Appendix G	Lateral Load Parameters
Appendix H	Results of Stability Analyses
Appendix I	Conceptual Ground Improvement Plan
Appendix J	Example SP – Woven Geotextile
Appendix K	Example SP – Cohesive Embankment Fill Special
	Provision
Appendix L	Driveability Analysis Results

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,


GRUBBS, HOSKYN, BARTON &WYATT, LLC


Vellet M. Sutt

Velleta M. Scott, P.E. Sr. Project Engineer Mark E. Wyatt, President

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

-		
L Grubbs, Hoskyn,	PLAN of BORINGS	
Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS	101124 Hwy. 135 over Right Hand Chute of Little River	Scale: As s
A UES Company	Poinsett County, Arkansas	

TYPE:	Auger to 30 ft /Wash	LC	CATIC	DN: Appro	x Sta 319	+50. 20 ft L	t	
						N, TON/SC		
S L		ц	E N	0.2 0	.4 0.6	-Ò 0.8 1.0	- 1.2 1.4	
SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLASTIC		VATER	LIQUID	
	SURF. EL: 233.8			+ − − 10 2	0 30	40 50	- 60 70	
	8 inches: Asphalt Cement							
	Medium dense gray and brown silty fine sand (SM) w/clay pockets (fill)	19 23						
5 -	- reddish brown below 5 ft	24		•		G _s = 2.69		2
	Firm gray clay, slightly sandy (CH)	9						
10-	(fill) - stiff below 8.5 ft		97	8	+		-+4	8
15	Medium dense brown and gray silty fine sand (SM) w/clay pockets	14		•				2
20-	Very loose brown and gray silty fine sand (SM) w/sandy clay pockets	4						
25		1						
30 -		4		+ (●	G _s = 2.58		
35 -	- loose to medium dense below 33 ft	13						
40	Dense gray fine sand, slightly silty (SP-SM)	78						

	23-03 Gru Bar Consu	bb	os, Hoskyn, n & Wyatt, Inc. LOGOFE g Engineers 101124 Hwy. 135 ove Poinse	er Rt Ha	and C	hute	e of l		e Riv	/er						
	TYPE	Ξ:	Auger to 30 ft /Wash	LC	CATIO	ON:	Арр	rox S	Sta 3	19+5	50, 20) ft Lt				
												N/SQ				
L L	2	ŝ		щ	UNIT DRY WT LB/CU FT		0.2	0.4	0.6	—())	1.0	1.2	1.	1	% (
Ξ.	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	CUI		1				1			1		No. 200
DEPTH,	SYI	SAN		N ₆₀	NIT LB/	PI	_ASTI	С		WA CON	TER TEN1	Г	I	LIQU LIMI		No No
			(continued)				+	20	30	4	●- — 10	 50	60	+ 7()	
																_
- 50			Dense gray and brown fine sand, slightly silty (SM-SP)	60												-
- 55		X	- medium dense below 53 ft	32					•							6
- 60		X	- gray and brownish gray below 58 ft	37												-
- 65		X	Dense brownish gray fine to medium sand, slightly silty (SM-SP w/trace coarse sand and fine gravel	') 51				•								5
- 70		X		52												-
- 75		X		63												-
- 80		X	- medium dense from 78 to 83 ft	27												-
- 85		X	- dense from 83 to 98 ft	61												7
		<u>N</u>		52			<u> </u>									
				DEPTH IN BORI								I		E: 5/	/30/20)23
						-									ΡΙ ΑΤ	

Bar		ver Rt Ha sett Co., /	and Cl Arkan	hute of Litt sas	le River		
DL FT	: Auger to 30 ft /Wash				COHESION, TO 4 0.6 0.8		% 0(
DEPTH, F SYMBOL	DESCRIPTION OF MATERIAL (continued)	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLASTIC LIMIT +		+	- No. 200 %
-95 -100 -110 -110 -110 -110 -110 -110 -11	 - medium dense below 98 ft Dense brown fine to coarse sand (SM-SW) w/fine to coarse gravel - with less gravel below 118 ft NOTE 1: Drilled with CME-55 HT ECF=1.28. NOTE 2: Backfilled with cement-bentonite grout. 	96					9
	NOTE 2: Backfilled with cement-bentonite grout. PLETION DEPTH: 130.0 ft : 5-31-23	DEPTH '		TER ry to 30 ft		DATE: 5/3	0/2023

TYF	E: Auger to 15 ft /Wash	LC	CATIO	ON:	Approx	x Sta	321+0	5, 15 ft L	_t		
<u></u> –			₽.		(SION	, TON/S	ຊ FT		
EPTH, FT	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0	0.2 0.	4 0	0.6 0	.8 1.0	1.2	1.4	
DEPTH,	SAM	N ₆₀ ,	NIT D	PL/ L	ASTIC IMIT		WA CON	TER TENT		QUID IMIT	:
	SURF. EL: 219.6			1	+ 10 2	0 :	30 4	0 50	60	+ 70	
	Very loose brown silty fine sand (SM) w/silt pockets	_									
		5									
5	1	1									
	Loose brownish grav silty fine to									—	_
	Loose brownish gray silty fine to medium sand (SM)	6									
10 - 11		6					G	s= 2.61			
15 - 11	Ż										
	medium dense, gray below 18 ft										
20 -		15									
25 -	X	18								_	
	Dense brownish grav fine to									+	
30 -	Dense brownish gray fine to medium sand (SP)	61									
35 -	X	42					G	s= 2.71			
	- with trace coarse sand and fine gravel below 38 ft										
40	gravel below 38 ft	86									
••••	9 3										

	TYPE:	Auger to 15 ft /Wash	LC		ON:	Appro	x Sta	321+	05, 15	5 ft Lt			
F				νT				SION	1, TOT	N/SQ	FT		
H, FT	SYMBOL	DESCRIPTION OF MATERIAL	BPF	RY V U FT	C	0.2 0).4 (0.6	0.8	1.0	1.2	1.4	
DEPTH,	SAMPLES		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL L					г 			
		(continued)				10 2	20	30	40	50	60	70	
50 -			128										
55 -			154				•						
60 -			56										
00													
65 -			116										
55													
70 -			77										
10													
75			42										
75 -													
00			44			•							
80 -													
0-			73										
85 -												\top	

	23-03 Gru Bar Consu	bb	s, Hoskyn, LOGOF M & Wyatt, Inc. LOGOF Engineers 101124 Hwy. 135 ove Poinse		and C	hute			iver					
, FT			Auger to 15 ft /Wash						SION)5, 15 , TON	/SQ F		4	% 0
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL (continued)	N ₆₀ , BPF	UNIT DRY WT LB/CU FT		ASTIC IMIT +	 20 3		TER ITENT ●			IID IT 0	- No. 200 %
- 95 -		X		154										
-100		X	Dense silty fine to medium sand (SM) w/trace fine gravel	46										
-105														
-115]]] 		NOTE: Drilled with CME-55 HTX ECF= 1.28	52_										
-120	-													
-125 ⁻	-													
3-031 BRIDGE E.GPJ 7-28-23	-													
				DEPTH IN BORI						·	DA	TE: 5	/23/20	23

	TYPI	E:	Auger to 15 ft /Wash	LC	CATIO	DN: A	Appro	x Sta	321+2	20, 25 f	t Rt			
TH, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.2				, TON/ 0.8 1.			.4	
DEPTH,	SYN	SAM	SURF. EL: 220.3	N ₆₀ ,	UNIT D LB/O	PLA: LIN	STIC MIT H			TER		LIQU LIM		
			Loose brown and gray clayey fine			10	2	0 (30	40 5	06	60 7	0	
			sand (SC) Firm dark brown clay, slightly sandy (CH)	/ 10 8					Ģ	6 = 2.72	2			
5 -		X		6										_
		X	Soft brown and gray silt, slightly sandy (ML)	5										
10 -		X	Loose to medium dense gray and brown fine sand, slightly silty (SM-SP)	13										_
15 -		X	- loose at 13 to 23 ft	10				•	G	6 _s = 2.55	5			
20 -		X		12										_
25 -		X	- medium dense below 23 ft	14										_
30 -		X	Medium dense gray fine sand, slightly silty (SP-SM)	37										_
35 -		X	- dense below 33 ft	49				•						_
40 -		X	- gray and brown below 38 ft	59										

	23-03 Gru Bar Consu	bbs, Ho	/yatt, Inc. LOGOF ers 101124 Hwy. 135 c		and C	hute			River					
	TYPE	: Auger	to 15 ft /Wash	LC	CATIC	ON:	Appro	ox Sta	321+:	20, 2	5 ft Rt			
					₽.			СОН	ESION	I, TO	N/SQ	FT		%
H, FT	BOL	LEG		BPF	L FT	C	.2 ().4	0.6	0.8	1.0	1.2	1.4	00
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL. L	ASTIC IMIT		W/ COI	ATER	г	LIQI LIN		No. 200
		(cont	tinued)		5		╋ 10 2	 20	- <u> </u>	● 40	 50		- 70	'
- 50 -		Dense browr silty (3 and fi	e to very dense gray and n fine to medium sand, slig SM-SP) w/trace coarse sa ne gravel	htly 86 nd			•							5
- 55 -		X		128										
- 60 -		- dens	se with less silt (SP) below	7 58 61										-
- 65 -		X		55			•							2
- 70 -		X aray	v bolow 74ft	47										_
- 75 -		⊠ - Alay	v below 74ft											
- 80 -				44			_							
- 85 -		X X - with	some fine to coarse grave	42										4
		PLETION [DEPTH: 110.0 ft	DEPTH			1	1		1			1	
	DATE	: 6-1-23		IN BORI	NG: 12	2.8 ft					E	DATE:	5/31/2	023

	TYPI	Ξ:	Auger to 15 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	a 321	+20,	25 ft R	łt			
_					νT			СОН	ESIC	N, T	ON/SC	¢ FT			
н Т	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF		C	.2 ().4 I	0.6	0.8	1.0	1.2	1.4	¥	
DEPTH,	SYN	SAM		N ₆₀ ,	UNIT DRY WT LB/CU FT	PL. L	ASTIC		V CC		R NT				:
	1010-100		(continued)				• •	20	30	40	50	60	+ - 70)	
			below 89 ft												
	Ŏ														
95 -	8.8	X	- with fine to coarse gravel below 94 ft	49					_						
00	ð ð	X		60											
	303 828														
)5															
	8,8														
4.0		X		77											
10			NOTE: Drilled with Diedrich D-50												İ
			NOTE: Drilled with Diedrich D-50 ECF= 1.43												
15-															
20-													-+		
25-															
30-												+	\neg		

C		ton & Wyatt, Inc. LOGOFB Iting Engineers 101124 Hwy. 135 over Poinset	t Co.,	Arkan	isas				~ ~ ~	<i>6</i> . 1 .			
		E: Auger to 8 ft /Wash			ON: A								
Η		S	ш	×⊢			_		0	N/SQ F			
Е.	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.1	2 0).4	0.6	0.8	1.0	1.2	.4 I	-
DEPTH,	SYN	SAM SAM	N ₆₀ ,		PLA	STIC		W/ IOO	ATER NTENT		LIQI LIN	JID	
		SURF. EL: 218.3		5	10	+	 20		•			• 70	
		Very soft brown clay (CH) w/fine sand pockets	4			5 2	•						
		Soft brown clayey silt, sandy (CL-ML)	9			-	┝╼	•					
5	_	Loose brownish gray fine sand (SP)	7			(•		N-PLA	STIC-			_
		- very loose to loose at 6 to 8 ft	6										
		- very loose below 8 ft	4										
10													
45		Medium dense brownish gray fine sand, slightly silty (SP-SM)	30										
15													
		damaa halaw 10 ft											
20		- dense below 18 ft	89				•						
20													
25		X	143										
30	-		96										+
		Dense brownish gray fine to medium sand (SP) w/trace coarse sand and fine gravel	70										1
35		sand and fine gravel	73										+
4.6		X	90										
40													1
	-		79										

L GI Ba Corr	ubbs, Hoskyn, LOGOFB(rton & Wyatt, Inc. LOGOFB(sulting Engineers 101124 Hwy. 135 over I Poinsett (D R Rt Ha Co., <i>I</i>	I N G and C Arkan	B N O. hute of isas	. E4 f Little	River					
TY	PE: Auger to 8 ft /Wash	LC	CATIO	ON: Ap	prox St	a 322+0	0, 20 ft	t Lt			
JEPTH, FT SYMBOL	SEI DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0.2	0.4	1ESION 0.6 0	, TON/S			4	- No. 200 %
DEPTH, SYMBC	(continued)	N ₆₀ ,	UNIT I LB/(- No.
				10	20	30 4	10 50) 60	<u> </u>)	
- 50 -	X	70									
- 55 -		54			•						4
- 60 -		53									
- 65 -		51									
- 70 -		47									
75 -		50									
- 80 -		46									
LGBNEW 23-031 BRIDGE E GPJ 7-28-23		44									
-031 B		40									
IOD FOR THE ION ION ION ION ION ION ION ION ION ION			TO WA		I		<u> </u>	DA	TE: 5/	/25/20	23

23-031

Grubbs, Hoskyn, Banantag Engineers 101124 Hwy. 135 over Rt Hand Chute of Little River Poinsett Co., Arkansas TYPE: Auger to 8 ft Wash LOCATION: Approx Sta 322400, 20 ft Lt L L L L L L L L L L L L L	23-												
L COHESION, TON/SQ FT 000000000000000000000000000000000000	G	rubbs, Hoskyn, arton & Wyatt, I nsulting Engineers	nc. LOGOFE 101124 Hwy. 135 ove	er Rt Ha	and C	hute o							
La Use of the second secon	TY	PE: Auger to 8 ft /V	Vash	LC	CATIO	DN: A	Approx S	Sta 322+(00, 20 f	ft Lt			
10 20 30 40 50 60 70 95 54 54 60 <t< td=""><td></td><td>, w</td><td></td><td></td><td>Т МТ</td><td></td><td></td><td></td><td>0</td><td>SQ FT</td><td>-</td><td></td><td>%</td></t<>		, w			Т МТ				0	SQ FT	-		%
10 20 30 40 50 60 70 95 54 60 <t< td=""><td>PTH, F</td><td></td><td>IPTION OF MATERIAL</td><td>, BPI</td><td>DRY CU F</td><td>I</td><td>1</td><td>I</td><td>1</td><td>.0 1.</td><td>I</td><td></td><td>No. 200 %</td></t<>	PTH, F		IPTION OF MATERIAL	, BPI	DRY CU F	I	1	I	1	.0 1.	I		No. 200 %
10 20 30 40 50 60 70 95 54 60 <t< td=""><td>DEF</td><td></td><td></td><td>N</td><td>UNIT</td><td>PLA LII</td><td>MIT HT</td><td></td><td>•</td><td></td><td></td><td>Т</td><td>- No</td></t<>	DEF			N	UNIT	PLA LII	MIT H T		•			Т	- No
	-100 -105 -105 -115 -115 -120 -125- -125-	Dense to ve fine sand, sl		60 y 79_				30					6
COMPLETION DEPTH: 110.0 ft DEPTH TO WATER DATE: 5-26-23 IN BORING: 4.7 ft DATE: 5/25/20										DA	TE: 5	/25/20	023

	23-03	1												
	Gru Bar _{Consu}	bb tor	s, Hoskyn, & Wyatt, Inc. LOGOFB Engineers 101124 Hwy. 135 over Poinsett	Rt Ha	and C	hute	O.E of Lit	Ξ5 ttle R	iver					
	TYPE	Ξ:	Auger	LC	CATIO	ON:	Appro	x Sta	322+9	05, 30 t	't Lt			
			5							, TON/		Γ		
Ë,	Ъ	ШS		ЪF	× FT	0	.2 0	.4 0).8 1	.0 1	.2 1	.4	% 0
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/ L		1	WA CON			LIQU	IID IT	- No. 200 %
			SURF. EL: 220±			1		 203		0 5	0 6		0	
			Very loose brownish gray silty fine sand w/organics											
- 5 -		!	rofusal on riprop at 4.5 ft	+										
			- <u>refusal on riprap at 4.5 ft</u> ´ NOTE 1: Drilled through bridge											
			NOTE 2: Drilled with CME-SSHTX.											
			NOTE 1: Drilled through bridge deck. NOTE 2: Drilled with CME-SSHTX. NOTE 3: 18.1 ft deck to mudline. NOTE 4: Set 20 ft HW casing. NOTE 5: Boring abandoned at 4.5											
- 10 -			nOTE 5: Boring abandoned at 4.5 ft.											
<u> </u>														
- 15 -														
-														
20 -														-
- 25 -														
25														
30 -														-
- 35 -														
- 4 0 -														-
	COMF DATE				TO WA NG: N					<u> </u>	DA	TE: 6	/7/202	23

1	TYPE:	Auger to 20 ft /Wash	LC		ON:				40, 30				_
, FT	U U		ЪF	Y WT FT	C				I, TON 0.8 1	/SQ 		1.4	
DEPTH, FT	SYMBOL SAMPLES		N ₆₀ , BPF	UNIT DRY WT LB/CU FT				W/ COI			LIQ		
		SURF. EL: 204±				10 :	20	30	40 :	50	60	Г 70	
		Loose dark gray and brown fine clayey fine sand (SC) w/organics and fine gravel	E										
5 -	A X	Very loose brown and dark gray silty fine sand, slightly silty (SM-SP) w/organics	3			•)	(<u>G_= 2.6</u>	6			
10 -	X	- gray and brown below 9 ft - medium dense with less silt (SP) from 9 to 14 ft	18				•	,					
15 -	X	- very dense from 14 to 19 ft	73										
20 -	X	- with fine gravel layers below 20 ft	22										_
25		Medium dense to dense gray and brown medium sand (SP) w/trace coarse sand and occasional	49										
30 -	X	Medium dense gray and brown fine to medium sand (SP) w/trace coarse sand and fine gravel	35										
35 -	X	- dense from 34 to 38 ft	59										
40 -	X	- medium dense below 38 ft	35										

Link Image: Second state s		Bar Consu	tor Iting	bs, Hoskyn, LOGOFB a Wyatt, Inc. LOGOFB (a Engineers 101124 Hwy. 135 over Poinsett Auger to 20 ft /Wash	Rt Ha Co., J	and C Arkan	hute sas	of L	ittle			30 ft l t			
50 20 10 20 30 40 50 60 70 55 49 27 49 40 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>															
50 20 10 20 30 40 50 60 70 55 49 27 49 40 <t< th=""><th>Η, FT</th><th>бĽ</th><th>LES E</th><th></th><th>ΡF</th><th>.∧⊤ ⊢</th><th>(</th><th>).2</th><th>0.4</th><th>0.6</th><th>-O 0.8</th><th>1.0</th><th>1.2</th><th>1.4</th><th>ò</th></t<>	Η, FT	бĽ	LES E		ΡF	.∧⊤ ⊢	().2	0.4	0.6	-O 0.8	1.0	1.2	1.4	ò
50 20 10 20 30 40 50 60 70 55 49 27 49 40 <t< th=""><th>DEPTH</th><th>SYME</th><th>SAMP</th><th>DESCRIPTION OF MATERIAL</th><th>N₆₀, E</th><th>LB/CL</th><th>PL L</th><th>ASTIC</th><th>;</th><th>v cc</th><th></th><th>R NT</th><th>L</th><th>IMIT</th><th></th></t<>	DEPTH	SYME	SAMP	DESCRIPTION OF MATERIAL	N ₆₀ , E	LB/CL	PL L	ASTIC	;	v cc		R NT	L	IMIT	
50 - dense. slightly silty (SM-SP) 27 60 49 60 52 65 52 70 52 70 52 70 52 60 53				(continued)				+ − 10	20	30	40	50	60	-	
60 49 49 49 49 49 49 49 49 49 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 50 50 52 53 50 52 53 54 50 52 55 <td< td=""><td>50 -</td><td></td><td>X</td><td></td><td>20</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	50 -		X		20			•							
60 52 65 52 60 60 52 60 60 60 61 60 62 60 60 60	55 -		X	- dense, slightly silty (SM-SP) below 54 ft	27										
65 60 60 70 60 60 75 7 60 60 60 60	60 -		X		49										
70 -	65 -		X		52										
	70 -		X		60				,						
80	75 -		X	- with a little fine gravel at 74 to 79 ft	44										
	80 -		X		50										
	85 -		X		52										
			X												

	23-03	1												
	Gru Bar _{Const}	ibb ton	s, Hoskyn, LOGOF & Wyatt, Inc. LOGOF Engineers 101124 Hwy. 135 ov Poinse	BOR er Rt Ha ett Co.,	and C	hute	O. I of Li	E6 ittle	River					
	TYP	E: /	Auger to 20 ft /Wash	LC	CATI	ON:	Appro	ox St	a 324+	-40, 30	ft Lt			
					Т			СО⊦	IESIO	N, TON	I/SQ F	Т		
, FT	30L	LES		BF	N FT	0	.2	0.4	0.6	0.8	1.0	1.2 1	.4	200 %
ДЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/ L	ASTIC IMIT	;	W CO	ATER NTENT		LIQU	JID IT	°. Š
			(continued)		5		+	 20	30	- 		+	70	'
- 95 - - -100- -105- - -110- - -110- - - - 115-			NOTE: Drilled with CME-55 HTX ECF=1.28	65										
-120-														
4.05														
-125-														
CZ-07.														
- 130-										_				-
	COM DATE		TION DEPTH: 100.0 ft -5-23	DEPTH IN BORI			1				D	ATE: 6	6/202	23

	TYPE:	Auger to 15 ft /Wash	LC	OCATIO	DN:	Appro	ox Sta	a 326	+20.	20 ft L	t		
						7.661				ON/SC			
I, FT	ы Б		Ц	≥ F F	(0.2	0.4	0.6		1.0	1.2	1.4	
ОЕРТН, FT	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	ΡĻ	ASTIC	;	V	VATE	R	L		
B	U U	SURF. EL: 219.1	Z	UN C		_IMIT 							
		Loose brown clayey fine sand (SC)	7				20	30	40	50	60	70	4
							´ '						
			11										
5 -		Firm gray silt (ML) w/silty fine sand seams and layers	9				+•		<u> </u>	<u>2.63</u>			5
		Soft brown fine sandy clay (CL)	4										
		Very loose gray fine sand, slightly	-										_
10 -		Very loose gray fine sand, slightly silty (SM-SP) w/clay seams and layers	6										1
		-											
		Loose brownish gray silty fine sand (SM)											
15 -	Å	(SM)	9				-	_					2
		Medium dense brown fine sand											
		(SP)											
20 -	X		24					_					
25 -	X		23				-	_	_			_	
30 -	X		20				•	-				_	3
35 -	X		24									_	
40 -	X		29										
		Medium dense brownish gray and brown fine to medium sand (SP)						+					
			37	TO WA									

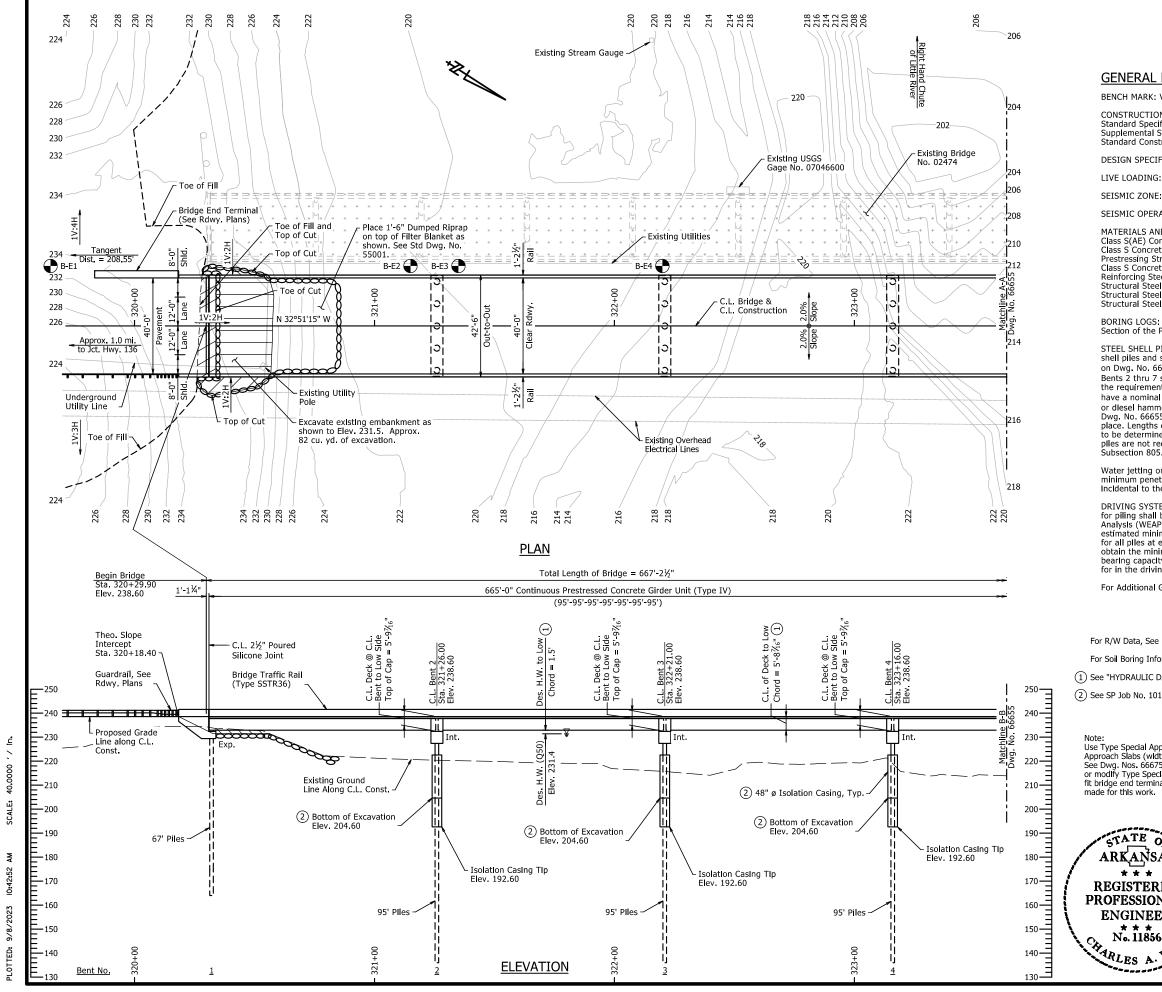
	Bar Consu	bb tor	s, Hoskyn, LOGOFB & Wyatt, Inc. Engineers 101124 Hwy. 135 over Poinsett	Rt Ha Co., J	and C Arkan	hute sas	e of l	_ittle	e Riv							
	TYPI	E: .	Auger to 15 ft /Wash			DN:	Арр									
⊢		S			۲ ۲			CO	HES		, то Э—	N/SQ	FT			%
H, FT	BOL	٦ د	DESCRIPTION OF MATERIAL	BPF	ЧY		0.2	0.4	0.6	6 ().8	1.0	1.2	1.4	4	500
ОЕРТН,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	ΡĻ	.ASTI LIMIT	С		WA		г	L	_IQU		No. 200 %
			(continued)	-	5		10			(•			+		'
		\square	w/organic inclusions					20	30	2	+0	50	60)	
- 50 -		X	J	30				•								4
55		X		39												-
		 X	Medium dense gravish brown fine to medium sand (SP) w/trace coarse sand	37												_
60		X	coarse sand	36				•								4
70		X	- dense below 68 ft	43												_
75		X		49												_
80 ·		X		60												-
85		X	- slightly silty (SM-SW) below 83 ft	90				•								6
	COMI	₩ PLF	TION DEPTH: 110.0 ft DI	<u>66</u> EPTH	TO WA	TER	 :				1					
					NG: 10							[DATE	E: 5/	22/20)23

	23-03	1												
	Gru Bar _{Consu}	bb tor	s, Hoskyn, LOGOFB & Wyatt, Inc. LOGOFB Engineers 101124 Hwy. 135 over I Poinsett	Rt Ha	and C	hute	O.E of Lit	E7 ttle R	iver					
	TYPE	:	Auger to 15 ft /Wash	LC	CATI	ON:	Appro	x Sta	326+2	20, 20	ft Lt			
					F			СОНЕ	SION	, TON	/SQ F1	Г		
H, FT	BOL	LES		3PF	J FT	0	.2 0	.4 ().6 ().8 1	.0 1	.2 1	.4	200 %
ДЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/ L			WA CON				ID T	- No. 2
			(continued)			1	0 2	20 ;	30 4	40 5	50 6	0 7	0	
- 95 -		X		59										
-100-		X	Dense grayish brown fine to medium sand, slightly silty (SM-SP) w/trace coarse sand	51										7
-105-														
110-				60										
			NOTE: Drilled with Diedrich D-50 ECF=1.43											
-115-	-													
-120-														
	-													
-125-														
130-														
					TO WANG: 1		1		1	1	DA	TE: 5	/22/20)23

TYPE	: Auger to 15 ft /Wash	IC		N· ∆n	nrox Sta	326+2	20, 25 ft Rt	ł	
LL IL			UNIT DRY WT LB/CU FT	0.2	-	ESION	, TON/SQ	FT	.4
DEPTH, F SYMBOL		N ₆₀ , BPF	UNIT DF LB/CI	PLAST LIMI	TIC T	WA CON	TER TENT	LIQU LIMI	JID .
	SURF. EL: 220± Soft brown silty clay, (CL) slightly	9		10	20	30 4	40 50	60 7	0
	sandy Loose brown silty fine sand (SM) w/clay pockets	7							
5 -1111	 W/clay pockets Loose tan and brownish gray silty fine sand (SM) 	13							
	- very loose below 6 ft	3							
10 -	Loose grayish brown fine sandy SILT (ML) w/silty clay pockets and occasional organic inclusions	7			•	-NON	PLASTIC	>-	
 15 -	Loose brownish gray silty fine sand (SM)	11				G	s= 2.58		
20 -	Very loose grayish brown silty fine sand (SM)	6							
25 -	- loose below 23 ft	11			•				
30 -	Medium dense brownish gray fine sand, slightly silty (SM-SP)	16			•				
35 -		19							
40	X	40							

	<u>23-03</u> Gru Bar _{Consu}	bb	s, Hoskyn, LOGOFB & Wyatt, Inc. LOGOFB _{Engineers} 101124 Hwy. 135 over Poinsett	Rt Ha	and Cl	hute				ver						
	TYPE	Ξ:	Auger to 15 ft /Wash	LC	CATIC	DN:	Арр	rox S	Sta 3	326+2	20, 2	5 ft R	t			
					F			СО	HE	SION	I, TO	N/SQ	FT			
Ξ.	Ы	Ш С		ЦЦ	≥ F F	().2	0.4	0.	6 (() 0.8	1.0	1.2	1.4	1	% 0
ОЕРТН,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT			~	I	10/0						No. 200 %
BE	S	SA		Z	LB	L	ASTI IMIT					Г				Z I
			(continued)				10 10	20	3(0	40	50	60	70)	
- 50		X		40												-
- 55		X		41												
55																
			Medium dense brownish gray fine to medium sand (SP)													
- 60		X		33					•							3
- 65		X		24	-											_
- 70	- - - - - - - -	X		30												_
- 75		X	- dense, slightly silty (SM-SP) at 73 to 78 ft	44	-			•								5
- 80		X	- medium dense below 78 ft	37												-
- 85		X	Medium dense grayish brown fine to medium sand, slightly silty (SM-SW) w/trace coarse sand and fine gravel	41			•									6
			- dense below 88 ft													
		X		47												
					TO WA NG: 13									E· 5/	23/20)23

	23-03	1												
	Gru Bar _{Const}	bb toi	os, Hoskyn, LOGOFE n & Wyatt, Inc. g Engineers 101124 Hwy. 135 ove Poinset	r Rt Ha	and C	hute	O. I of Li	Ξ8 ttle F	River					
	TYPI	Ξ:	Auger to 15 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	326+2	20, 25	ft Rt			
_ ⊢					۲۷.				ESION	I, TON	/SQ F	Г		%
IH, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	NY V	0	0.2 ().4	0.6 (0.8 1	.0 1	.2 1	.4	No. 200 %
DEPTH,	SYA	SAM		N ₆₀ ,	UNIT DRY WT LB/CU FT	PL/ L			WA CON			LIQU LIM	IID IT	No.
			(continued)			1	 10 : 1	20	30	40 :	50 6	60 7	0	
- 95 - -100 -105 -110 -110 -115 -120			NOTE: Drilled with Diedrich D-50 ECF= 1.43.	64 59 67										
-125 ⁻	-													
7-28-23	-													
l 30- 130-														
LGBNEW 23-031 BRIDGE E.GPJ 7-28-23														
LGBNEW				DEPTH N BORI							DA	TE: 5	/23/20)23


			Co., /										
TY	PE:	Auger to 35 ft /Wash	LC		ON:								
⊢ .				۲۷.				SION	, TON	/SQ F	-T		2
H, FT BOL	ĽĽ		BPF	L F J	0	.2 ().4 ().6 (0.8 1	.0	1.2	1.4	
DEPTH, F SYMBOL	SAMPLES		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/ L						LIQ LIN		
		SURF. EL: 233.8			1		20 ;	30	40 5	50	60	70	
° •/•		8 inches: Asphalt Cement									+		
	×A	4 inches: Crushed Stone Base	17					0	s = 2.5	9			5
		Medium dense dark gray clayey fine sand (SC) (fill)	18										
5 -		Loose reddish brown and gray silty fine sand (SM) w/clay pockets (fill)									—		
—]]]		fine sand (SM) w/clay pockets (fill)	12			•		Ģ	6 <mark>,</mark> = 2.6	3			2
		- brown and gray below 7 ft											
—11			13										
10			13								+		
]]]		de de anacia la classa 40.6											
		- dark gray below 13 ft	9										
15											+	_	
		Firm gray and reddish brown fine									<u> </u>		-
<u></u>	X	Firm gray and reddish brown fine sandy clay (CL) (fill)	8			+	┢+	-					6
20 -													
		Medium dense brown fine sand, slightly silty (SM-SP)										_	
25 -	М	slightly silty (SM-SP)	19								<u> </u>		
		- gray and brown below 28 ft											
30 -	Ă	- loose to medium dense at 29 to 34 ft	13					-			+	+	1
	\mathbf{H}	- medium dense below 33 ft	29										
35	A		29						+		+		+
40		Medium dense gravish brown fine	31				•				+	+	
40 -	Ĥ	Medium dense gravish brown fine sand, slightly silty (SM-SP) w/occasional organic inclusions									+		1
		w/occasional organic inclusions											
		Medium dense to dense gray and	38					-			+	+	-

TYPE:	Auger to 35 ft /Wash	LC	CATIO	ON:	Appro	ox Sta	ı 327+	60, 3	0 ft Lt			
_			۲.			сон	ESION	I , ТО	N/SQ	FT		
DEPTH, FT SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	RY V U FT	().2 ().4	0.6	0.8	1.0	1.2	1.4	
DEPTH, FT SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ ,	UNIT DRY WT LB/CU FT	PL	ASTIC .IMIT		W. COI	ATER NTEN	т		IQUID _IMIT	
	(continued)		5		+-	— — – 20	30	40	50	 60	- + 70	
	brown fine to medium sand (SW)											
	Dense grayish brown fine to medium sand, slightly silty (SM- SW) w/trace coarse sand	79			•							
50 - ^	SW) w/trace coarse sand											
		73										
55 -												
		58										
60 - 												
		38										
65 - 												
-	- with trace fine gravel at 68 to 73 ft	40										
70 ^A												
		59										
75 - · · · · · · · ·												
	Dense brownish gray fine sand, slightly silty (SM-SP)											
	slightly slity (SM-SP)	74										
80 -												
	- with decaved organic inclusions	67										
85 -	- with decayed organic inclusions below 84 ft									\top		
					1							

	TYPE	Auger to 35 ft /Wash				Appr							
Η		a		⊢ ∧⊢			COI	HESIC)N, T()N/SQ) FT		%
TH, F	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	CU F	(0.2	0.4	0.6	0.8	1.0	1.2	1.4	200 %
DEPTH,	SYN	2 AIV	N ₆₀ ,	UNIT DRY WT LB/CU FT	PL L	ASTIC	2	C	VATEF ONTER	R NT	L	IQUID LIMIT	No.
		(continued)				+ –	20	30	40	50	60	- + 70	
- 95 -		Dense brown and gray fine to medium sand (SP) w/trace coarse sand and fine gravel	77										
100			59										_
105												_	_
		- dense to very dense below 107 ft	100										
-110			128										-
	-	NOTE 1: Drilled with CME-55 HTX ECF= 1.28 NOTE 2: Backfilled with cement-bentonite grout.											
-115													
-120													_
-125												_	-
7-28-23													
LGBNEW 23-031_BRIDGE E.GPJ 7-28-23													
ц													

Grubbs, Hoskyn, Barton & Wyatt, Inc. Consulting Engineers	SYMBOLS	AND TERI	NS US	ED ON	N BOR	ING L	OGS
(SHOWN IN	DIL TYPES SYMBOLS COLUMN Silt Silt nt type shown heavy	l) Clay		SAMPL VN ON S Rock Core	AMPLES	-	Cutting
TERM COARSE GRAINED SO sands, and (2) silty or cla determined by laboratory	ayey gravels and san	tained on No. 20)0 sieve): l	Includes	(I) Clean	gravels a	
DESCRIPT VERY LOO LOOSE MEDIUM D DENSE VERY DEN FINE GRAINED SOILS	ENSE SE	N-VALUE 0-4 4-10 10-30 30-50 50 and ab	ove		0-15% 15-35% 35-65% 65-85% 85-100%	, ,	2
silts and clays, (2) grav according to shearing s compression tests.	elly, sandy, or silty cl	ays, and (3) cla	yéy silts. C er readings	Consisten	cy is rate iconfined	d	
VER SOF FIRM STIF VER HAF NOTE: Slicl strengths tha	M FF IY STIFF	ause of planes of	COMPI Le 0. 1. 2. 4. e lower un of weaknes	RESSIN TON/S ess than (25-0.50 50-1.00 00-2.00 00-4.00 00 and h aconfined as or crac	/E STR SQ. FT. 0.25 igher compres ks in the	ENGTH	ł
SLICKENSIDED - ha FISSURED - contain or less LAMINATED - comp INTERBEDDED - co CALCAREOUS - con WELL GRADED - ha	ERMS CHARAC aving inclined planes ing shrinkage cracks overtical. osed of thin layers of mposed of alternate ntaining appreciable of aving a wide range in article sizes. - predominantly of on intermediate sizes	of weakness th , frequently fille varying color a layers of differe quantities of cal grain sizes and the grain size, or	at are slick d with fine nd texture. nt soil type cium carbo substantia	and glos sand or s es. onate. al amoun	ssy in app silt; usual ts of all ir	ly more ntermedia	
Terms used on this repo are in accordance with f Technical Memorandum	he UNIFIED SÕIL CL	_ASSIFICĂTIO	I SYSTEM	l, as desc	ribed in	ibution	

APPENDIX A

ö USER: CTAUSER

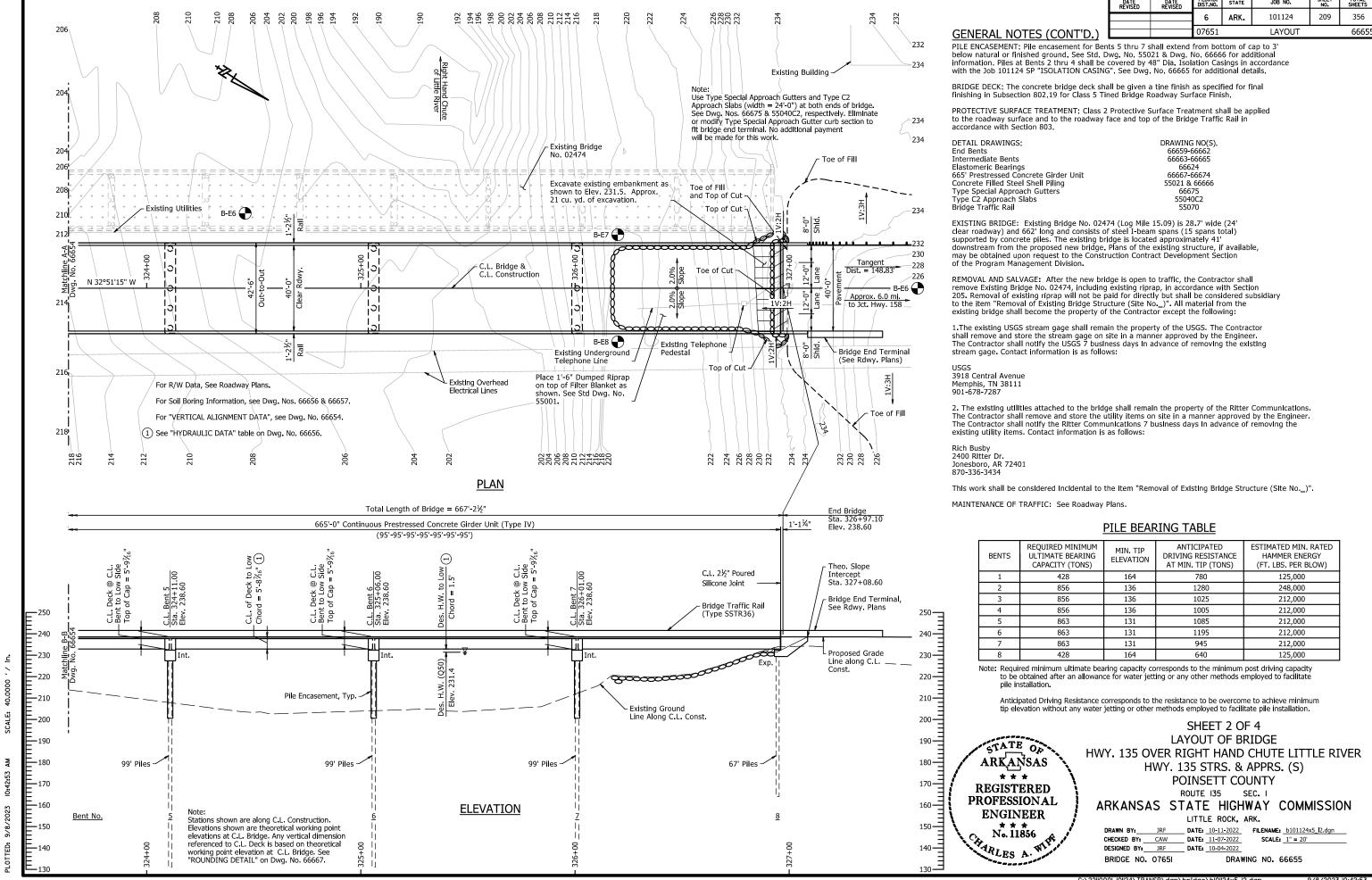
AM 10**:**42:52 DESIGN FILE: (PLOTTED: 9/8/2

dge

Bents 2 thru the requirem have a nomi or dlesel har

Dwg No 666 place Length to be determi plles are not Subsection 8

minimum pe Incidental to

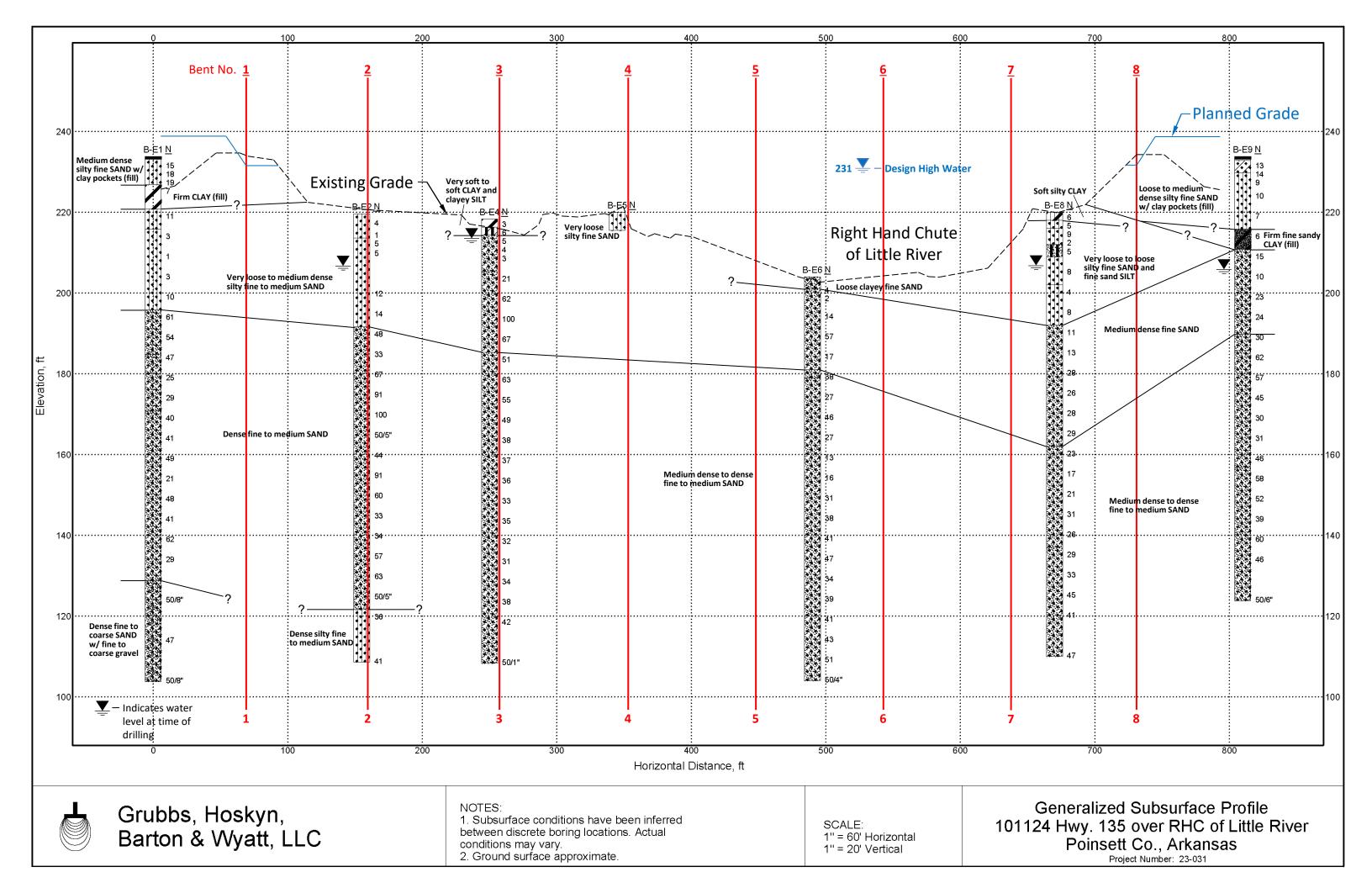

DRIVING SYS for piling sha Analysis (WE estimated m for all piles a obtain the mi bearing capacity for in the drive

For Additiona

	DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
			6	ARK.	101124	208	356
			07651		LAYOUT		66654
AL NOTES							
K: Vertical Control Data	are shown o	on Survey Co	ontrol Sh	eets.			
TION SPECIFICATIONS: A pecifications for Highway al Specifications and Spe onstruction Specifications	Constructio cial Provisio	n (2014 edit ons. Section	ion) with and Sub	applical	ble		
ECIFICATIONS: AASHTO	LRFD Bridge	e Design Spe	cificatior	ns, 9th E	dition (2020).		
NG: HL-93							
NE: 4 S =1.247 D1 PERATIONAL CLASS: OTH		i: D					
AND STRENGTHS: Concrete (superstructur, crete (prestressed concre) Strands (AASHTO M 20. crete (substructure) Steel (AASHTO M 31 or teel (AASTM A709, Gr. 50 teel (ASTM A709, Gr. 36	ete girders) 3, Gr. 270) M 322, Type) W)	: A)	f'c fpu f'c fy Fy Fy	= 4,000 = 8,000 = 270,0 = 3,500 = 60,000 = 50,000 = 50,000 = 36,000	psi 000 psi psi psi 0 psi 0 psi 0 psi		
GS: Boring logs may be he Program Management		om the Cons	truction	Contract	Development		
L PILING: Piling in Bents nd shall be driven to me , 66655. The 24" dlamete u 7 shall be 30" diameter ments of the "PILE BEAR. inal wall thickness of ¾" mmer to the minimum ti 6555. Piling in end bents ths of piling shown are a mined in the field. No ad t required but may be dr 805.08(g). No payment s	et the requi er plles shal concrete fil ING TABLE" . All piling sl p elevation a shall be dri ssumed for ditional payr Iven for the	rements of t I have a nor led steel sho on Dwg. No hall be drive as specified ven after en estimating c ment will be Contractor's	he "PILE ninal wal ell piles a . 66655. n with ar In the "P bankme puantities made fo s informa	BEARING I thickne and shall The 30" n approve ILE BEAR Int to bot conly. Ac r cut-off	G TABLE" ss of ¾". PIIIng I be driven to me diameter piles s ed air, steam, RING TABLE" on tom of cap is in tual lengths are or build-up. Tes	et hall	
ig or other methods as a enetration. This work sha o the Item "Steel Shell Pi	ill not be pa	id for direct					
STEM: The driving syste all be based on the requ EAP)" and SP "PILE DRIV inimum rated hammer e at each bent. If the Con ininimum tip elevations al acity, the minimum rated riving system chosen by	irements of /ING SYSTE nergy requi tractor elect hown while d hammer en	Subsection M". See the red to overc s to use wat driving only nergy require	805.09(b "PILE BE ome the er jetting to the re), "Meth ARING T anticipat g or othe quired m	od B - Wave Equ ABLE" for the ed driving resist r approved meth ninimum ultimate	ation ance nods to	
nal General Notes see Dw					+50.00		
See Roadway Plans.			DVI 318+00	Elev 2	<u>P.V.I. 328</u> Elev. 238.		
Information, see Dwg. Nos	s. 66656 & 66	5657 +	3.46%	6)' V.C.	0.00%	-4.14%	_
IC DATA" table on Dwg. No 101124 "ISOLATION CASI		<u>V</u>		CAL AL Theoreti	LIGNMENT cal Elev. Along Construction		
Approach Gutters and Typ width = 24'-0") at both en 5675 & 55040C2, respectiv pecial Approach Gutter cur minal. No additional paymork.	ds of bridge. ely. Eliminate rb section to	shown e Any ve theore	are theor rtical dim tical work	etical wo ension re Ing point	C.L. Constructior rkIng poInt elevat ferenced to C.L. [elevation at C.L. Dwg. No. 66667.	ions at C. Deck is ba	L. Bridge. ased on
SAS	H	LAY VER RIG IWY. 13 POI ROI	5 STR: NSETT JTE 135	DF BRJ AND (S. & A F COU Se	IDGE CHUTE LITT PPRS. (S) NTY c. 1		
EER	RAWN BY:	JRF D	ITTLE R	OCK, AR	FILENAME: b101124		//N
A. WII O	HECKED BY: ESIGNED BY: RIDGE NO.	JRF D	ATE: <u>11-07</u> ATE: <u>10-04</u>	-2022	SCALE: <u>1" = 20'</u> G NO. 66654		-

G:\22110001_101124\TRANSP\dgn\br1dge\b101124x5_11.dgn

9/8/2023 I0:42:52 A


5 CTAUSER

JSER:

ð. SCALE AM 10**:**42:53 9/8/ DESIGN FILE: PLOTTED: 9/8

	DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
			6	ARK.	101124	209	356
TES (CONT'D.)			07651		LAYOUT		66655
Pile encasement for Bei ished ground. See Std. I t Bents 2 thru 4 shall be 4 SP "ISOLATION CASIN	Dwg. No. 550 covered by 4	21 & Dwg. I 8" Dia, Isol	No. 6666 ation Cas	6 for ad sings in	lditional accordance		
concrete bridge deck sh ion 802.19 for Class 5 Ti					final		
CE TREATMENT: Class 2 ace and to the roadway ction 803.					pplied		
s ncrete Girder Unit I Shell Piling ach Gutters Ilabs		DRAWING 66659-6 66663-6 6666 66667-6 55021 & 6665 55021 & 55040 55040	56662 56665 24 56674 66666 75 0C2				
Existing Bridge No. 024 662' long and consists c ete piles. The existing b re proposed new bridge. on request to the Const agement Division.	of steel I-bear idge is locate Plans of the	n spańs (15 d approxim existing str	spans to ately 41' ucture, if	otal) [:] availat	ole,		
/AGE: After the new bri dge No. 02474, including isting riprap will not be p al of Existing Bridge Stru I become the property o	g existing ripr baid for direct ucture (Site N	ap, in accor ly but shall o)". All m	dance w be consi aterial fr	ith Sect dered s om the	ion		
5 stream gage shall rema ore the stream gage on I notIfy the USGS 7 busI ct information is as follo	site in a man ness days in a	ner approve	d by the	Engine	er.		
e							
tles attached to the brid I remove and store the u I notlfy the Ritter Comm S. Contact information is	utility items o unications 7 l	n site in a n	nanner a	pproved	I by the Engineer.		
1							
considered incidental to	the Item "Ren	noval of Exis	sting Brid	lge Stru	icture (Site No)	' .	
FRAFFIC: See Roadway	Plans.						
	PILE BEA	RING TA	ABLE				
	/ (
REQUIRED MINIMUM ULTIMATE BEARING	MIN. TIP ELEVATION	DRIVING	CIPATED RESISTA	NCE	ESTIMATED MIN. HAMMER ENER	RGY	
CAPACITY (TONS)		AT MIN	TIP (TO	NS)	(FT. LBS. PER B	LOW)	
428	164	<u> </u>	780		125,000		
856	136	+	1280		248,000		
856 856	136 136	+	1025 1005		212,000 212,000		
863	130		1005		212,000		
					,_ 50		

APPENDIX B

APPENDIX C

SUMMARY of CLASSIFICATION TEST RESULTS

PROJECT: 101124 Hwy. 135 over Right Hand Chute of Little River (Site 5)

LOCATION: Poinsett County, Arkansas

GHBW JOB NUMBER: 23-031

BORING	SAMPLE	WATER	AT	TERBERG LI	MITS			SI	EVE AI	NALY	SIS			USCS	AASHTO
No.	DEPTH (ft)	CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	2 in.	1 in.		RCENT 3/8 in.	PASS #4	ING #10	#40	#200	CLASS.	CLASS.
E1	5.5-6.5	11				100	100	100	100	100	100	95	24	SM	A-2-4
E1	9.5-10	27	58	23	35					100			82	СН	A-7-6
E1	14-15	15				100	100	100	100	100	100	96	43	SM	A-4
E1	29-30	21	32	15	17	100	100	100	100	100	96	90	43	SC	A-6
E1	44-45	23				100	100	100	100	100	100	90	7	SM-SP	A-3
E1	54-55	27				100	100	100	100	100	100	94	6	SM-SP	A-3
E1	64-65	19				100	100	100	100	99	96	36	5	SM-SW	A-1-b
E1	84-85	22				100	100	100	100	100	99	84	7	SM-SP	A-3
E1	109-110	11				100	100	85	74	60	49	23	9	SM-SW	A-1-a
E2	9-10	21				100	100	100	100	100	100	79	26	SM	A-2-4
E2	19-20	29								100			26	SM	A-2-4
E2	34-35	20				100	100	100	100	100	100	52	4	SP	A-3
E2	54-55	27				100	100	100	100	100	100	47	4	SP	A-1-b
E2	79-80	18				100	100	100	100	95	89	23	3	SW	A-1-b
E3	0.5-1.5	10								100			31	SC	A-2-6
E3	2.5-3.5	40				100	100	100	100	100	100	97	81	СН	A-7-6
E3	14-15	21				100	100	100	100	100	100	81	11	SM-SP	A-2-4
E3	34-35	20				100	100	100	100	100	100	93	6	SM-SP	A-3
E3	49-50	17				100	100	100	98	97	95	49	5	SM-SP	A-1-b
E3	64-65	17				100	100	100	100	98	95	49	2	SP	A-1-b
E3	84-85	17				100	100	100	100	100	98	47	4	SP	A-1-b
E4	2.5-3.5	31	23	19	4					100			73	ML-CL	A-4

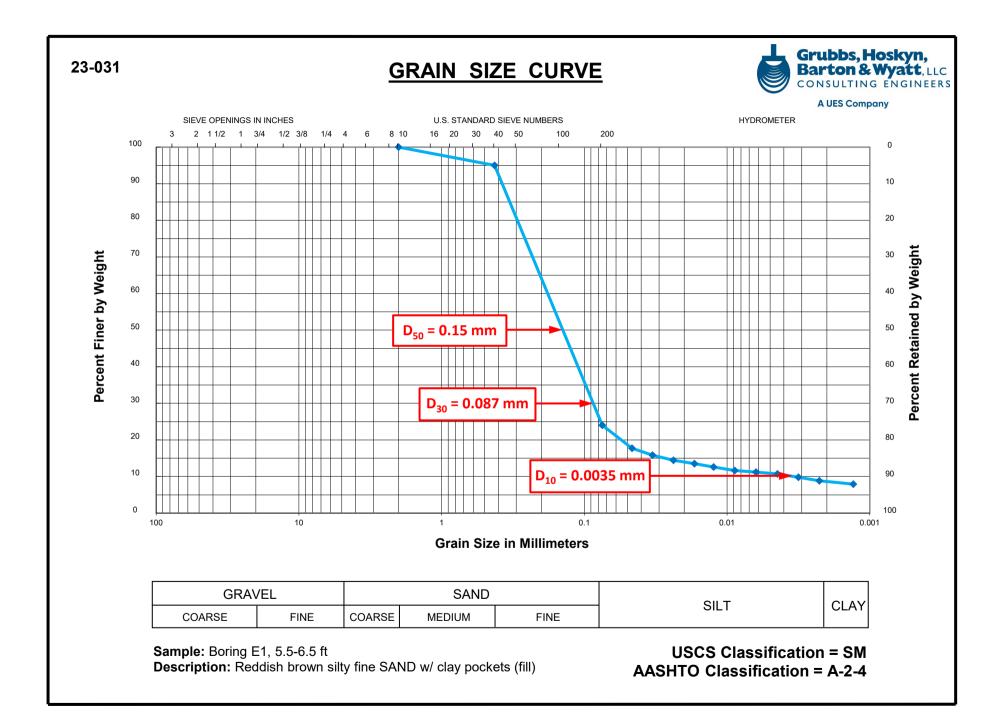
SUMMARY of CLASSIFICATION TEST RESULTS

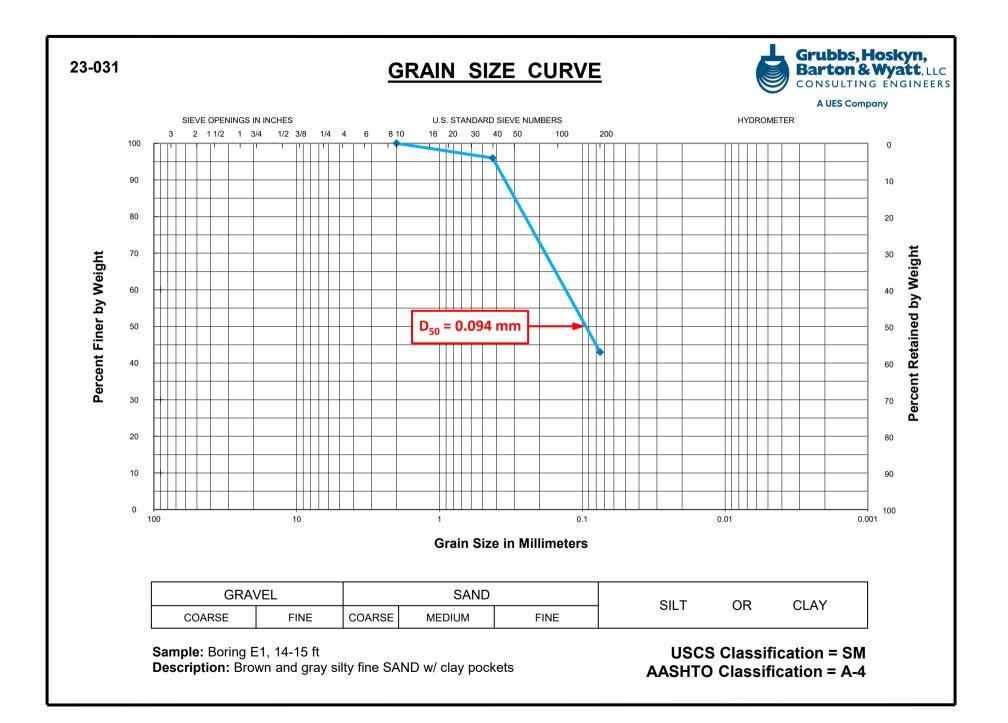
PROJECT: 101124 Hwy. 135 over Right Hand Chute of Little River (Site 5)

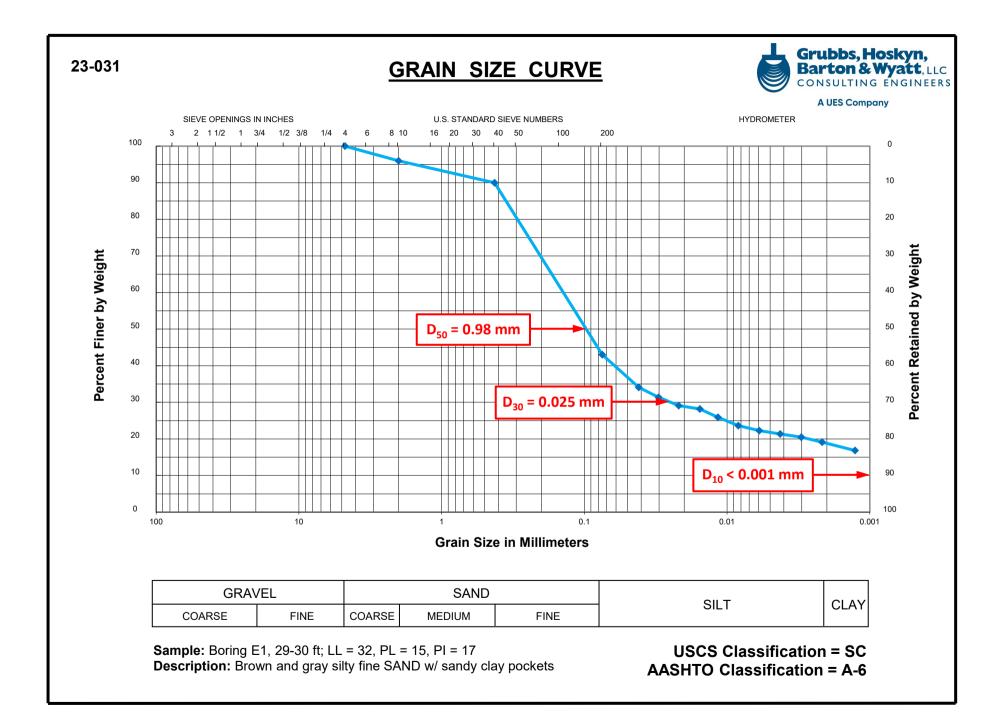
LOCATION: Poinsett County, Arkansas

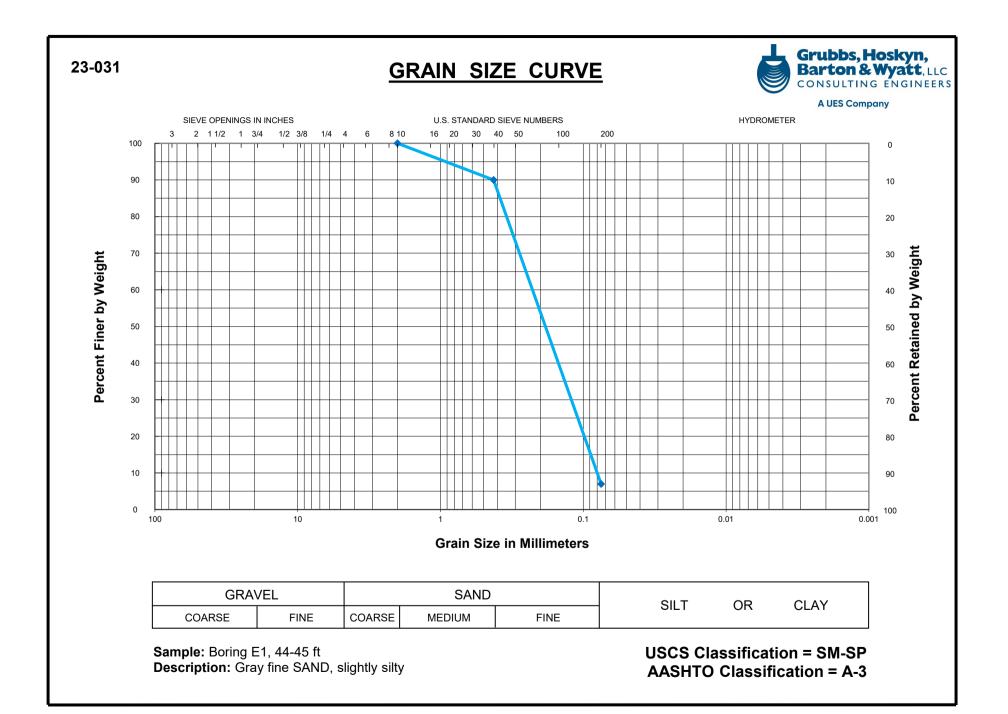
GHBW JOB NUMBER: 23-031

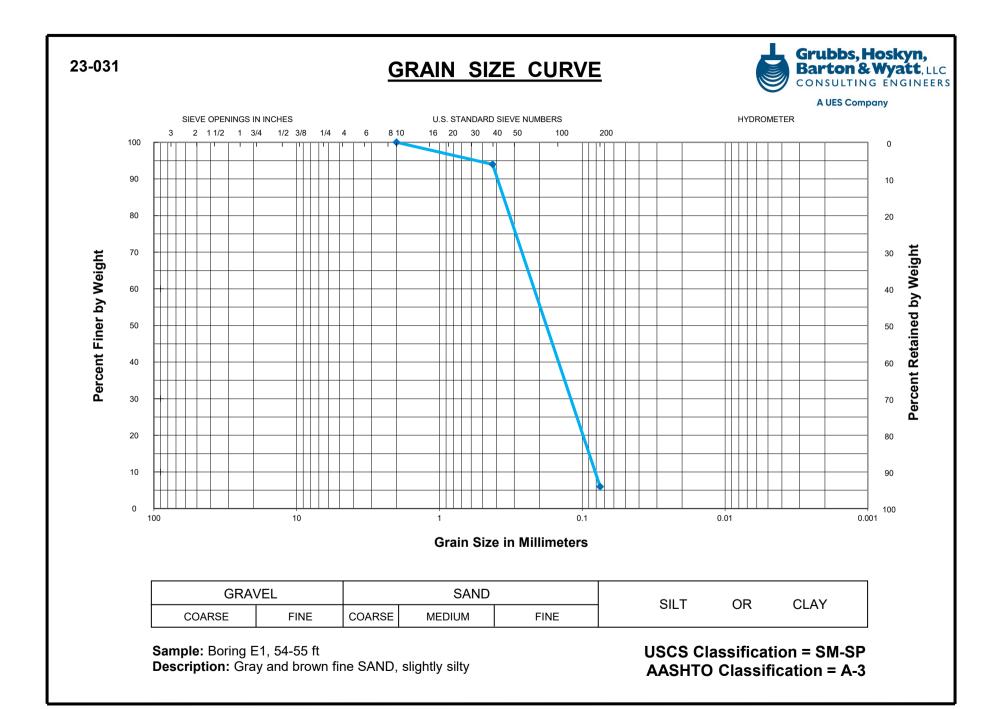
BORING	SAMPLE	WATER	ATTERBERG LIMITS			SIEVE ANALYSIS								USCS	AASHTO
No.	DEPTH	CONTENT	LIQUID	PLASTIC	PLASTICITY	PERCENT PASSING								USCS CLASS.	CLASS.
1.00	(ft)	(%)	LIMIT	LIMIT	INDEX	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	CLASS.	CLINDS.
E4	6.5-7.5	20	NON-PLASTIC							100			2	SP	A-3
E4	19-20	23				100	100	100	100	100	100	94	6	SM-SP	A-3
E4	54-55	18				100	100	100	100	95	92	47	4	SP	A-1-b
E4	109-110	23				100	100	100	100	100	100	95	6	SM-SP	A-3
E6	4.5-5.5	18				100	100	100	100	100	100	80	5	SM-SP	A-3
E6	9-10	27				100	100	100	100	100	100	88	4	SP	A-3
E6	29-30	18				100	100	100	100	99	98	41	3	SP	A-1-b
E6	49-50	16				100	100	100	100	97	94	48	3	SP	A-1-b
E6	69-70	17				100	100	100	95	93	90	45	5	SM-SP	A-1-b
E6	89-90	17				100	100	100	98	95	92	42	5	SM-SP	A-1-b
E7	0.5-1.5	17	27	16	11					99			42	SC	A-6
E7	4.5-5.5	23	23	20	3	100	100	100	100	100	100	97	51	ML	A-4
E7	9-10	23				100	100	100	100	100	100	96	10	SM-SP	A-3
E7	14-15	24								100			20	SM	A-2-4
E7	29-30	25				100	100	100	100	100	100	95	3	SP	A-3
E7	49-50	19				100	100	100	100	97	95	64	4	SP	A-3
E7	64-65	19				100	100	100	99	98	97	32	4	SW	A-1-b
E7	84-85	18				100	100	100	99	98	97	28	6	SM-SW	A-1-b
E7	99-100	19				100	100	100	98	95	94	51	7	SM-SP	A-3

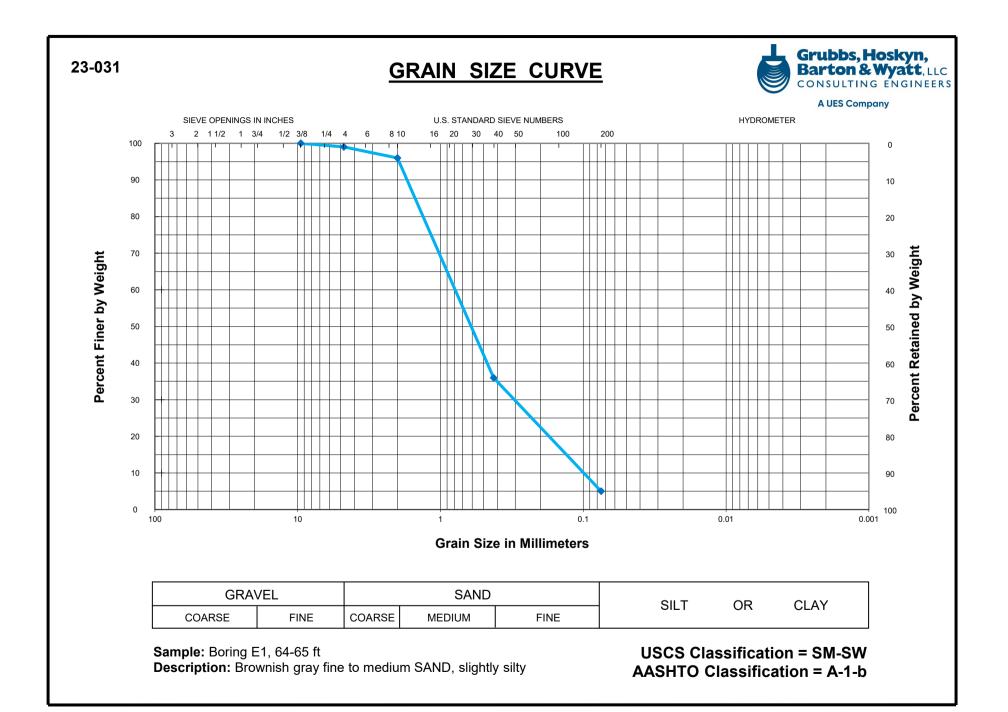

SUMMARY of CLASSIFICATION TEST RESULTS

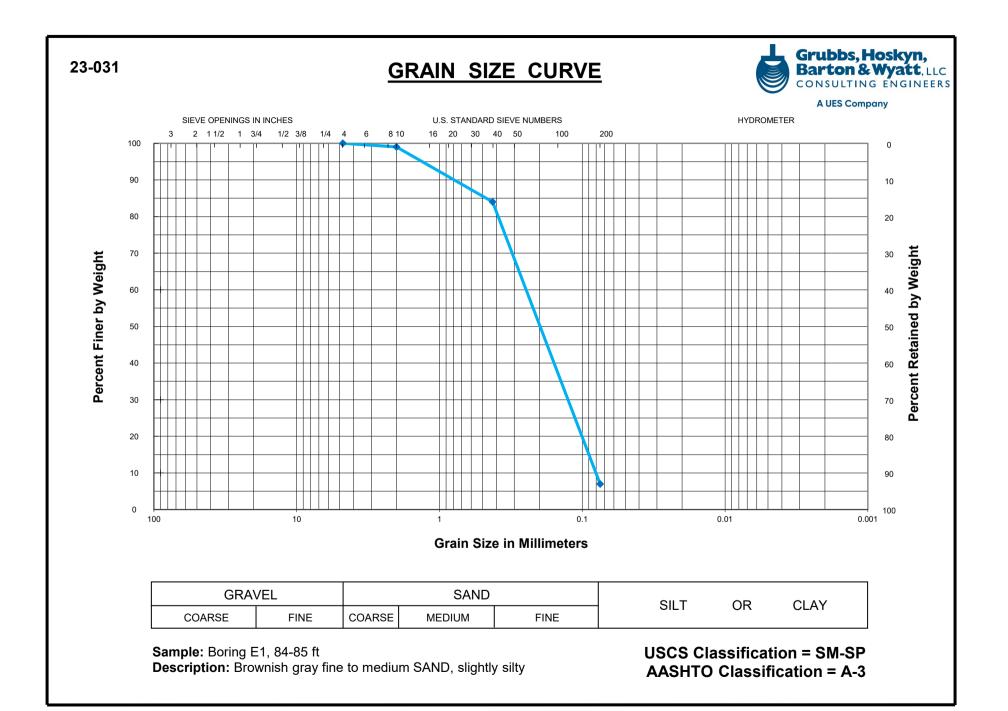

PROJECT: 101124 Hwy. 135 over Right Hand Chute of Little River (Site 5)

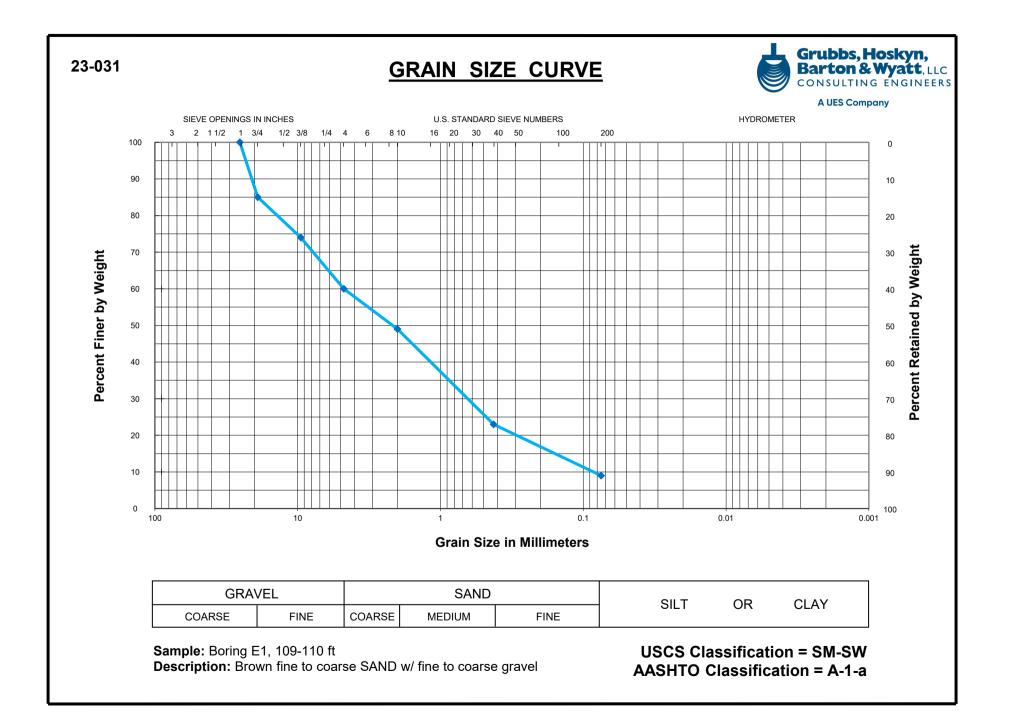

LOCATION: Poinsett County, Arkansas

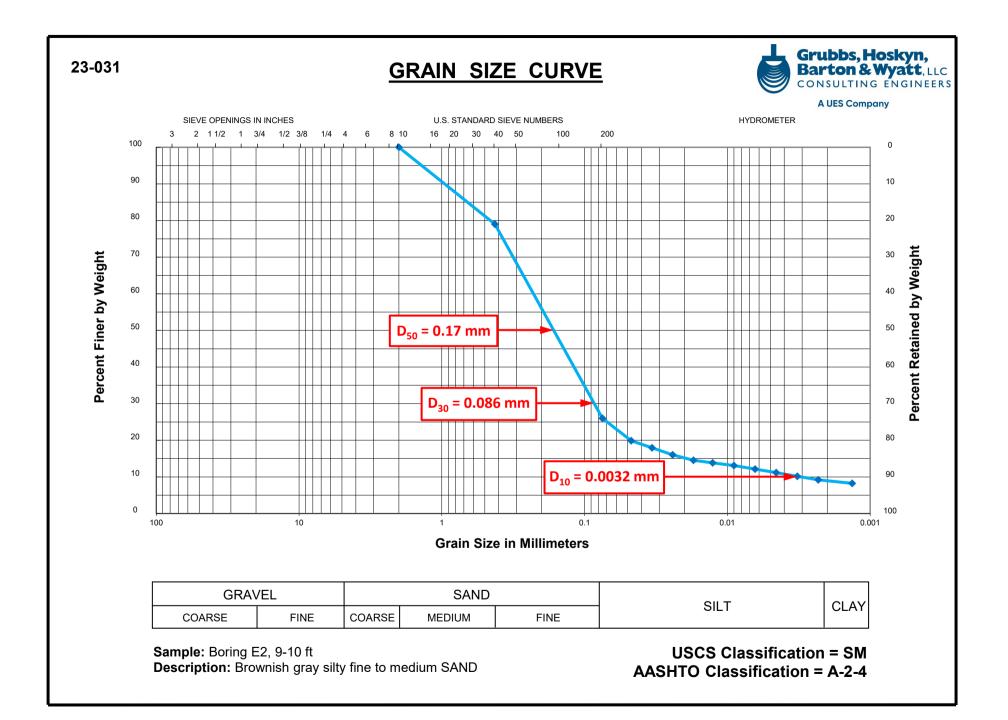

GHBW JOB NUMBER: 23-031

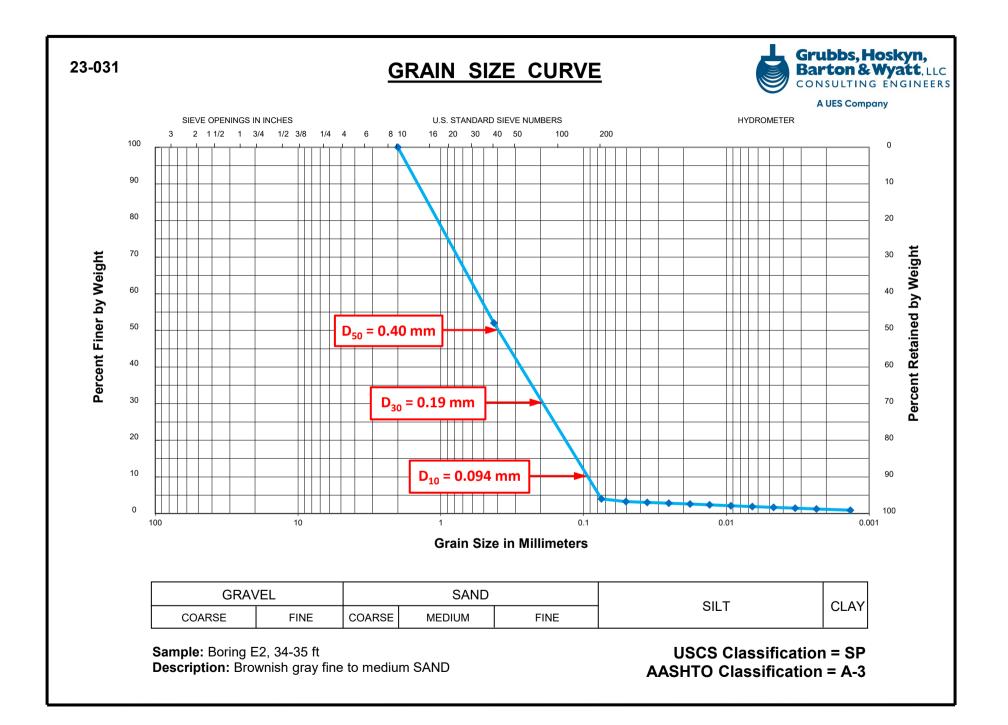

BORING No.	SAMPLE DEPTH (ft)	WATER CONTENT (%)	ATTERBERG LIMITS			SIEVE ANALYSIS PERCENT PASSING								USCS	AASHTO
			LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	2 in.	1 in.		RCENT 3/8 in.		ING #10	#40	#200	CLASS.	CLASS.
E8	6.5-7.5	23								100			35	SC	A-2-6
E8	9-10	22]	NON-PLAST	IC					100			63	ML	A-4
E8	14-15	27				100	100	100	100	100	100	96	20	SM	A-2-4
E8	24-25	20								100			19	SM	A-2-4
E8	29-30	25				100	100	100	100	100	100	91	5	SM-SP	A-3
E8	59-60	24				100	100	100	100	100	100	78	3	SP	A-3
E8	74-75	21				100	100	100	100	100	100	71	5	SM-SP	A-3
E8	84-85	15				100	100	92	91	89	84	30	6	SM-SW	A-1-b
E9	1.5-2.5	15				100	100	100	100	100	100	92	50	SC	A-6
E9	5.5-6.5	11				100	100	100	100	100	100	96	24	SM	A-2-4
E9	19-20	21	28	17	11					99			64	CL	A-6
E9	29-30	23				100	100	100	100	100	100	93	10	SM-SP	A-3
E9	39-40	24				100	100	100	100	100	100	85	7	SM-SP	A-3
E9	49-50	17				100	100	100	100	100	100	35	5	SM-SW	A-1-b
E9	69-70	28				100	100	100	97	95	93	56	11	SM-SP	A-2-4
E9	84-85	31				100	100	100	100	100	100	95	6	SM-SP	A-3

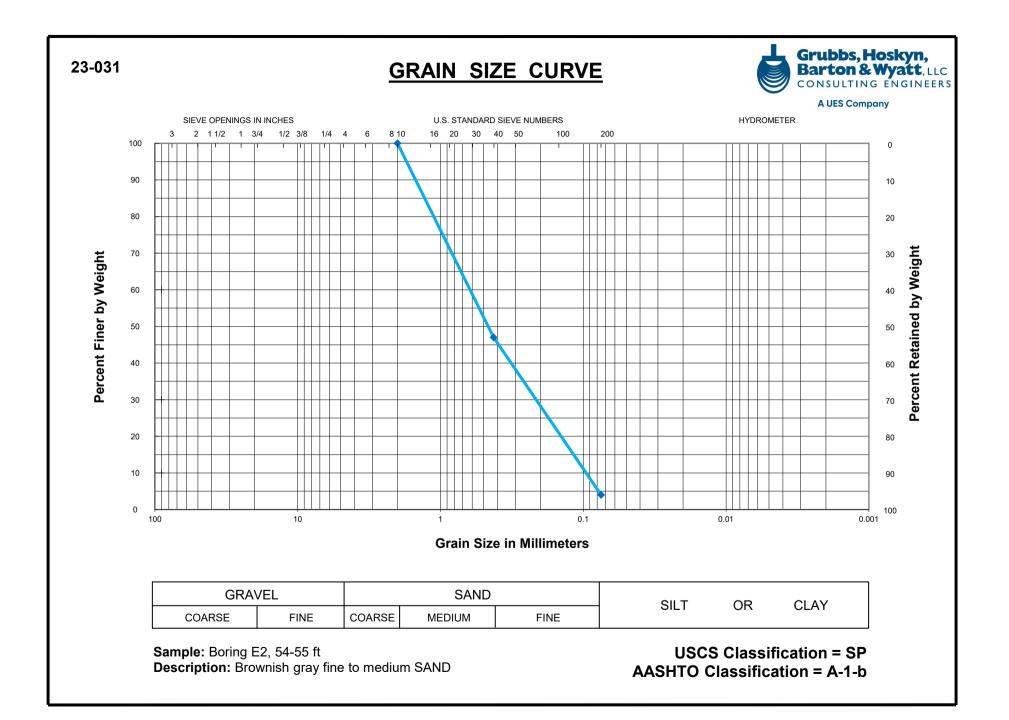


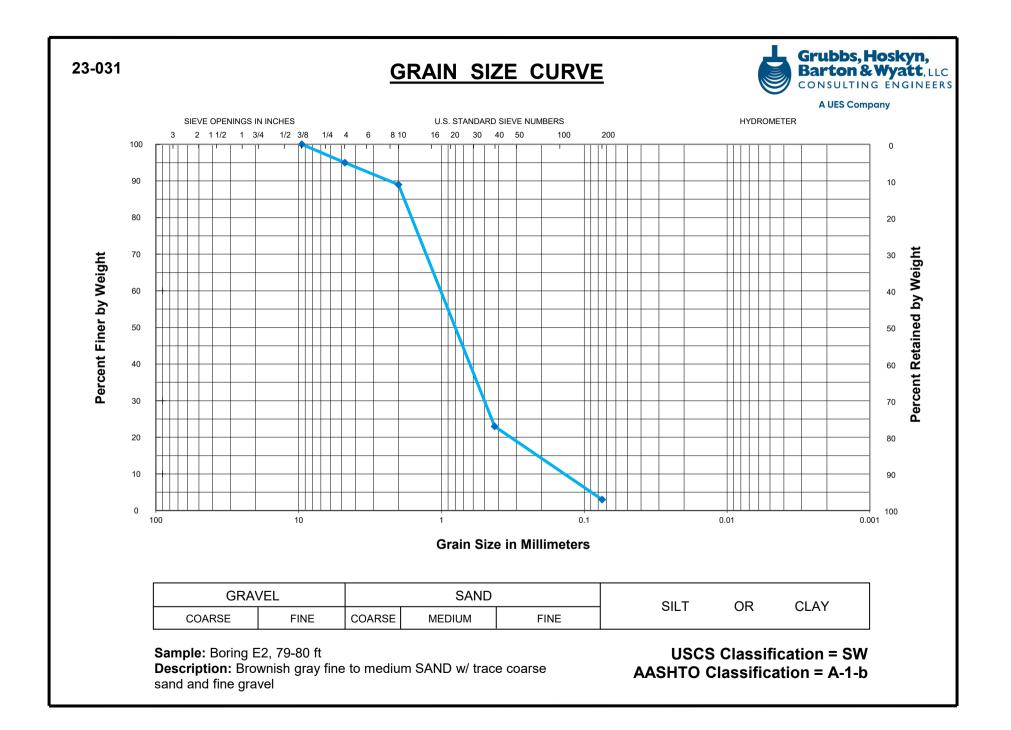


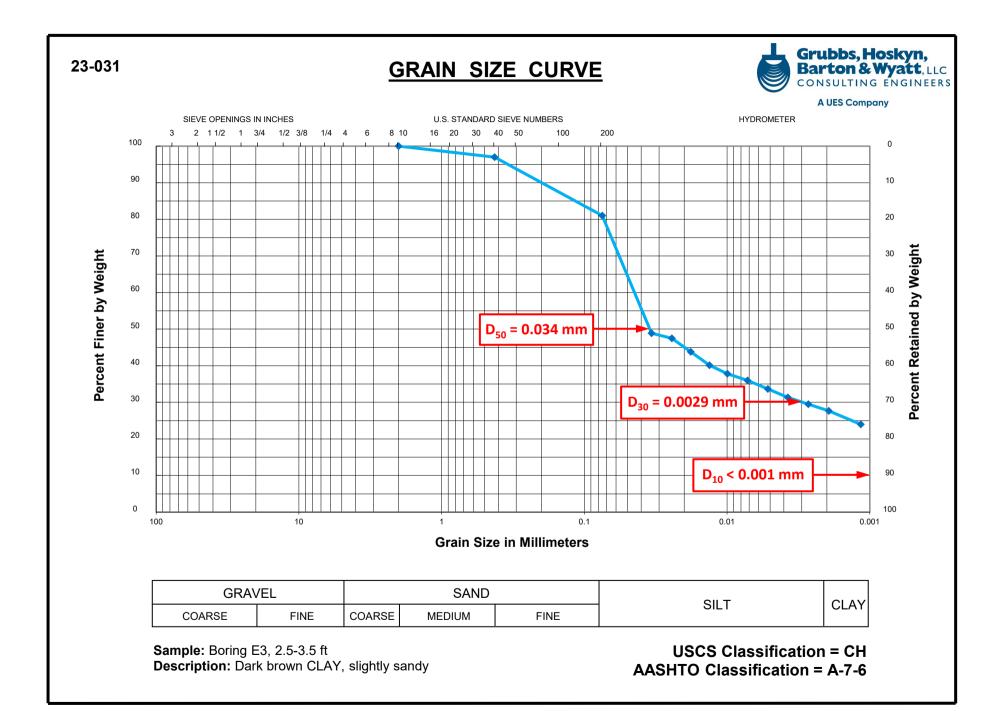


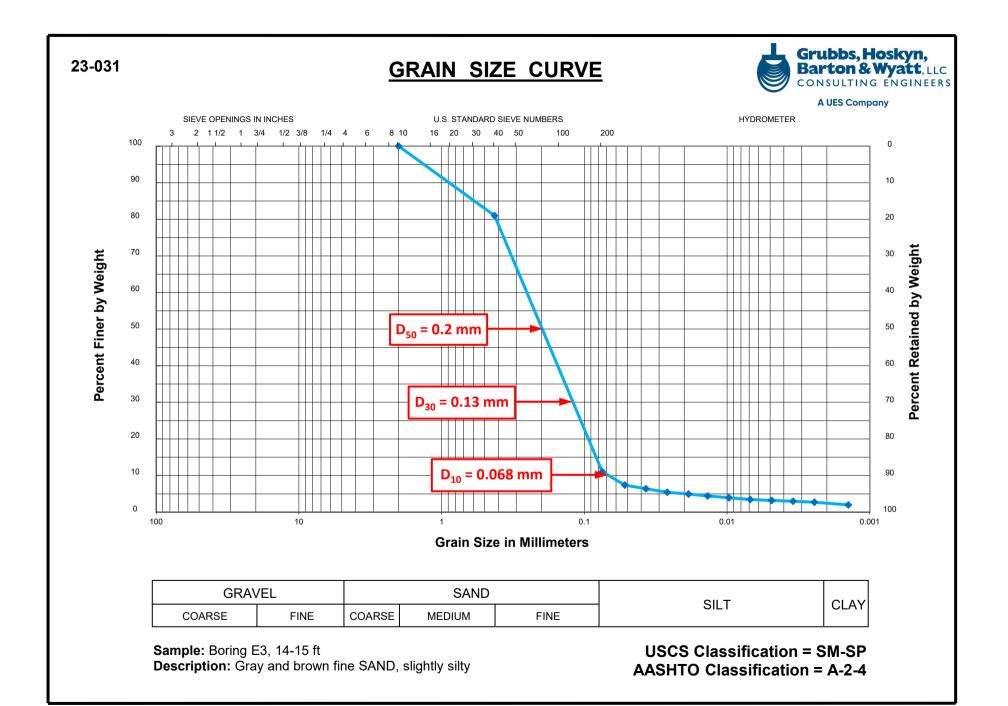


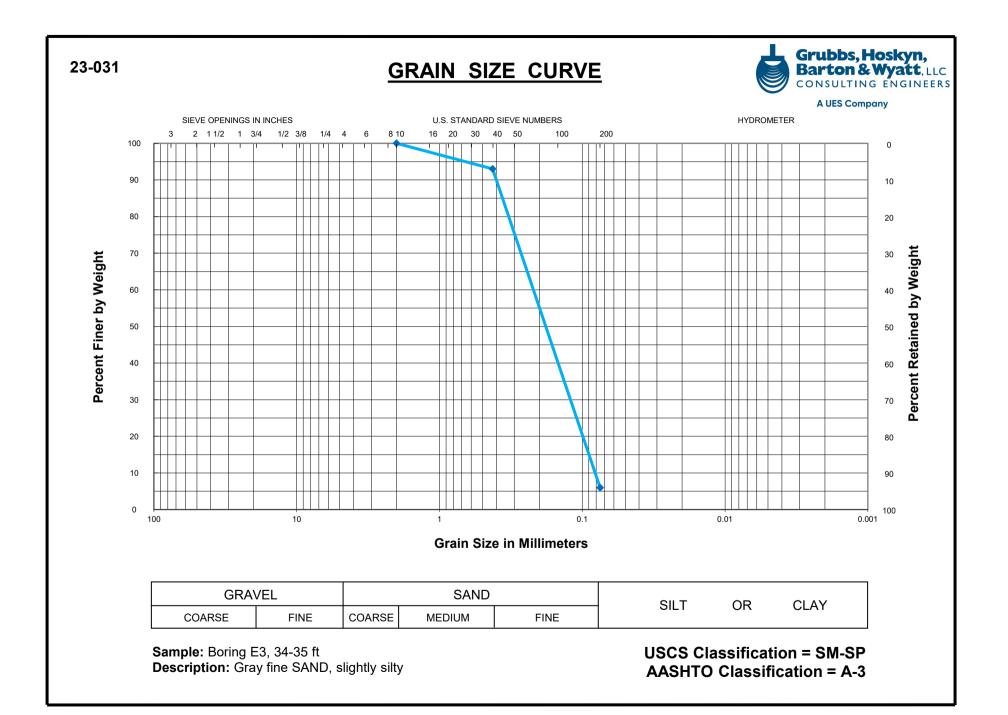


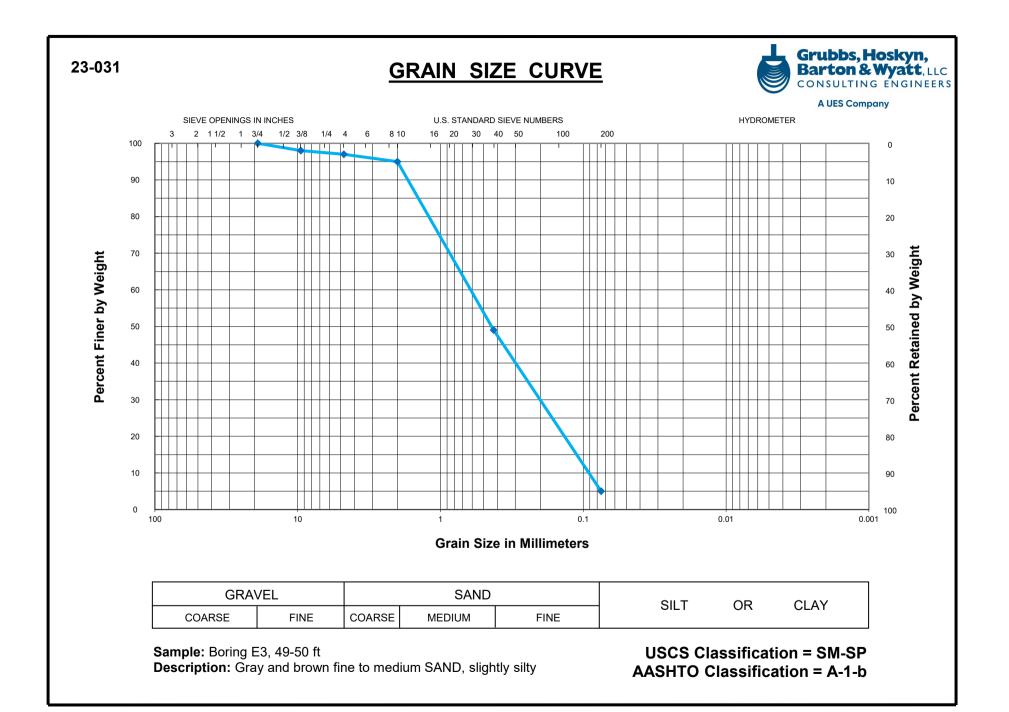


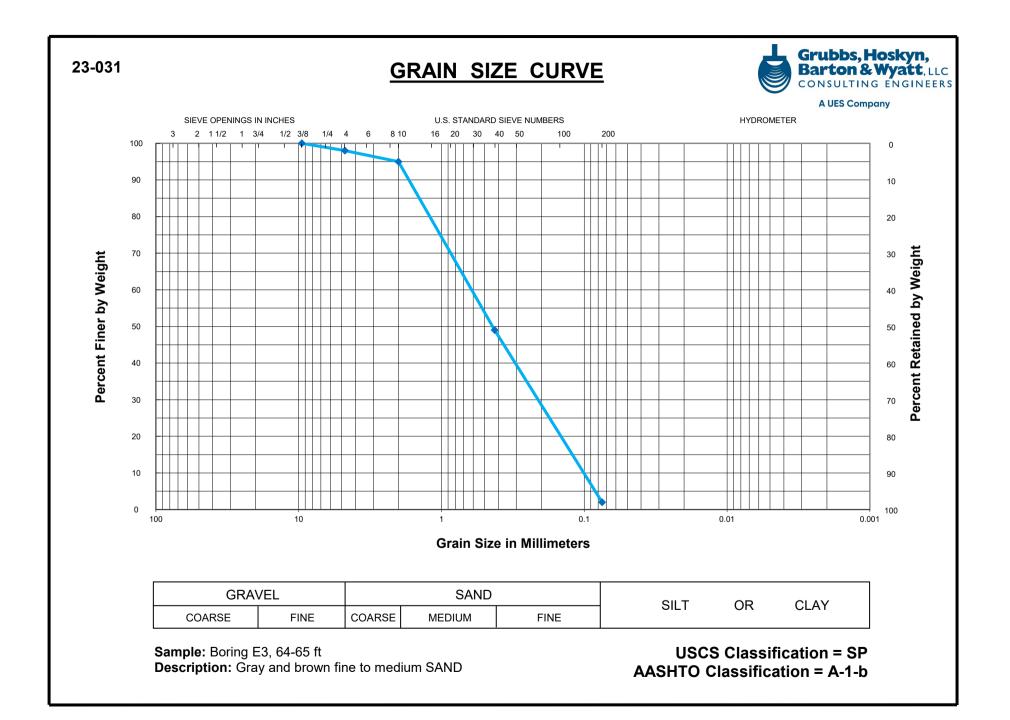


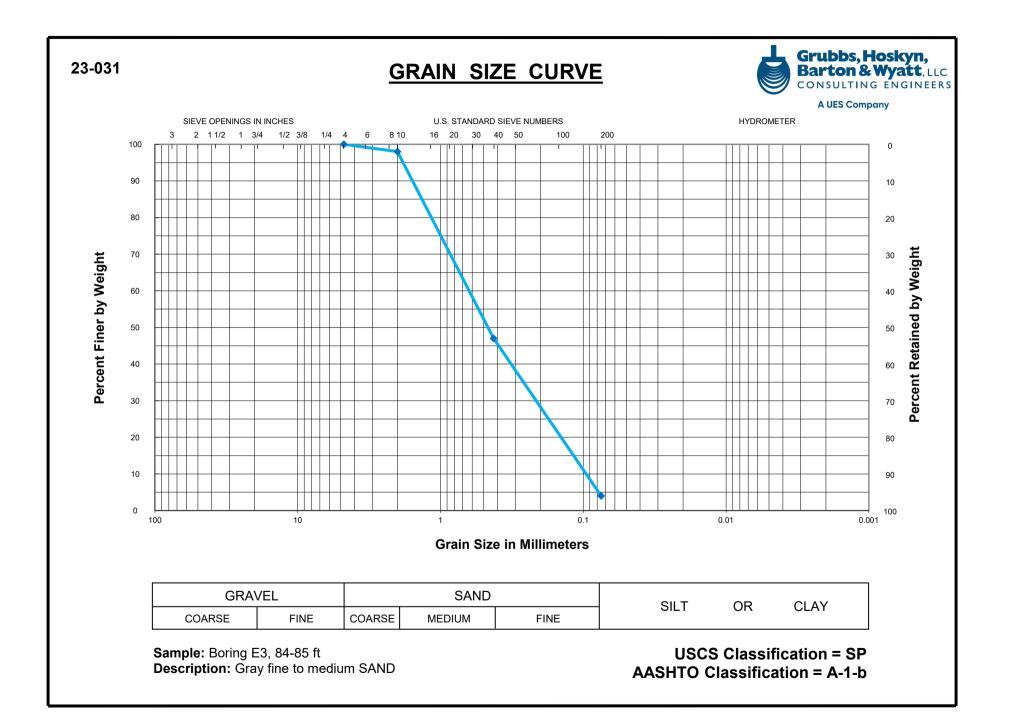


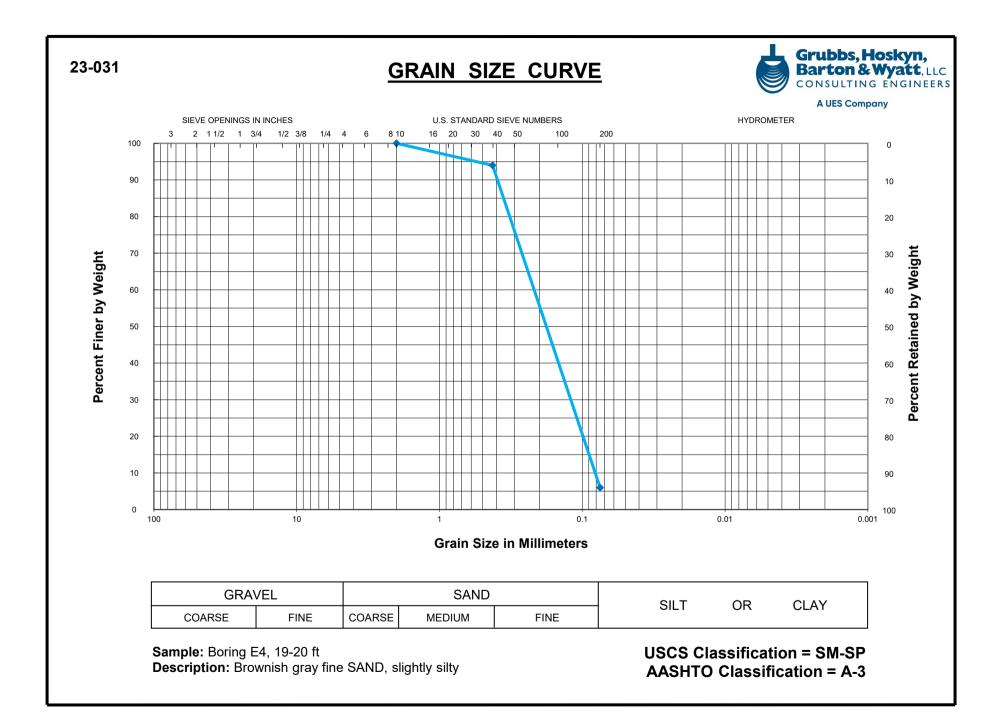


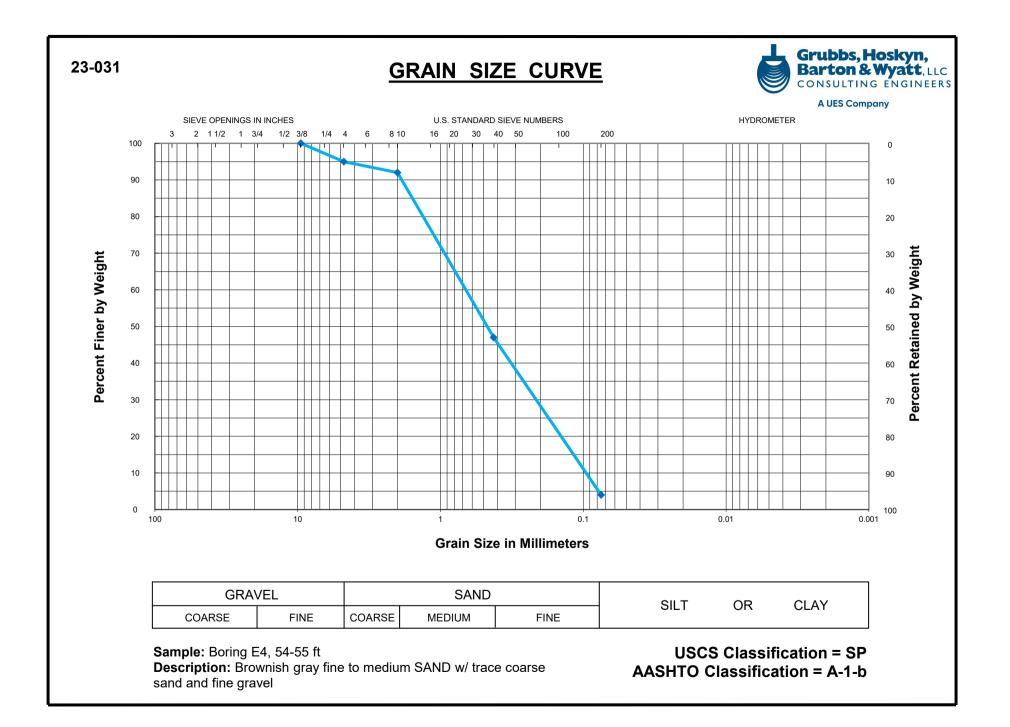


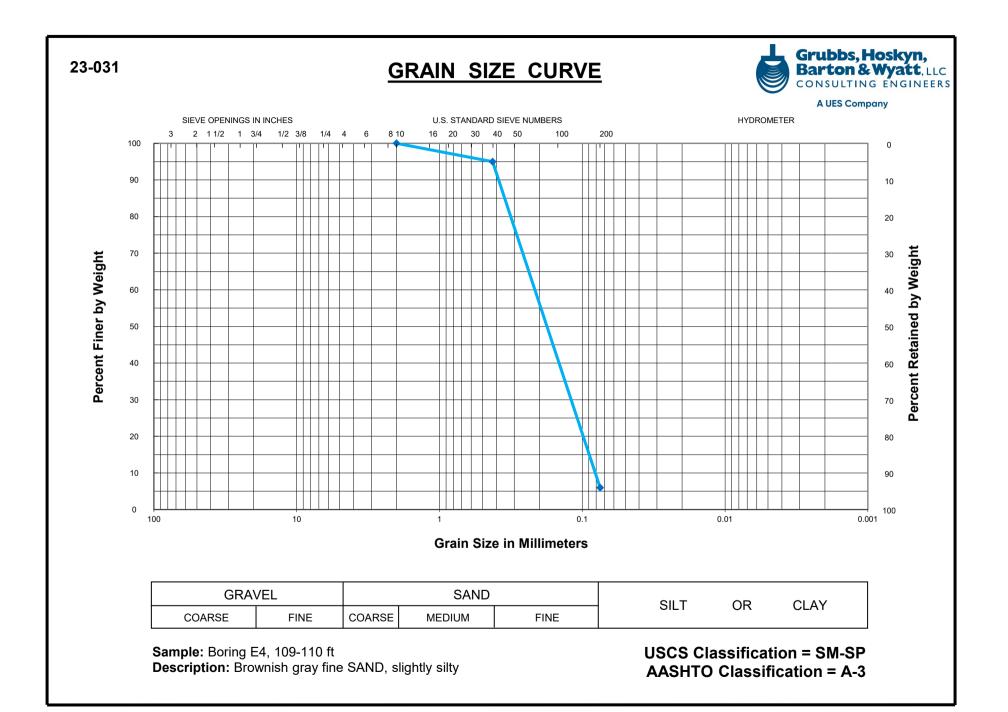


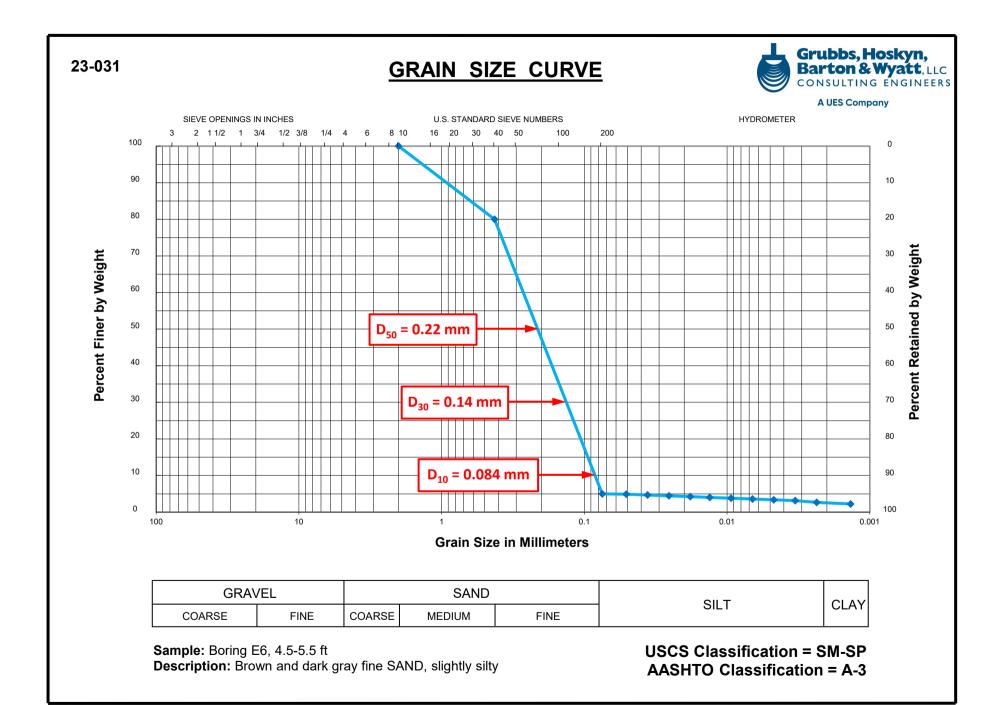


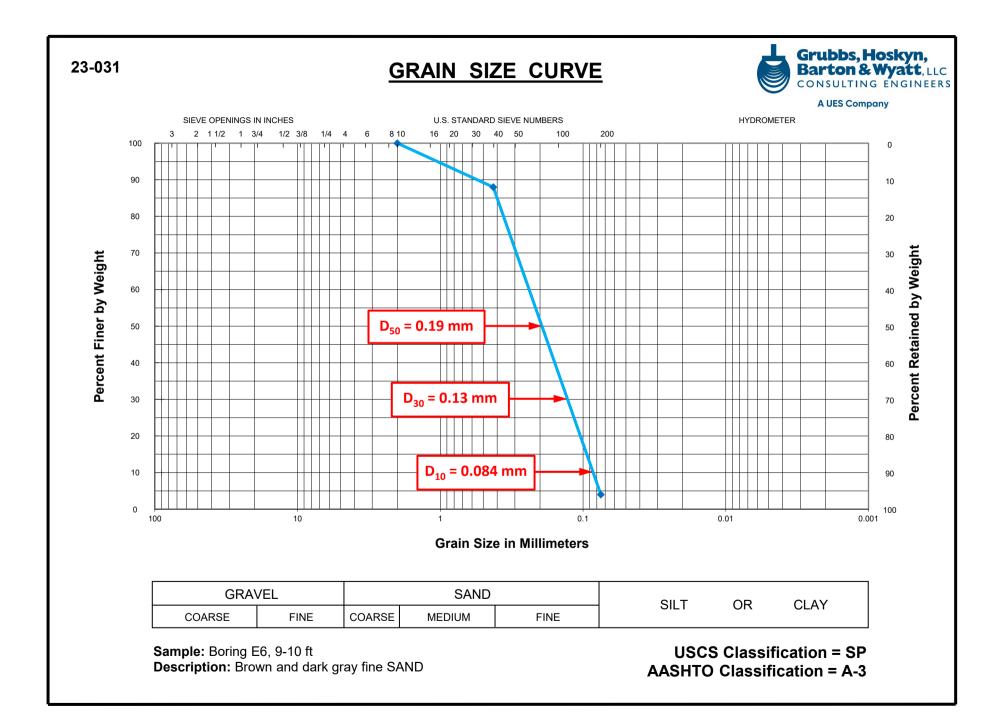


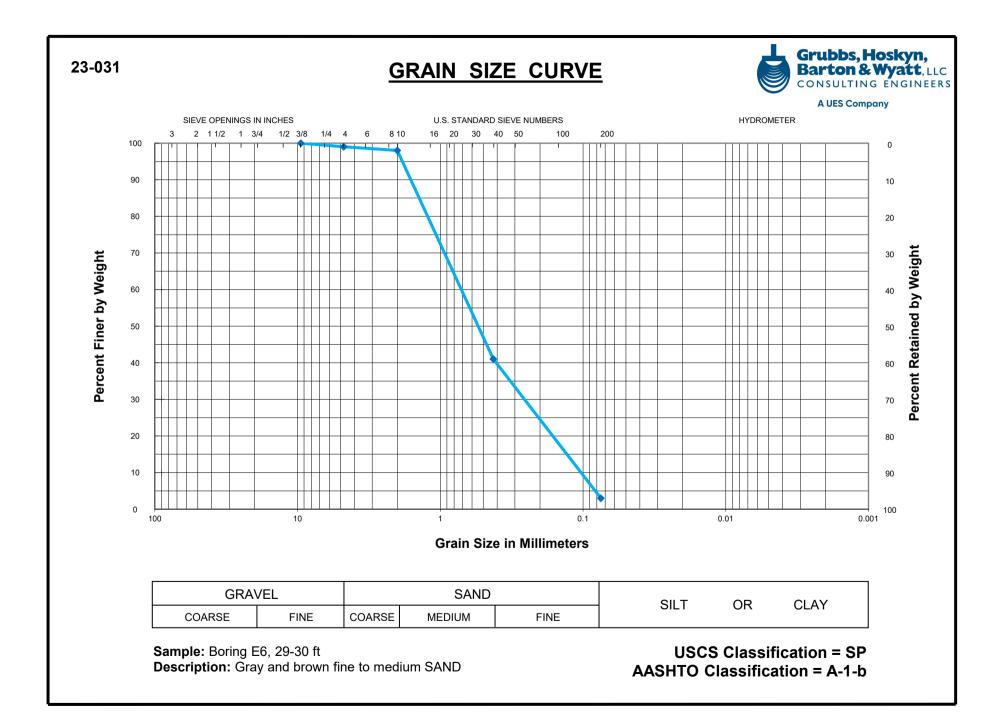


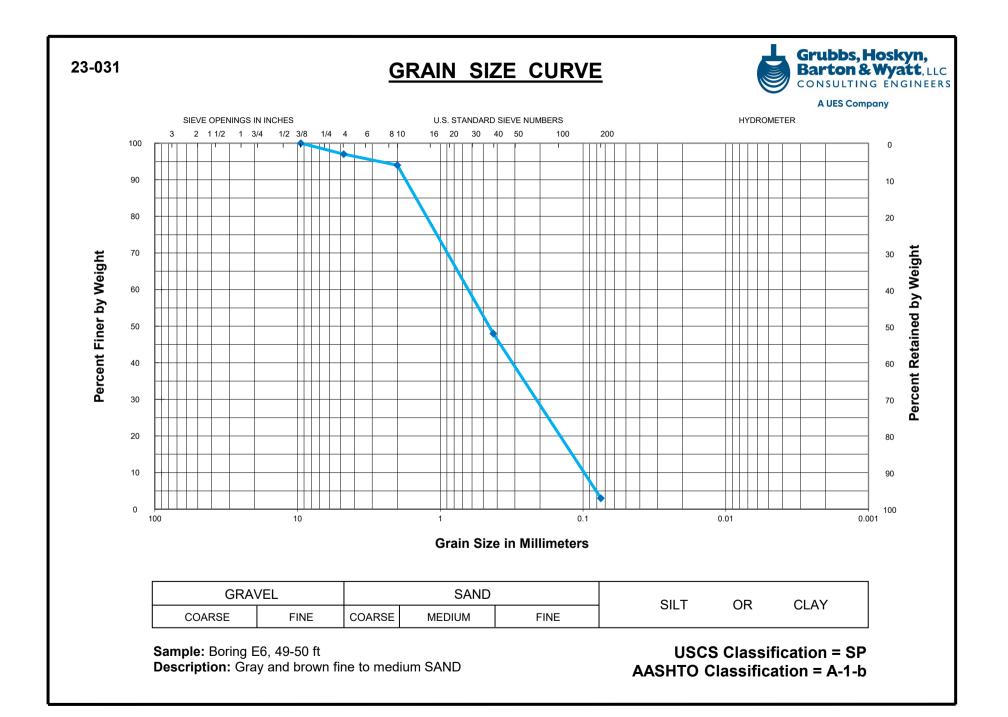


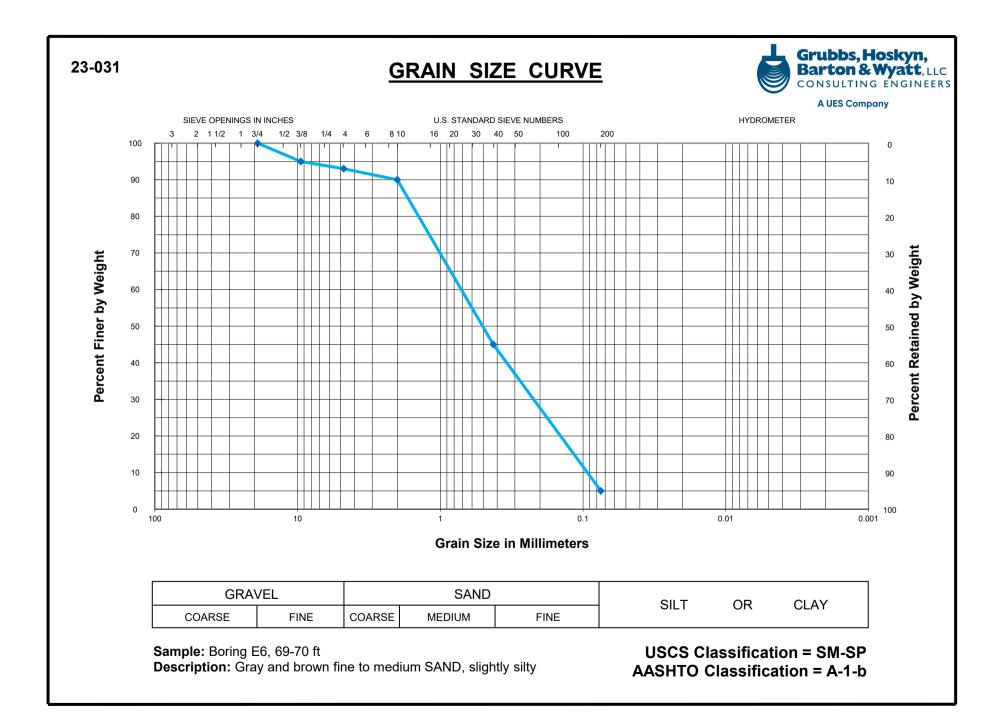


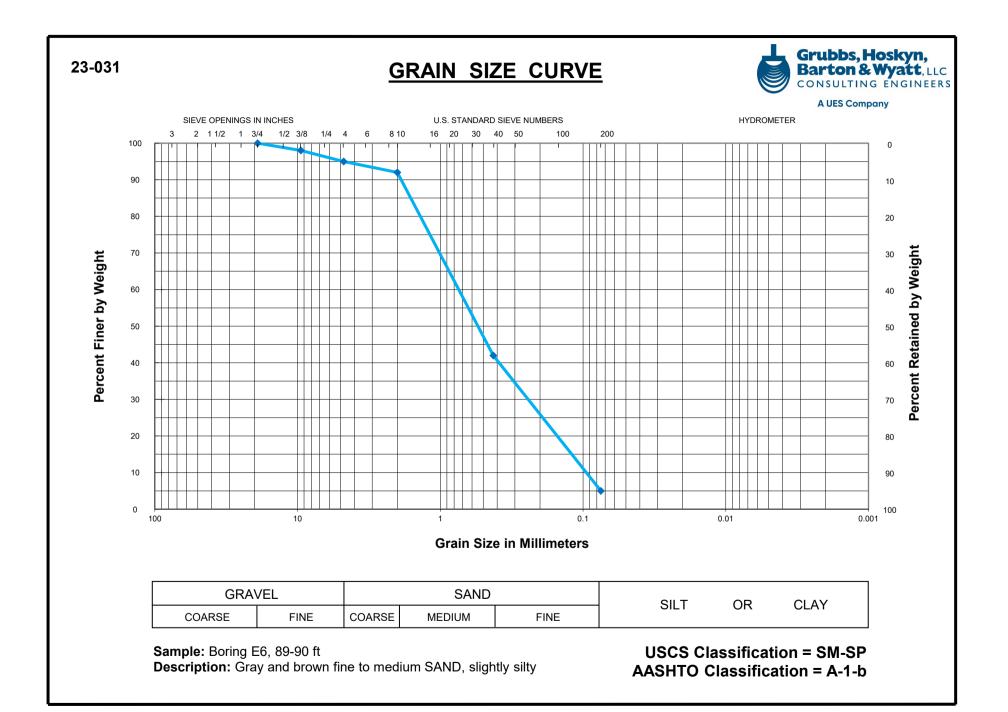


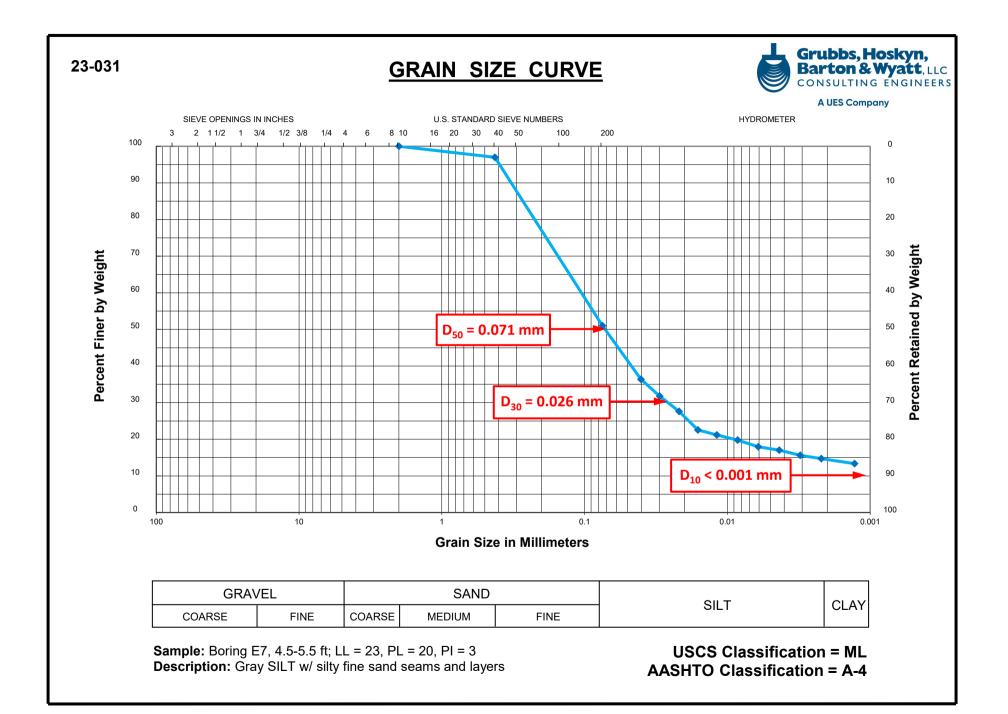


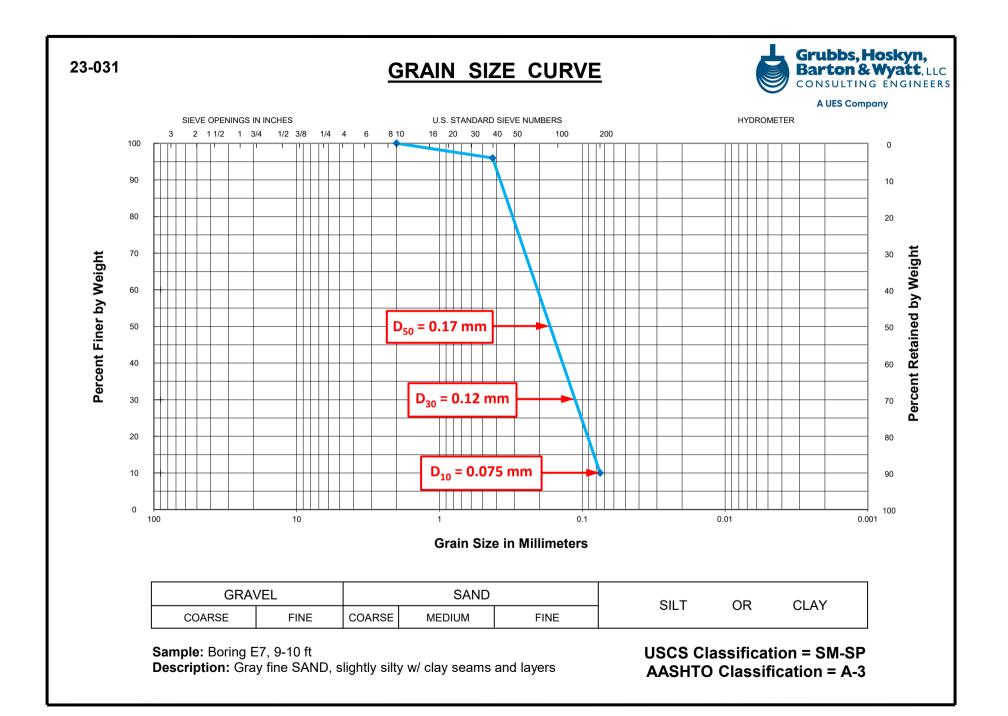


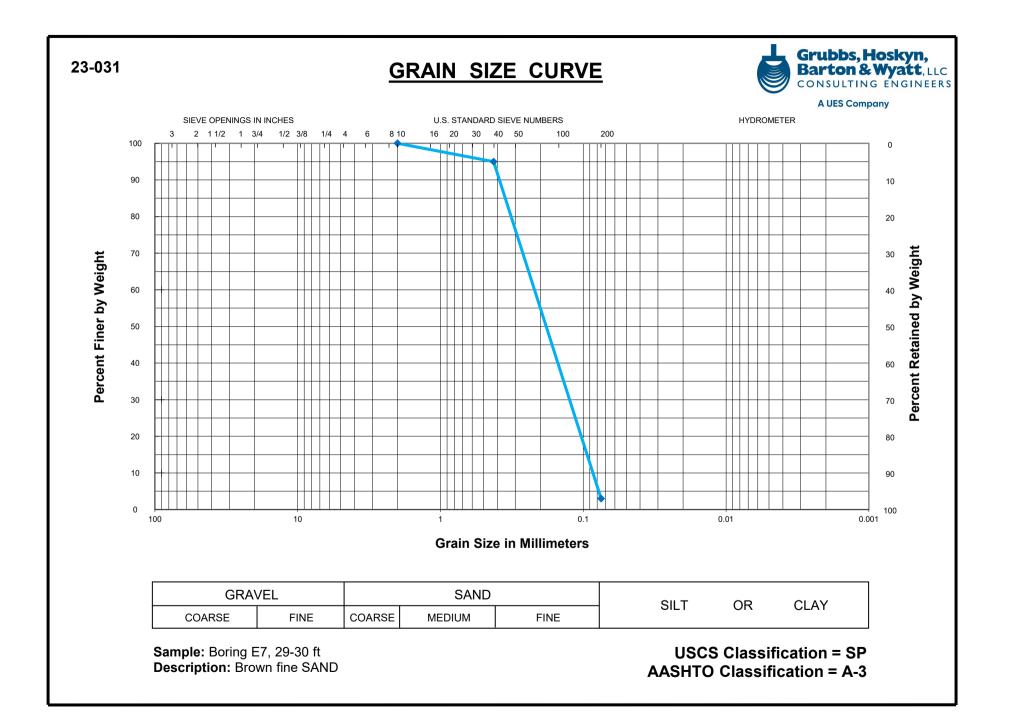


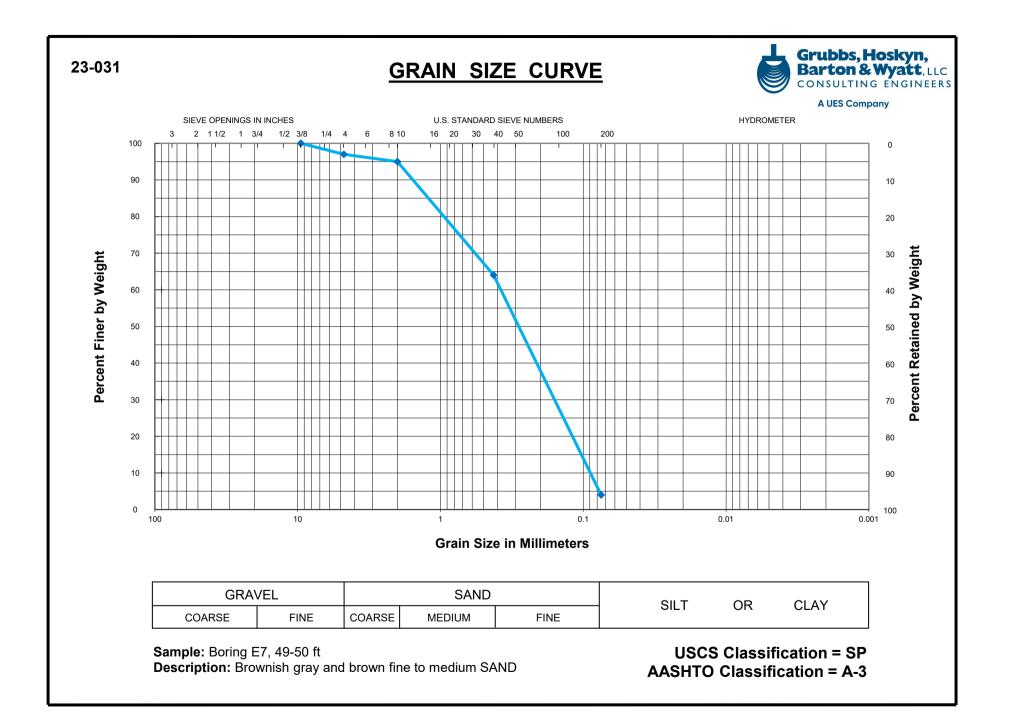


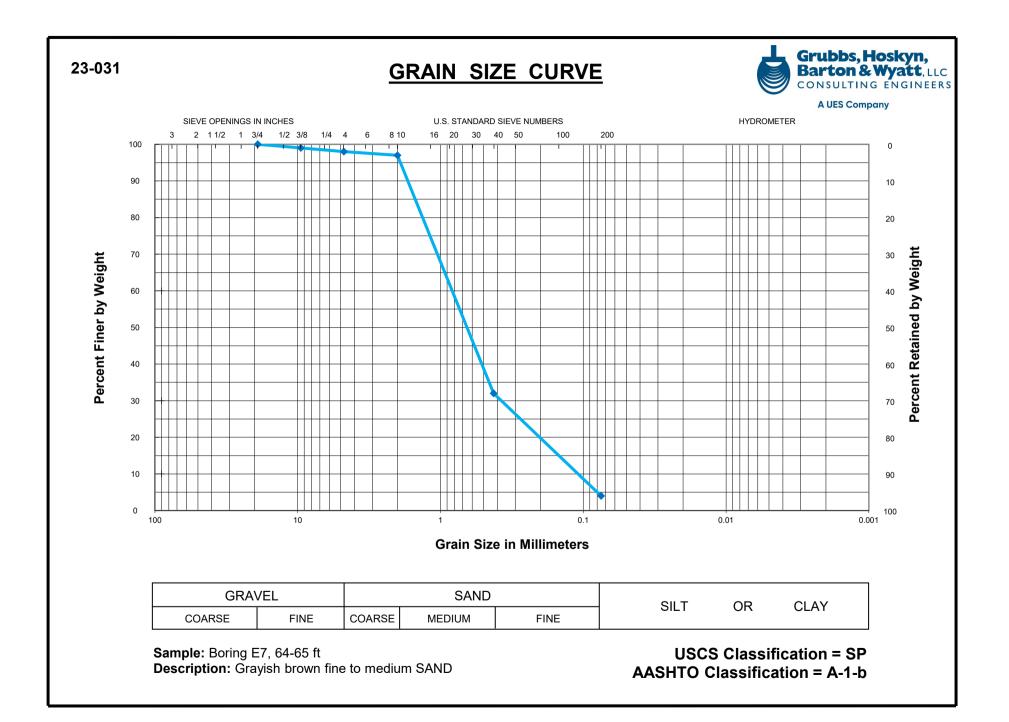


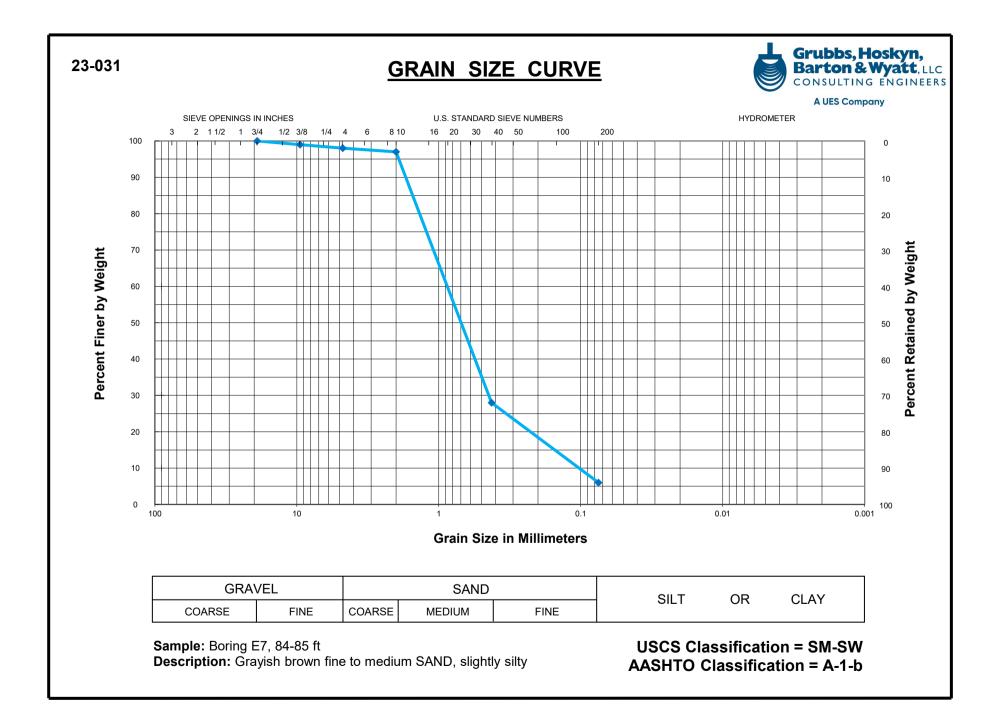


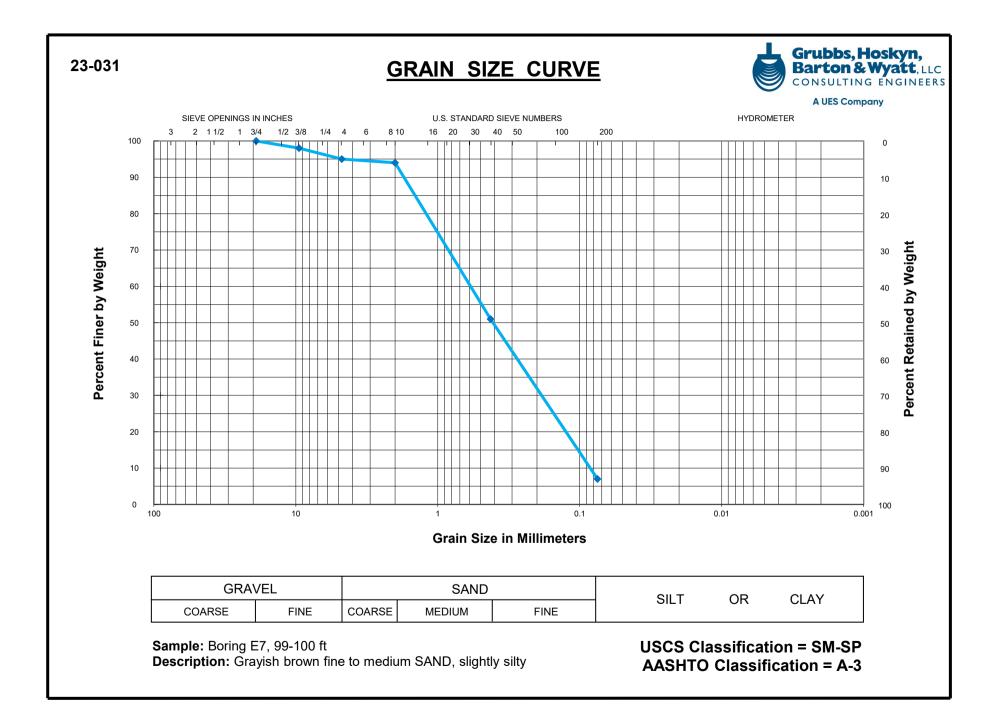


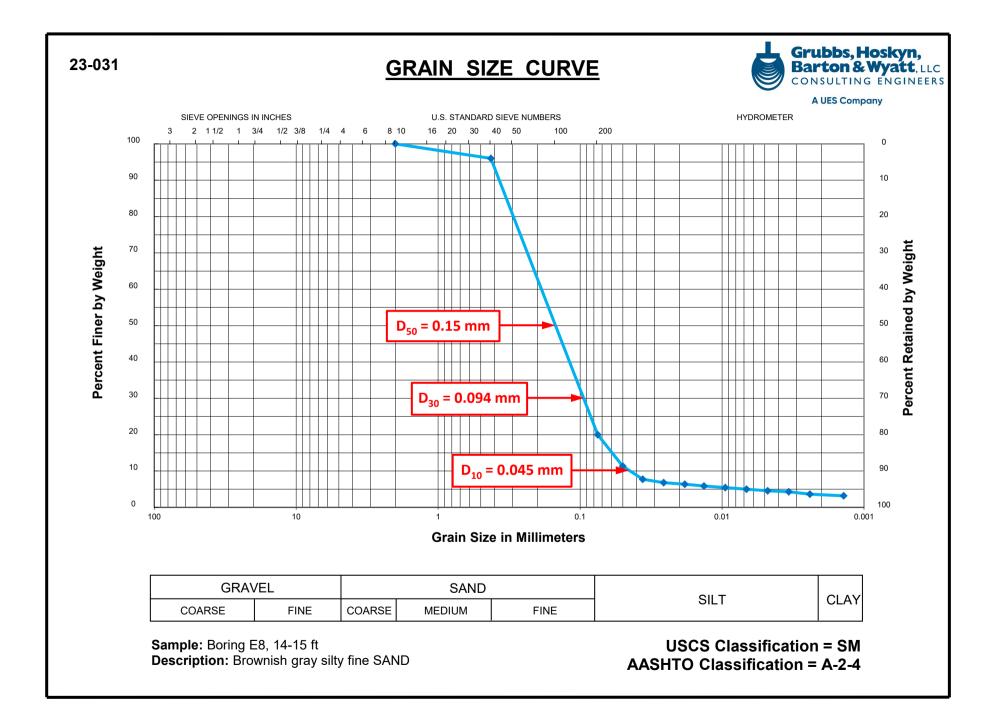


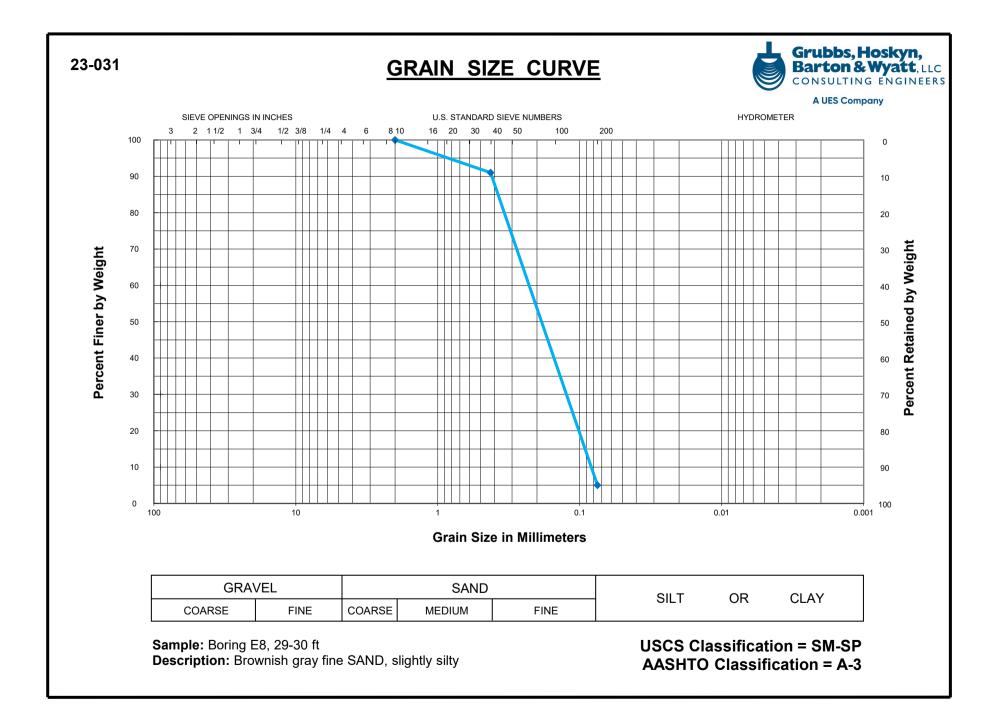


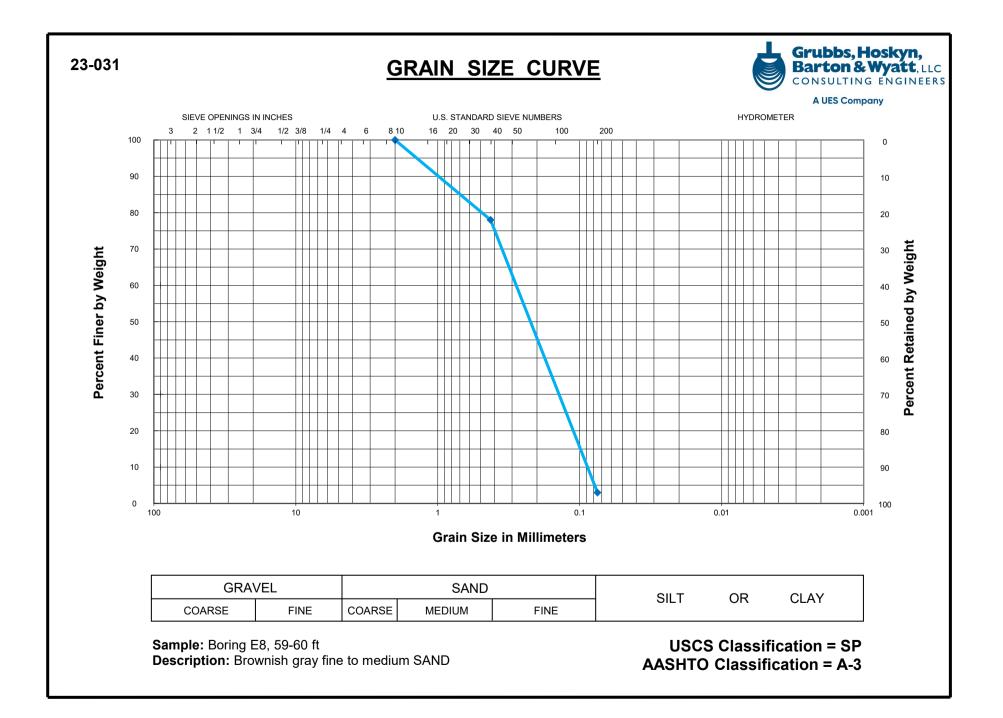


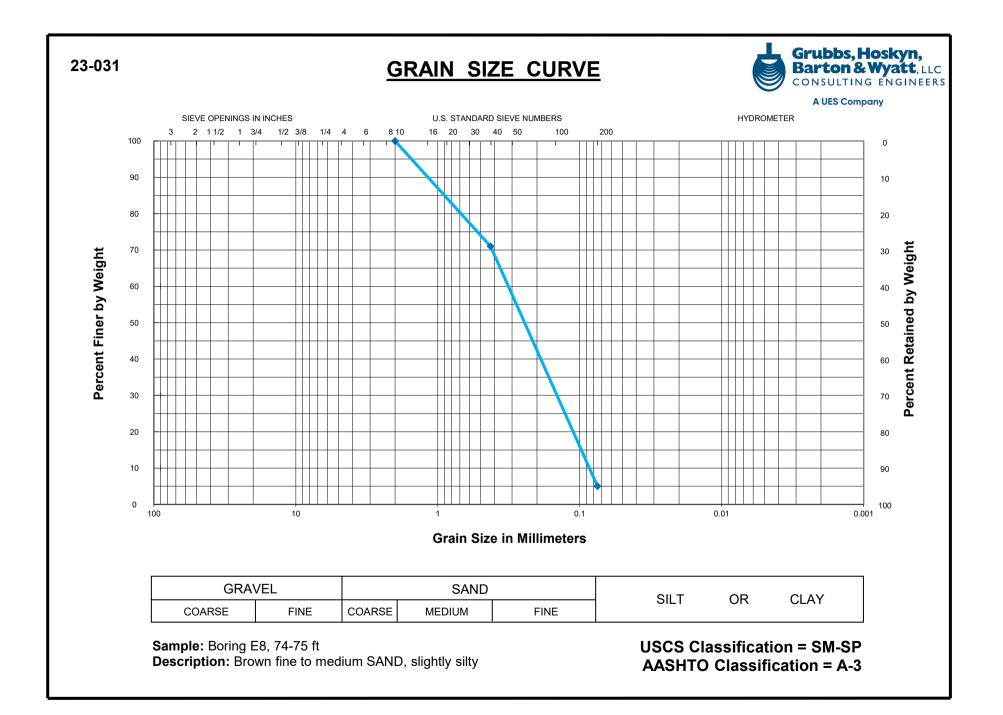


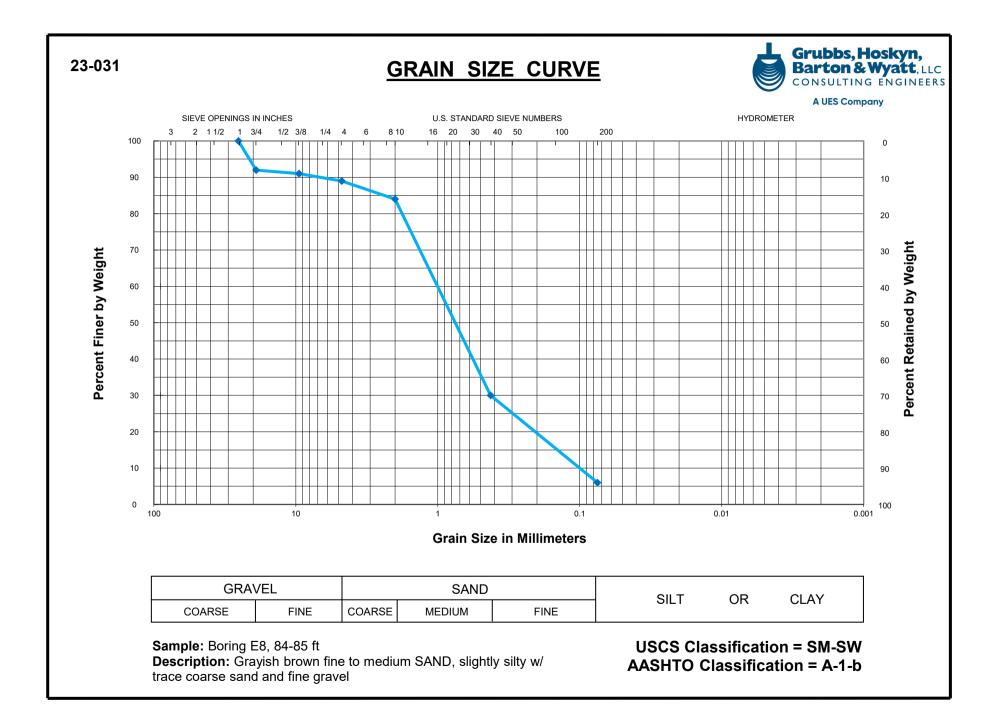


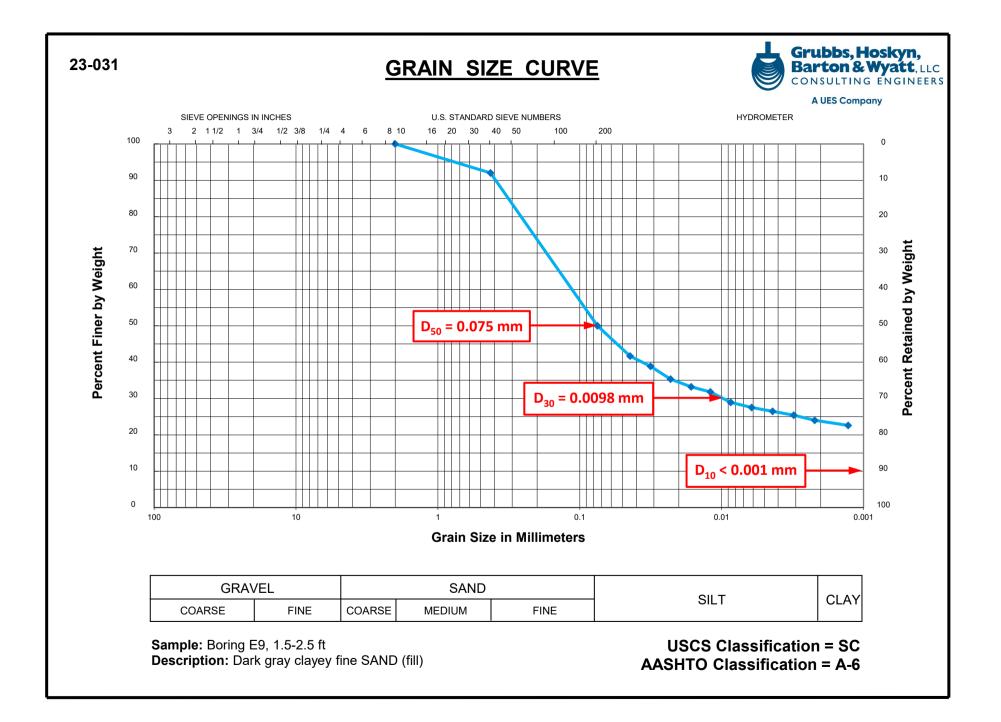


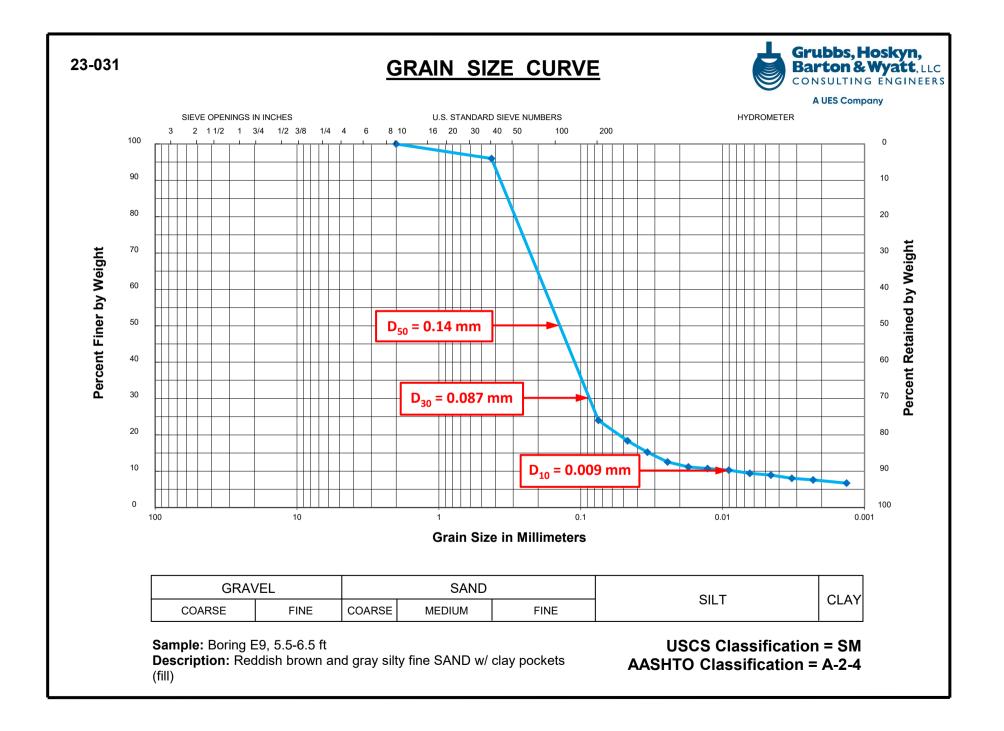


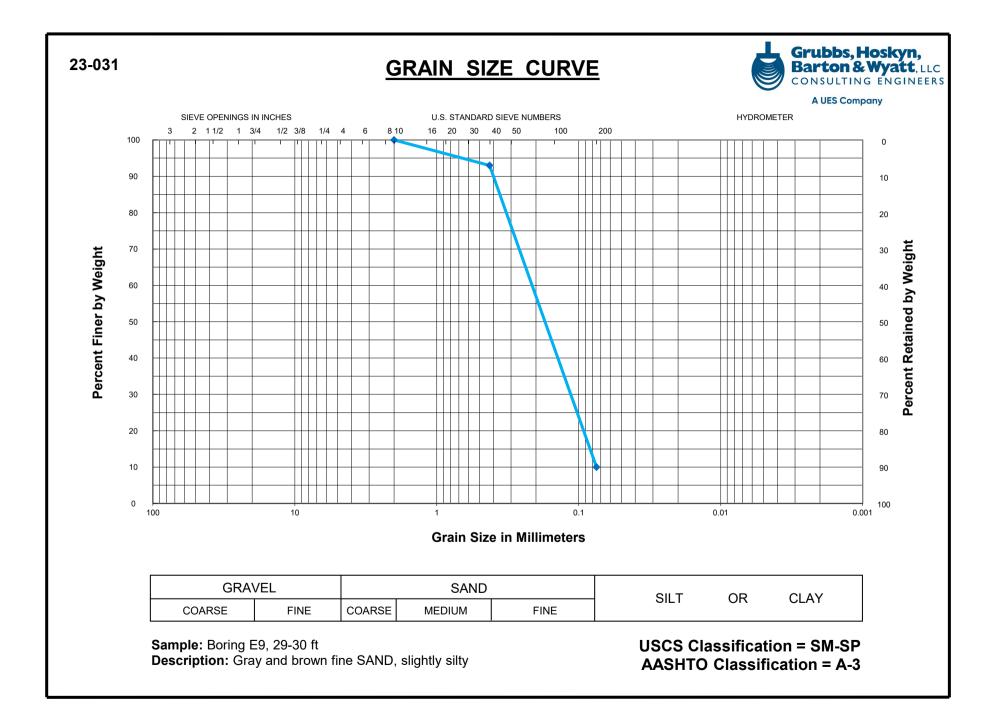


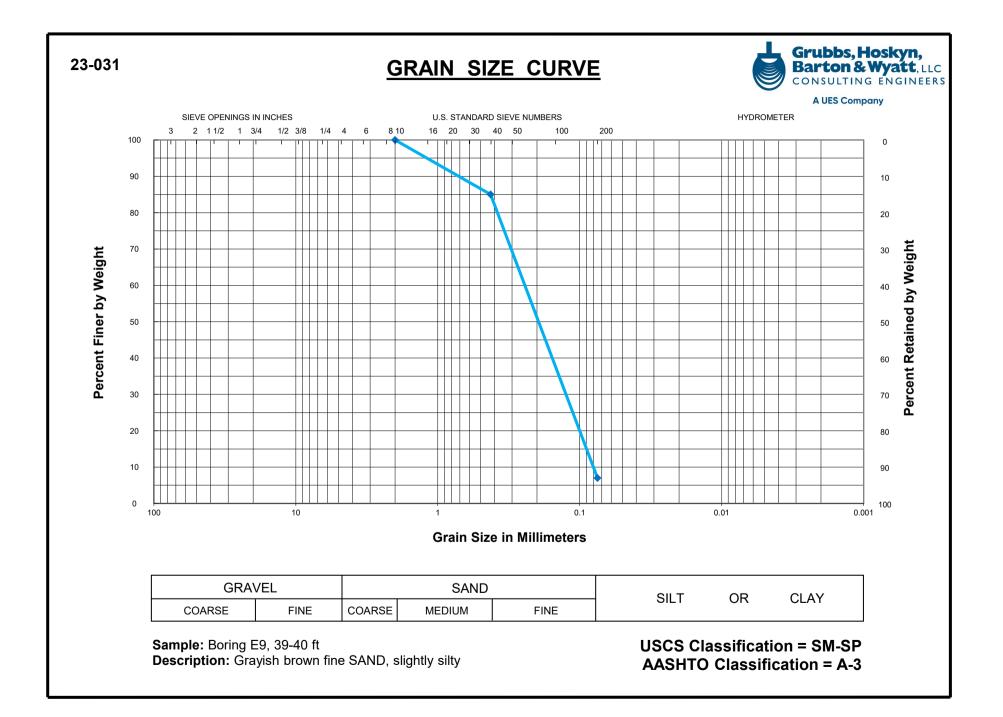


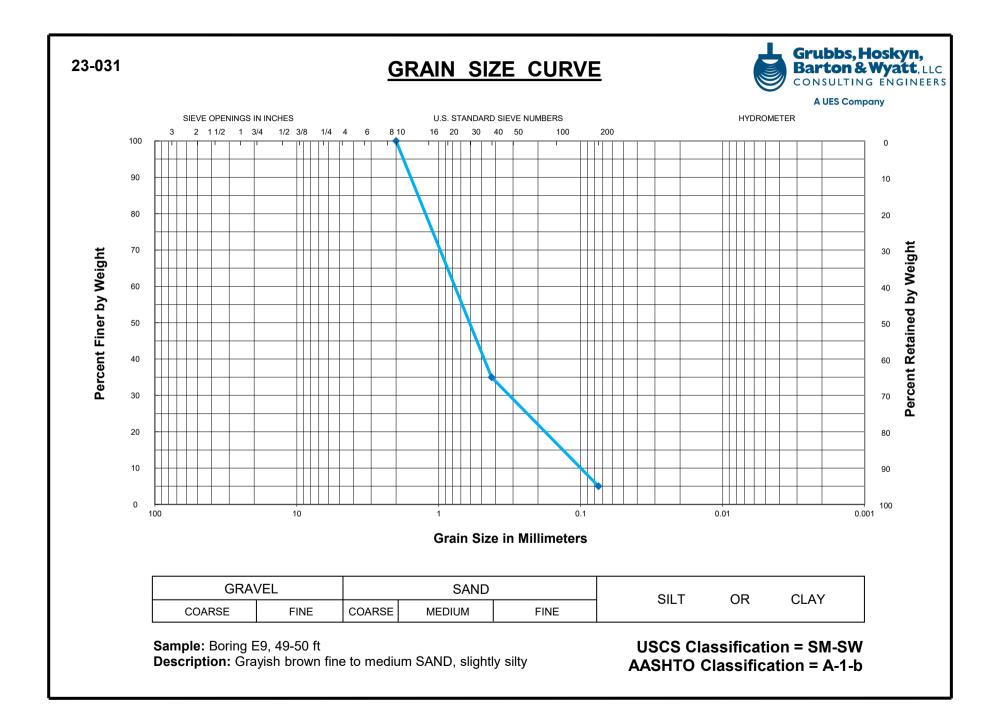


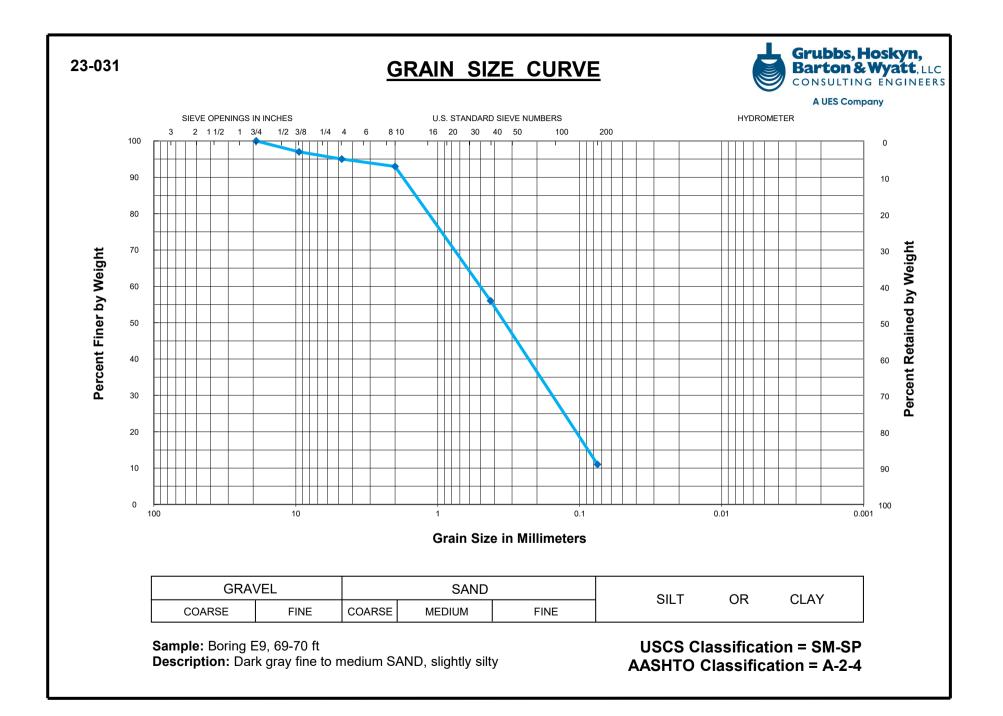


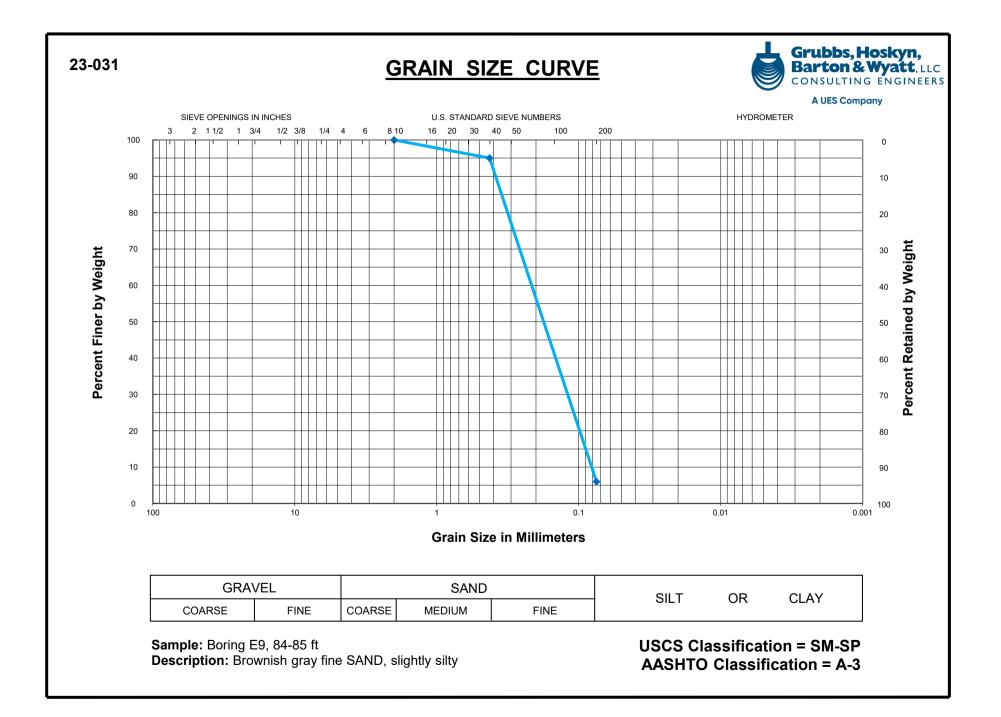












APPENDIX D

Table 2. Summary of Site-Specific Response Resu

Period	Site 2-Tyronza River	Site 5 – Righthand Chute Little River
A₅ (g) (Site-adjusted PGA)	0.769	0.864
S _{DS} (g) (0.2 sec)	1.565	1.673
Sp1 (g) (1 Sec)	1.197	1.247
Seismic Performance Zone	ZONE 4	ZONE 4

Table 4. Average Shear Wave Velocity and AASHTO Site Classification

CPT Designation	Average Shear Wave Velocity	AASHTO Site Class
SCPT-2	701	D
SCPT-5-South	709	D
SCPT-5-North	701	D
SCPT-7	712	D

Right Hand Chute Little River Site:

Table 6. Site-Specific Response Accelerations Considering 5% Damping.

PARAMETER	DESIGN ACCELERATION PARAMETERS (g)
SDS	1.673
S _{D1}	1.247
SMS	1.673
S _{MI}	1.247
MCEG	0.864

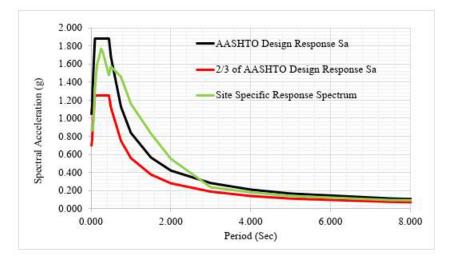
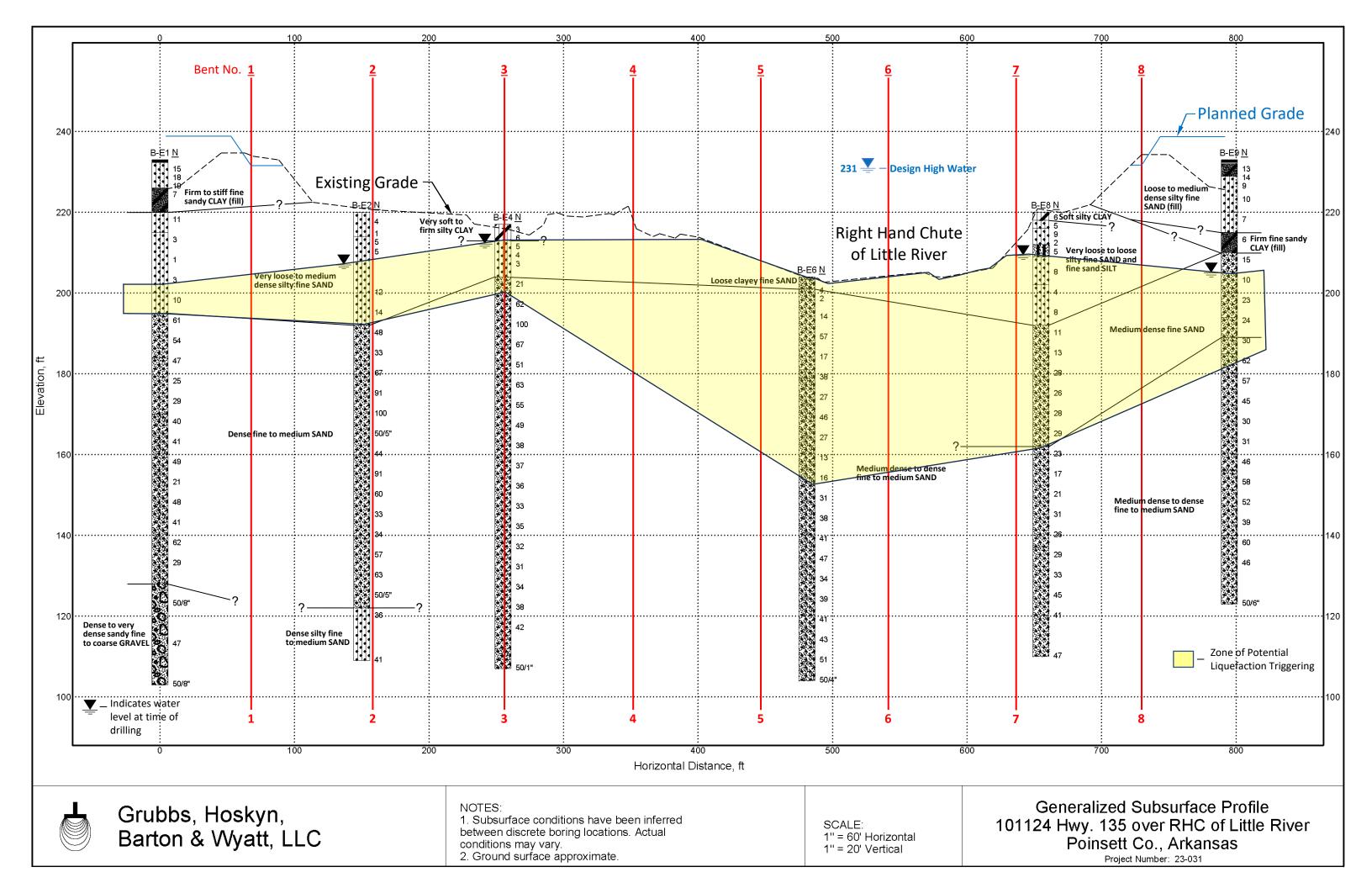
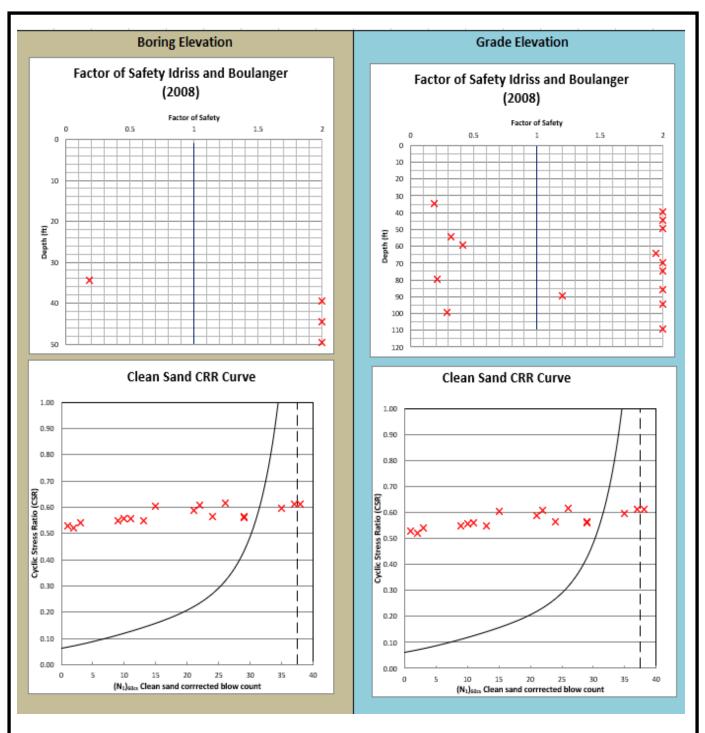
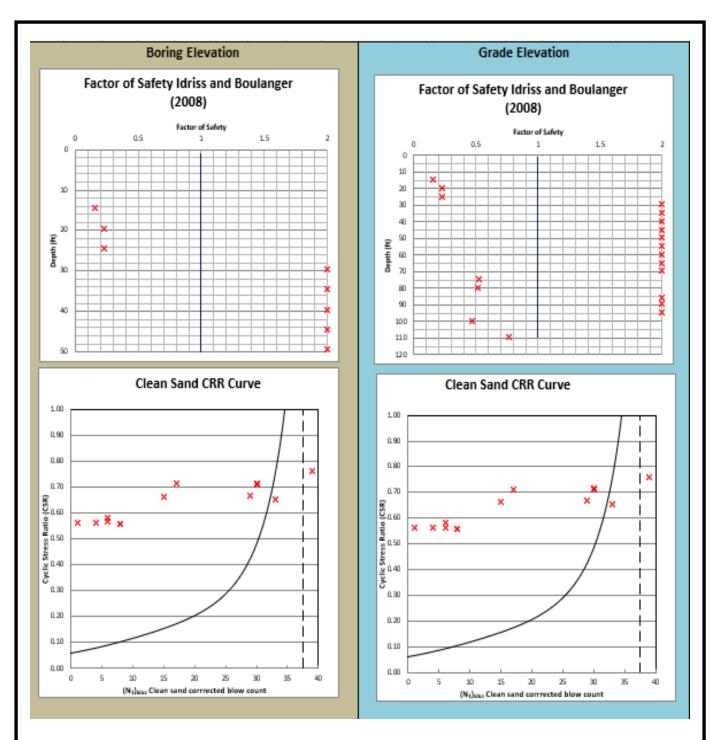




Figure 3. Site-Specific Design Response Spectrum, AASHTO Guide Specifications Design Response Spectrum, and 2/3 of the AASHTO Guide Specifications Design Response Spectrum.

APPENDIX E

Boring E1



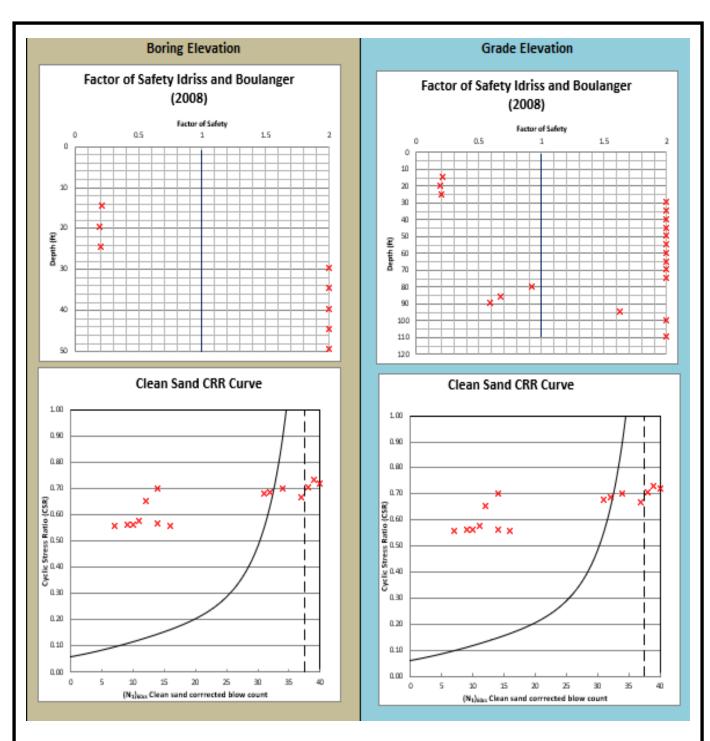
<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

LIQUEFACTION ANALYSIS

Job No. 23-031

Plate

Boring E2 (Bent 2)



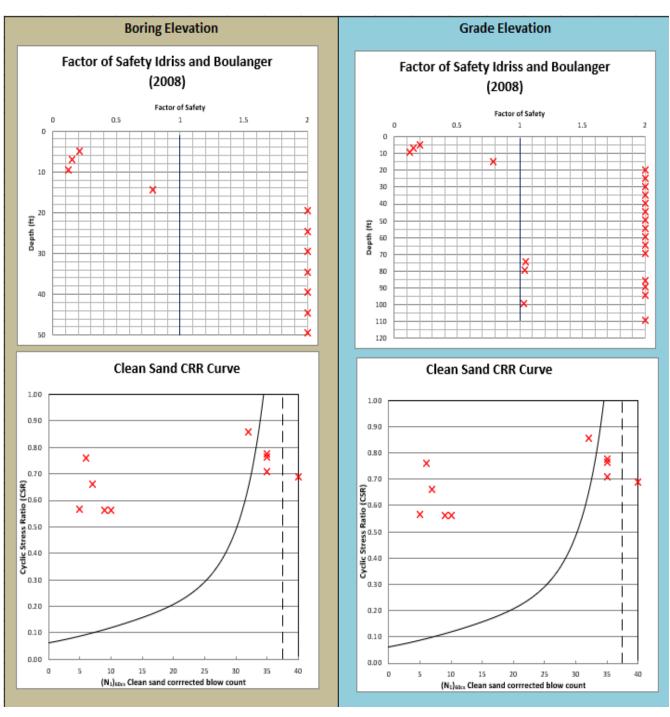
<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

LIQUEFACTION ANALYSIS

Job No. 23-031

Plate

Boring E3 (Bent 2)

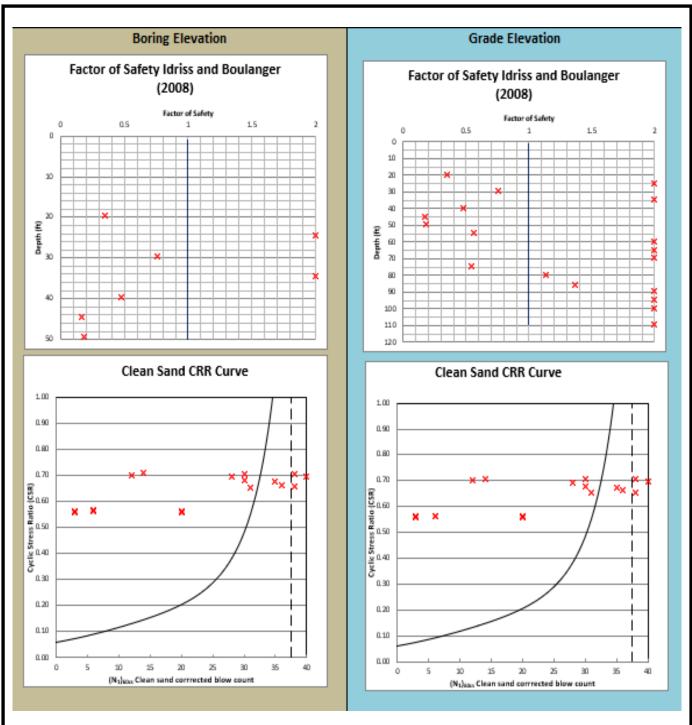


<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

LIQUEFACTION ANALYSIS

Job No. 23-031

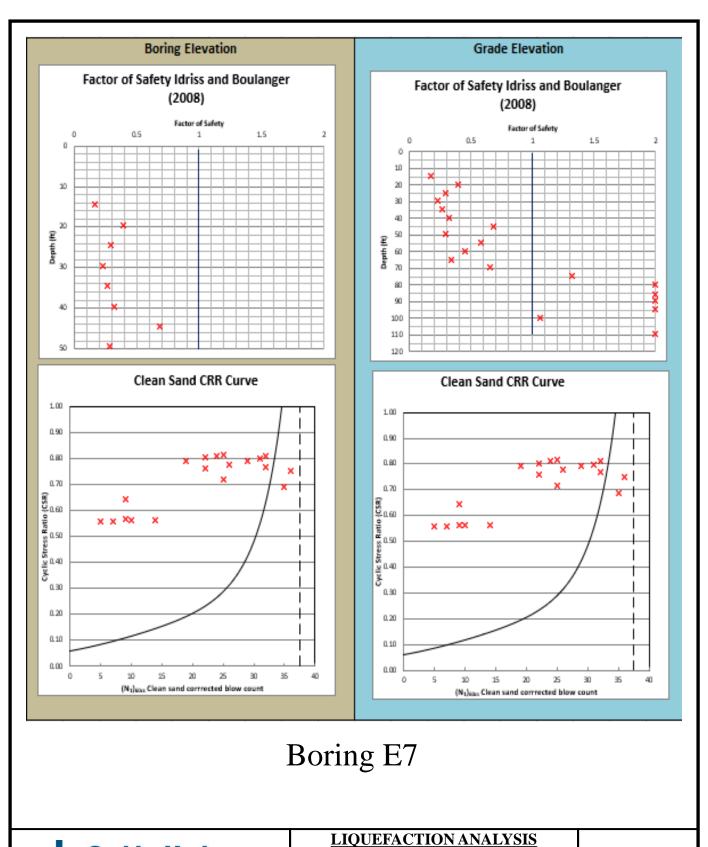
Plate


Boring E4 (Bent 3)

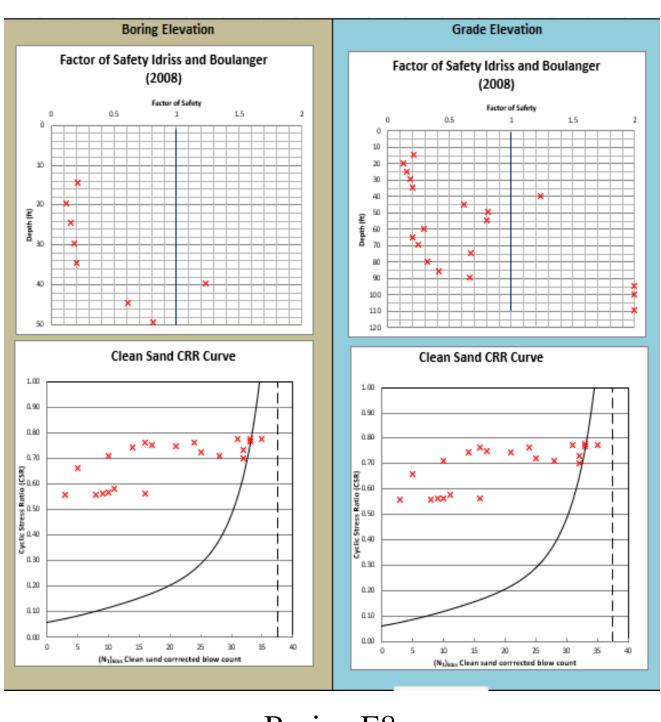
<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

LIQUEFACTION ANALYSIS

Job No. 23-031

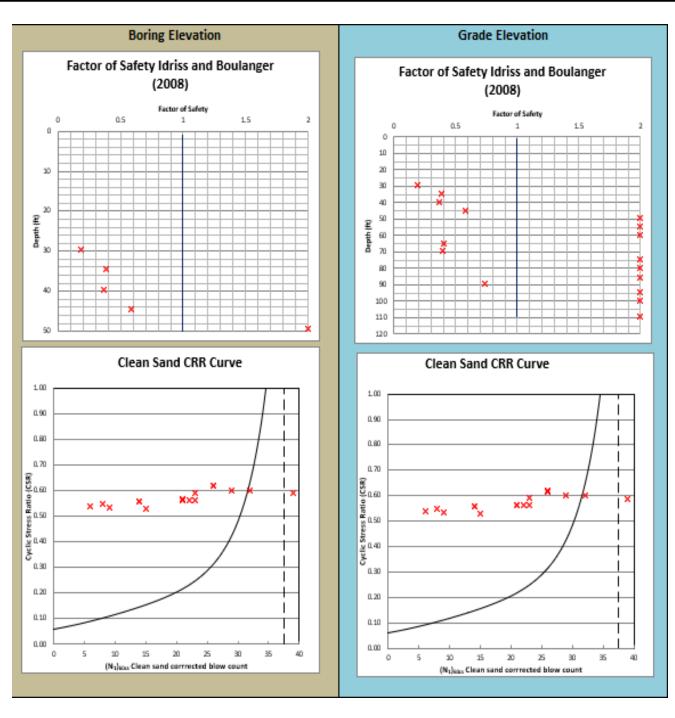

Boring E6

<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas


LIQUEFACTION ANALYSIS

Job No. 23-031

<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas Job No. 23-031

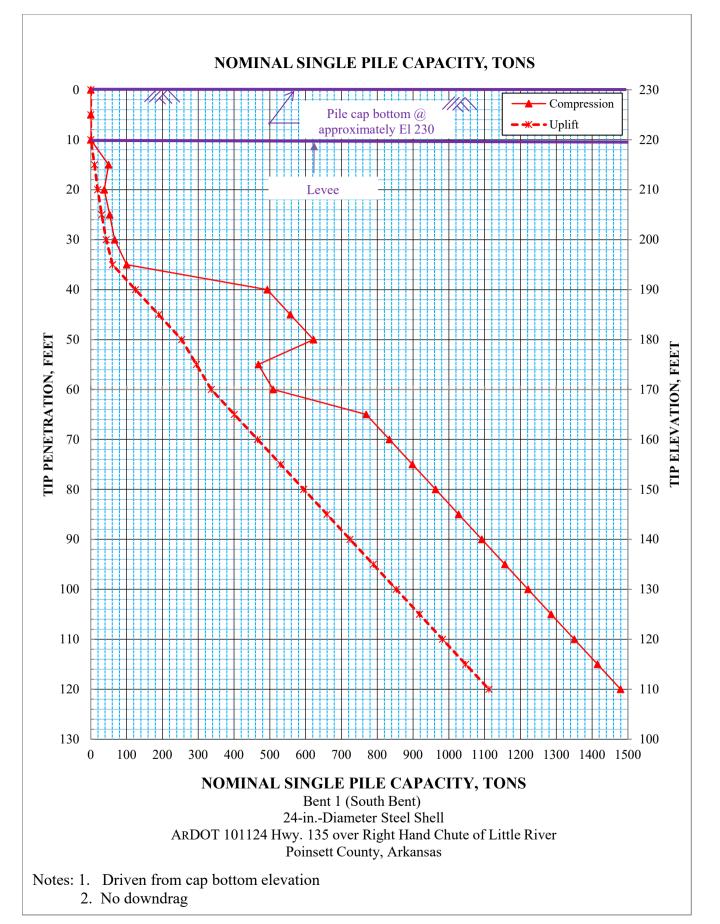

Boring E8

<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

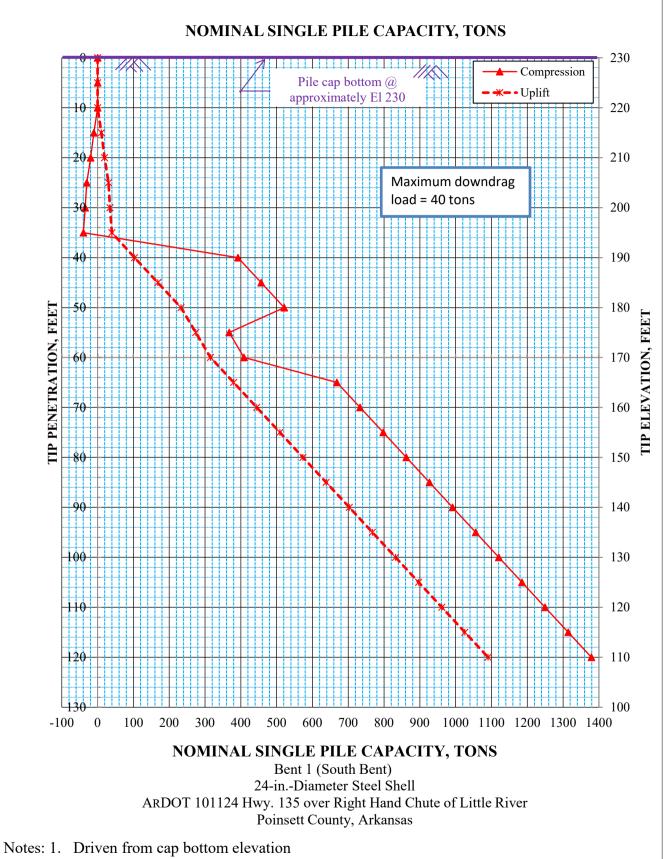
LIQUEFACTION ANALYSIS

Job No. 23-031

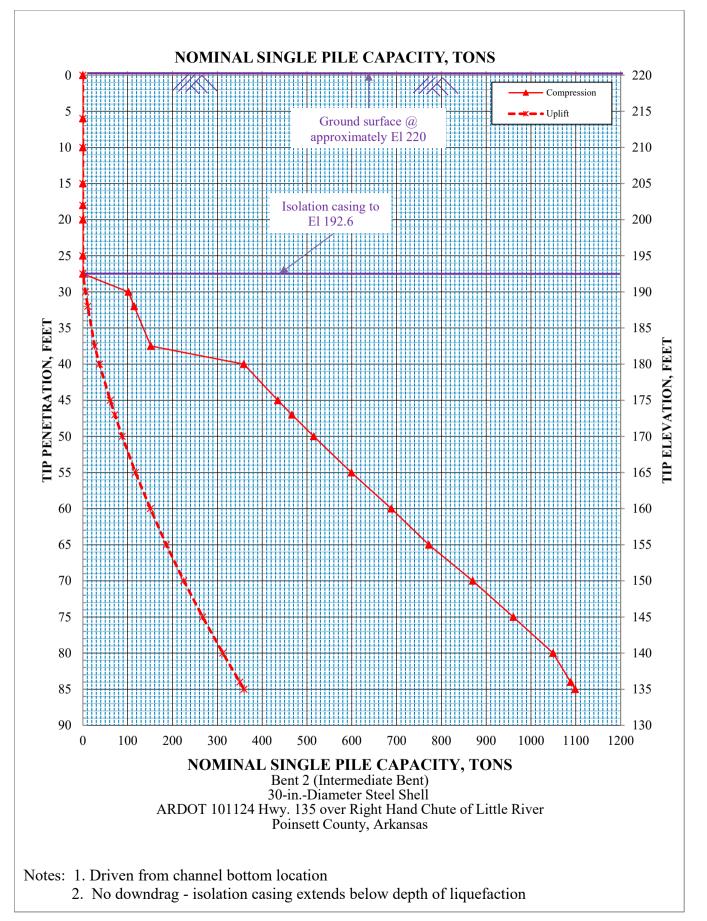
Boring E9

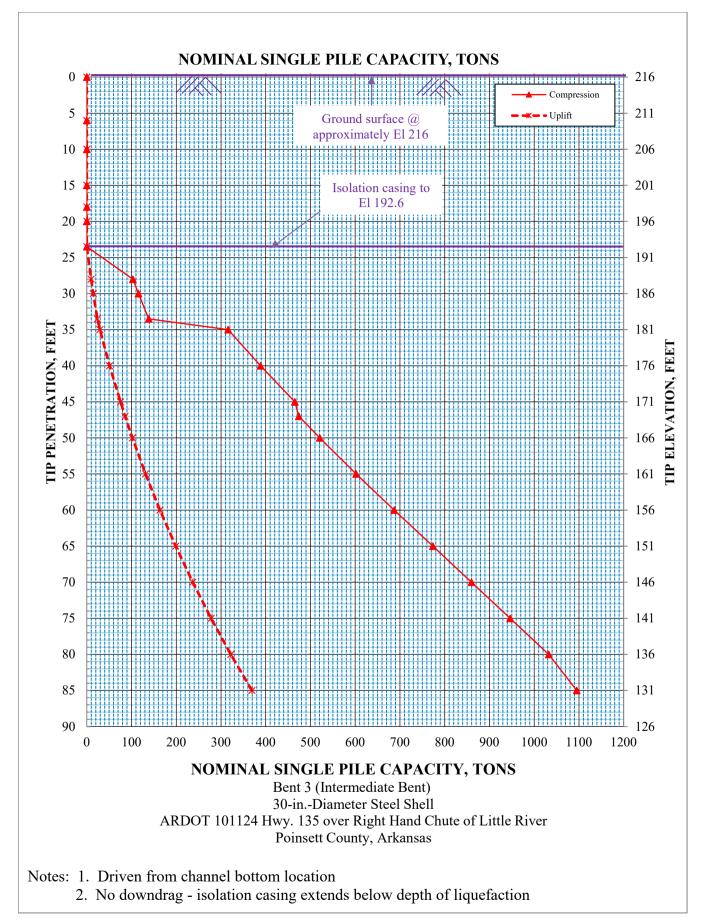


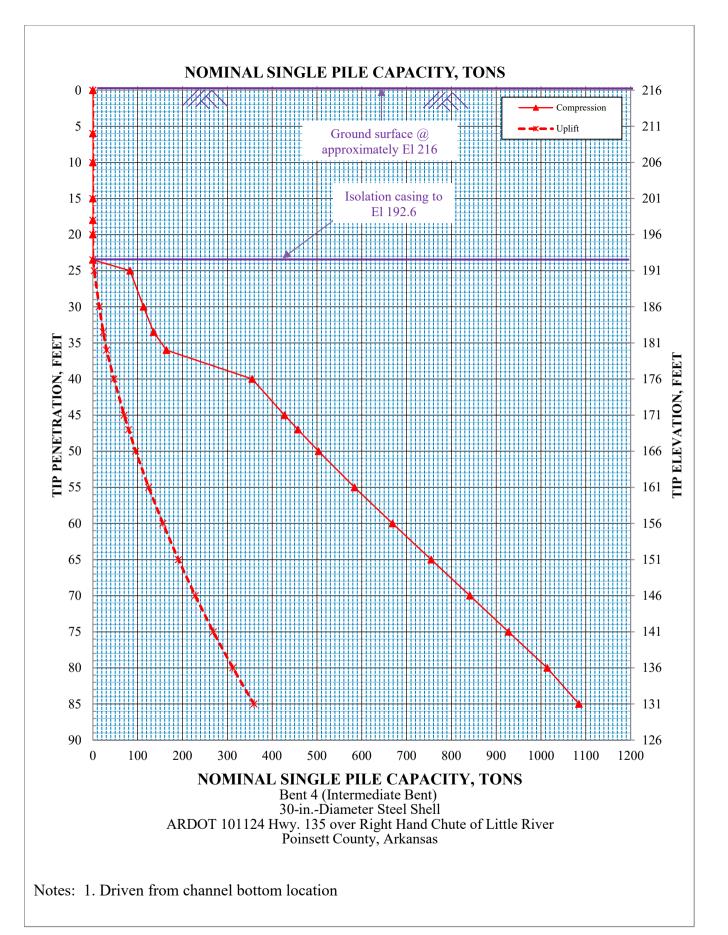
<u>RESULTS</u> 101124 Hwy. 135 over Right Hand Chute of Little River Poinsett County, Arkansas

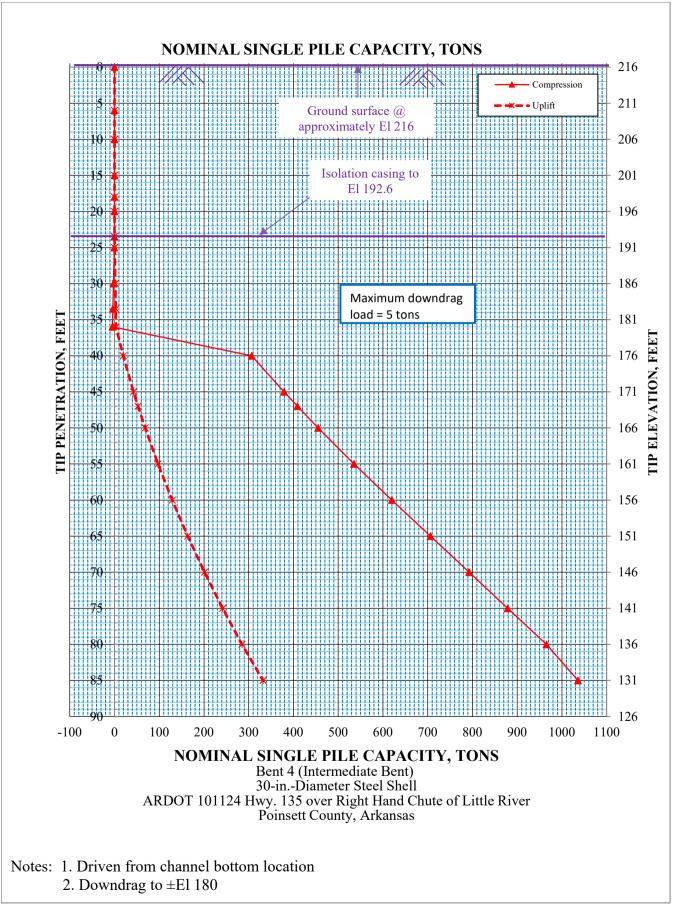

LIQUEFACTION ANALYSIS

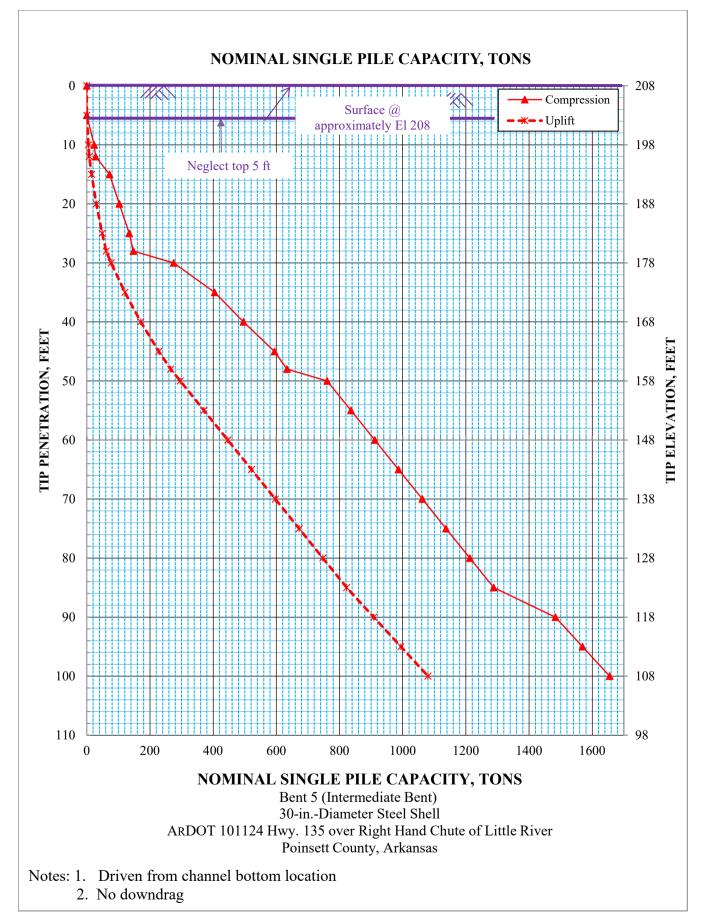
Job No. 23-031

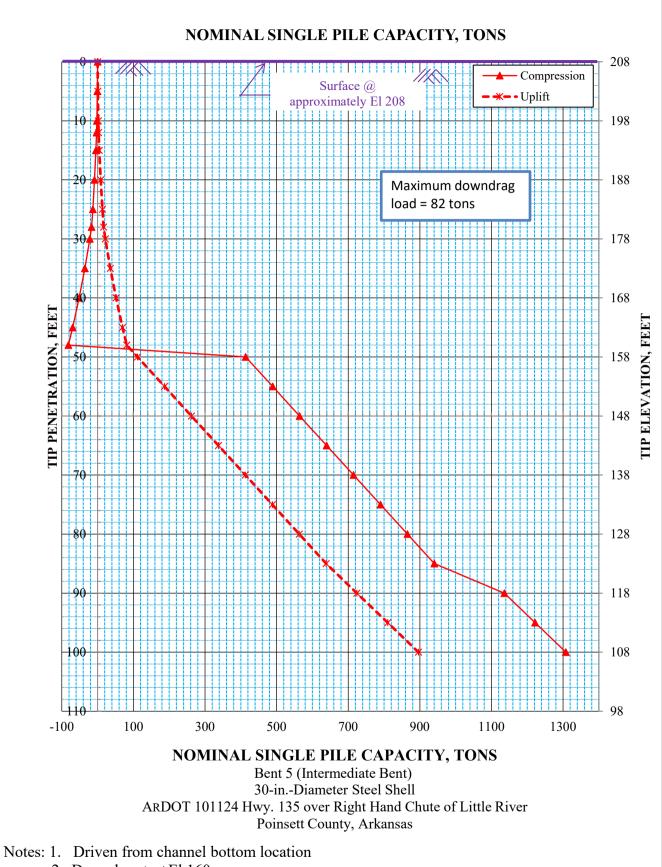

APPENDIX F

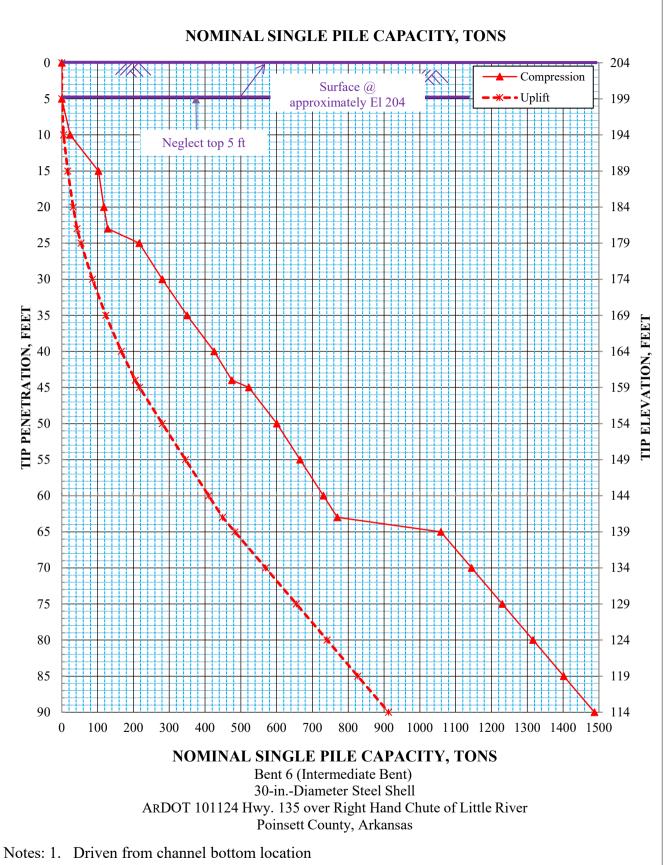


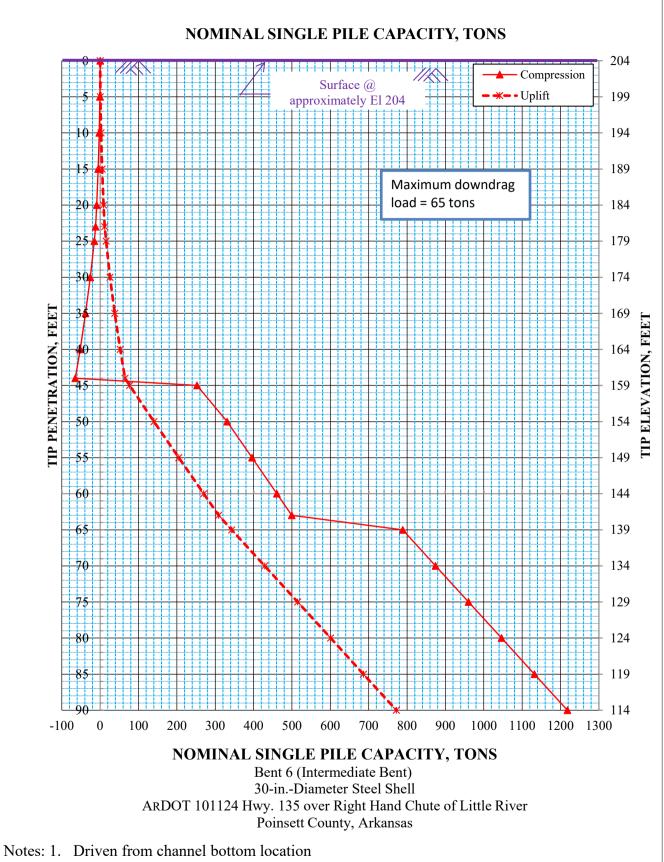


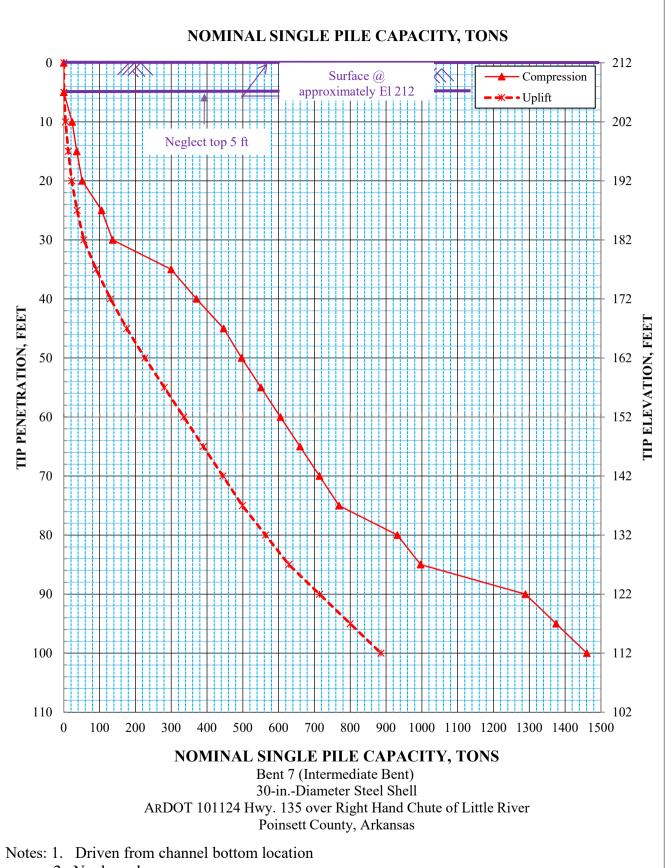




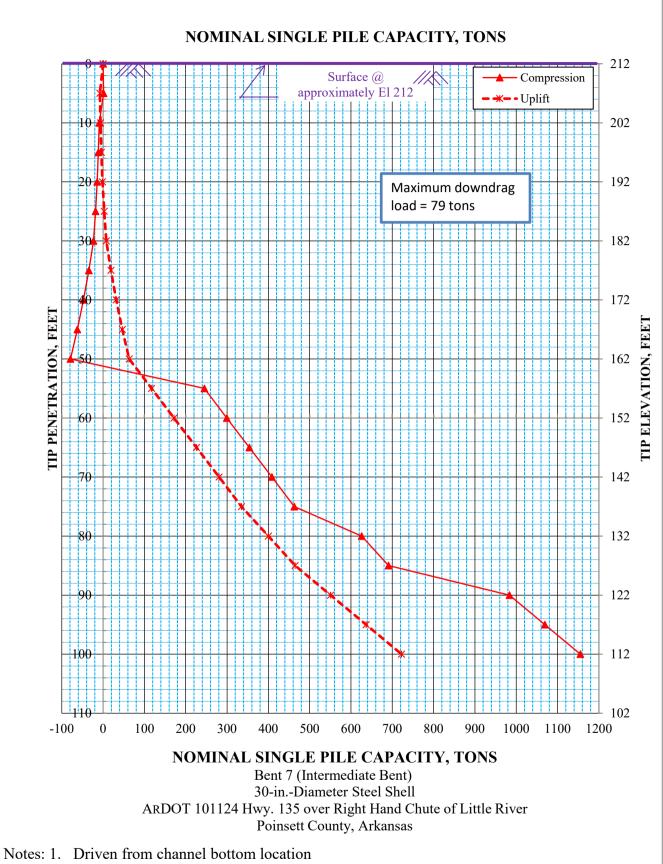


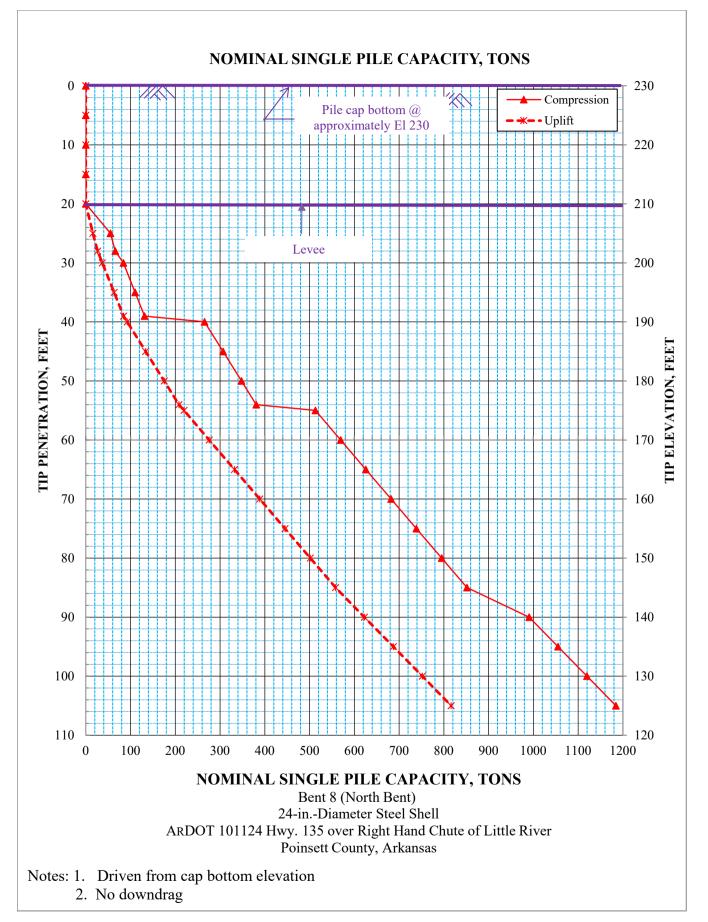




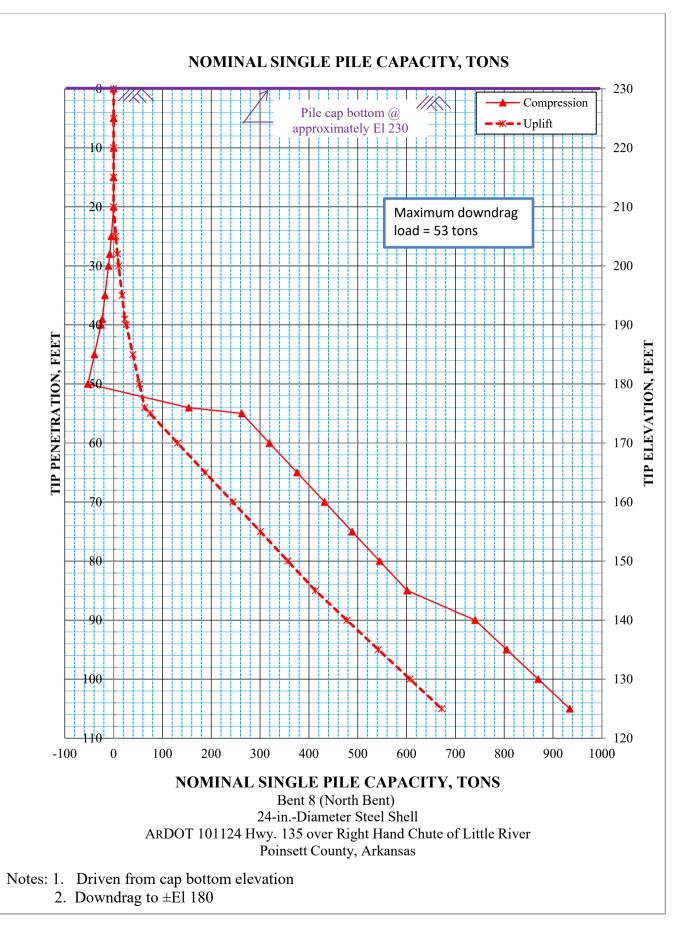


2. No downdrag





2. No downdrag



APPENDIX G

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Levee - Neglect	Loose to medium dense silty fine SAND	Very loose clayey fine SAND	Loose clayey fine SAND	Dense fine SAND	Medium dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-10	10-15	15-30	30-35	35-50	50-60	60 and deeper
Approximate El, ft	230-220	220-215	215-200	200-195	195-180	180-170	below 170
Recommend soil type	NA	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	115	90	48	68	60	68
Cohesion (c), lbs per sq ft	NA	0	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	NA	30	25	28	38	35	38
Subgrade modulus (k), lbs per cu in.	NA	45	20	20	125	80	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA	NA	NA

Note: Pile cap at ±El 230

Seismic Loading with Liquefaction

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Levee - Neglect	Loose to medium dense silty fine SAND	Very loose clayey fine sand (liquefiable)	Loose clayey fine sand (liquefiable)	Dense fine SAND	Medium dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-10	10-15	15-30	30-35	35-50	50-60	60 and deeper
Approximate El, ft	230-220	220-215	215-200	200-195	195-180	180-170	below 170
Recommend soil type	NA	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	115	90	48	68	60	68
Cohesion (c), lbs per sq ft	NA	0	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	NA	30	8	8	38	35	38
Subgrade modulus (k), lbs per cu in.	NA	45	20	20	125	80	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA	NA	NA

Note: Pile cap at ±El 230

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Isolation casing	Medium dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-27.4	27.4-37.4	37.4 and deeper
Approximate El, ft	220-192.6	192.6-182.6	below 182.6
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	65	57	68
Cohesion (c), lbs per sq ft	0	0	0
Angle of internal friction (ϕ) , °	0	30	38
Subgrade modulus (k), lbs per cu in.	0	35	125
Strain at 50% (EE50)	NA	NA	NA

Note: 1. Ground surface at ±El 220

2. No liquefaction - isolation casing extends below depth of liquefaction

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Isolation casing	Medium dense fine SAND	Dense to very dense fine SAND
Depth below pile cap bottom, ft	0-23.4	23.4-33.4	33.4 and deeper
Approximate El, ft	216-192.6	192.6-182.6	below 182.6
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	65	57	68
Cohesion (c), lbs per sq ft	0	0	0
Angle of internal friction $(\phi), \circ$	0	30	40
Subgrade modulus (k), lbs per cu in.	0	35	125
Strain at 50% (EE50)	NA	NA	NA

Note: 1. Ground surface at ±El 216

2. No liquefaction - isolation casing extends below depth of liquefaction

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Isolation casing	Medium dense fine SAND	Medium dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-23.4	23.4-33.4	33.4-36	36 and deeper
Approximate El, ft	216-192.6	192.6-182.6	182.6-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	65	56	56	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	30	32	40
Subgrade modulus (k), lbs per cu in.	0	35	50	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: 1. Ground surface at ±El 216

Seismic Loading with Liquefaction

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Isolation casing	Medium dense fine SAND (liquefiable)	Medium dense fine SAND (liquefiable)	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-23.4	23.4-33.4	33.4-36	36 and deeper
Approximate El, ft	216-192.6	192.6-182.6	182.6-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	65	56	56	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	8	8	40
Subgrade modulus (k), lbs per cu in.	0	20	20	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: 1. Ground surface at ±El 216

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 5: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Loose silty fine SAND	Medium dense silty fine SAND	Medium dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-12	12-28	28-48	48 and deeper
Approximate El, ft	208-196	196-180	180-160	below 160
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	56	63	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	32	36	37
Subgrade modulus (k), lbs per cu in.	20	50	105	115
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 208

Seismic Loading with Liquefaction

Bent 5: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Loose silty fine SAND (liquefiable)	Medium dense silty fine SAND (liquefiable)	Medium dense fine SAND (liquefiable)	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-12	12-28	28-48	48 and deeper
Approximate El, ft	208-196	196-180	180-160	below 160
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	56	63	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	8	8	11	37
Subgrade modulus (k), lbs per cu in.	20	20	20	115
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 208

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Generalized Stratigraphy	Loose silty fine SAND	Medium dense silty fine SAND	Medium dense fine SAND	Dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-10	10-23	23-44	44-63	63 and deeper
Approximate El, ft	204-194	194-181	181-160	160-141	below 141
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	56	60	63	68
Cohesion (c), lbs per sq ft	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	32	35	36	38
Subgrade modulus (k), lbs per cu in.	20	50	80	105	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

Note: Ground surface at ±El 204

Seismic Loading with Liquefaction

Bent 6: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Loose silty fine SAND (liquefiable)	Medium dense silty fine SAND (liquefiable)	Medium dense fine SAND (liquefiable)	Dense fine SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-10	10-23	23-44	44-63	63 and deeper
Approximate El, ft	204-194	194-181	181-160	160-141	below 141
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	56	60	63	68
Cohesion (c), lbs per sq ft	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	8	8	11	36	38
Subgrade modulus (k), lbs per cu in.	20	20	20	105	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 7: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Very loose to loose silty fine sand	Medium dense fine SAND	Medium dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-20	20-30	30-85	85 and deeper
Approximate El, ft	212-192	192-182	182-127	below 127
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	54	60	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	31	35	38
Subgrade modulus (k), lbs per cu in.	20	40	80	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 212

Seismic Loading with Liquefaction

Bent 7: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Very loose to loose silty fine sand (liquefiable)	Medium dense fine SAND (liquefiable)	Medium dense fine to medium SAND (liquefiable)	Medium dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-20	20-30	30-50	50-85	85 and deeper
Approximate El, ft	212-192	192-182	182-162	162-127	below 127
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	48	54	60	60	68
Cohesion (c), lbs per sq ft	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	8	8	11	35	38
Subgrade modulus (k), lbs per cu in.	20	20	20	80	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

Note: Ground surface at ±El 212

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 8: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Levee - Neglect	Loose silty fine SAND	Medium dense fine SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-20	20-28	28-39	39-54	54 and deeper
Approximate El, ft	230-210	210-202	202-191	191-176	below 176
Recommend soil type	NA	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	115	58	63	68
Cohesion (c), lbs per sq ft	NA	0	0	0	0
Angle of internal friction $(\phi), \circ$	NA	28	31	35	38
Subgrade modulus (k), lbs per cu in.	NA	25	40	80	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

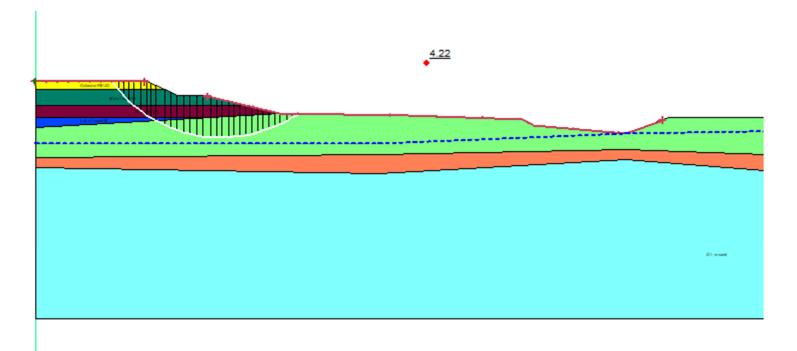
Note: Pile cap at ±El 230

Seismic Loading with Liquefaction

Bent 8: Recommended Parameters for Lateral Load Analyses Using LPILE©

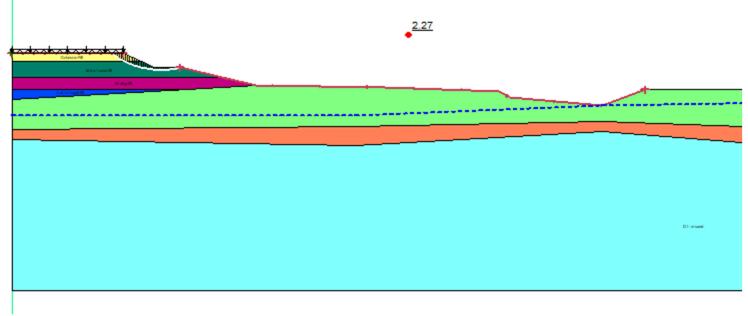
Generalized Stratigraphy	Levee - Neglect	Loose silty fine SAND	Medium dense fine SAND (liquefiable)	Dense fine to medium SAND (liquefiable)	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-20	20-28	28-39	39-54	54 and deeper
Approximate El, ft	230-210	210-202	202-191	191-176	below 176
Recommend soil type	NA	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	115	58	63	68
Cohesion (c), lbs per sq ft	NA	0	0	0	0
Angle of internal friction $(\phi), \circ$	NA	28	8	11	38
Subgrade modulus (k), lbs per cu in.	NA	25	20	20	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

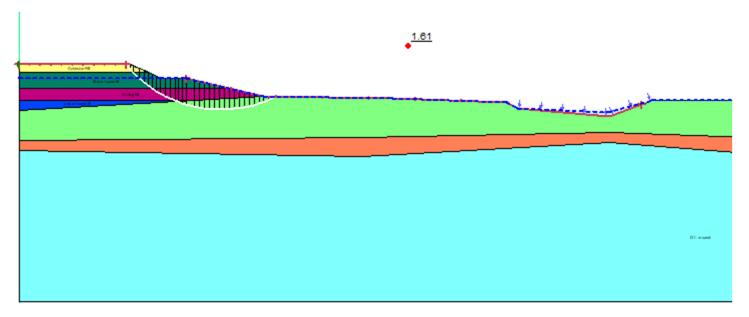
Note: Pile cap at ±El 230

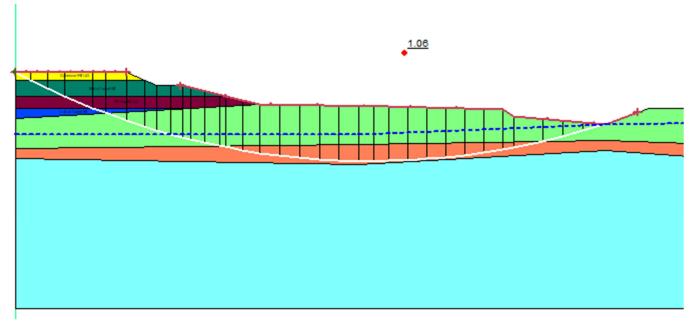


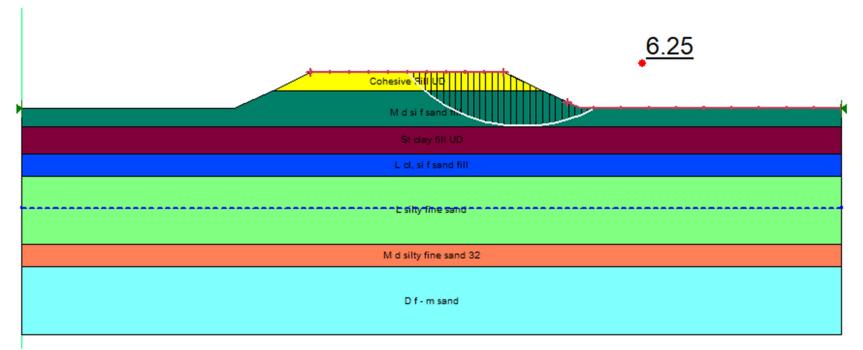
APPENDIX H

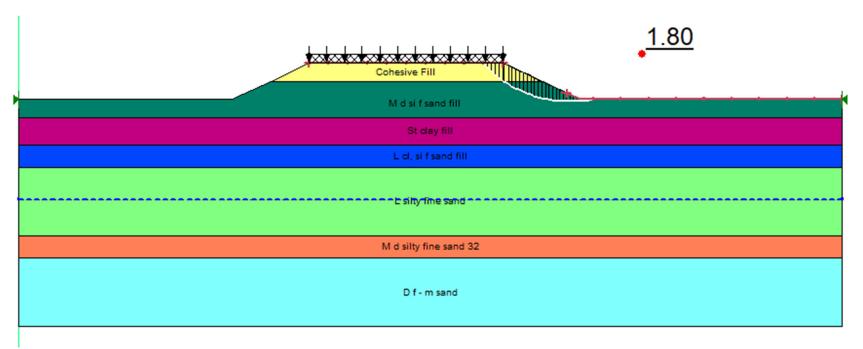
Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Right Hand Chute of Little River GHBW Job No. 23-031 Poinsett County, Arkansas

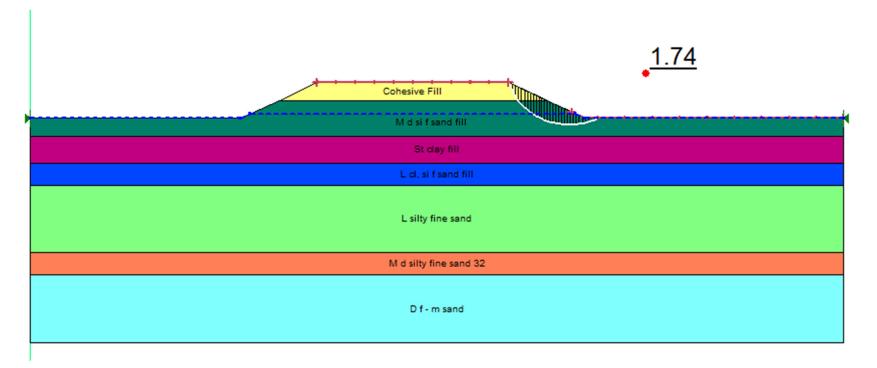

	Design Loading Condition	Calculated Minimum Factor of Safety
South End Slope (Bent 1) (2H:1V)	End of Construction	4.22
	Long Term	2.27
	Rapid Drawdown from El 231 to El 214	1.61
	Seismic ($k_h = A_s/2 = 0.432$)	1.06
South Side Slope (Bent 1) (2H:1V)	End of Construction	6.25
	Long Term	1.80
	Rapid Drawdown from El 231 to Existing Grade	1.74
	Seismic ($k_h = A_s/2 = 0.432$)	1.78
	End of Construction	3.41
North End Slope (Bent 8) –	Long Term	2.24
with ground improvement (2H:1V)	Rapid Drawdown from El 231 to El 214	2.45
	Seismic ($k_h = A_s/2 = 0.432$)	1.05
North Side Slope (Bent 8) (2H:1V)	End of Construction	3.37
	Long Term	1.97
	Rapid Drawdown from El 231 to Existing Grade	1.48
	Seismic ($k_h = A_S/2 = 0.432$)	1.10

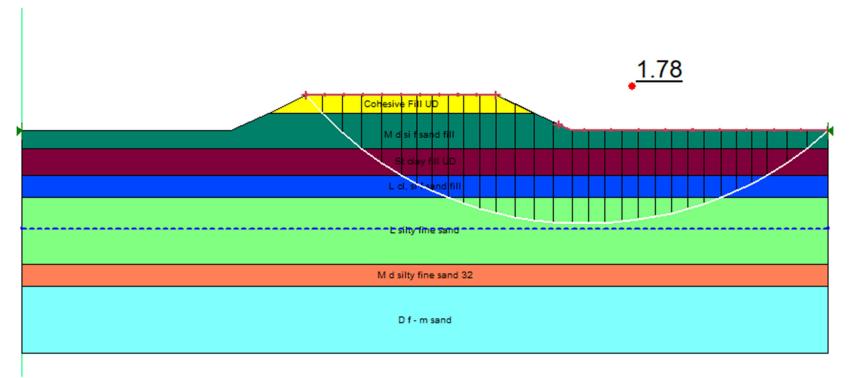

Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=16 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

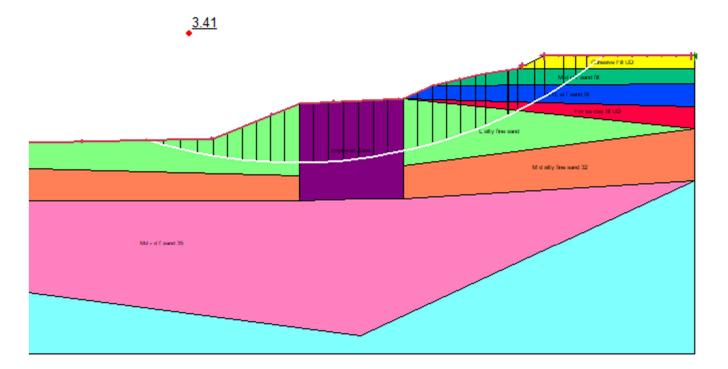

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=16 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

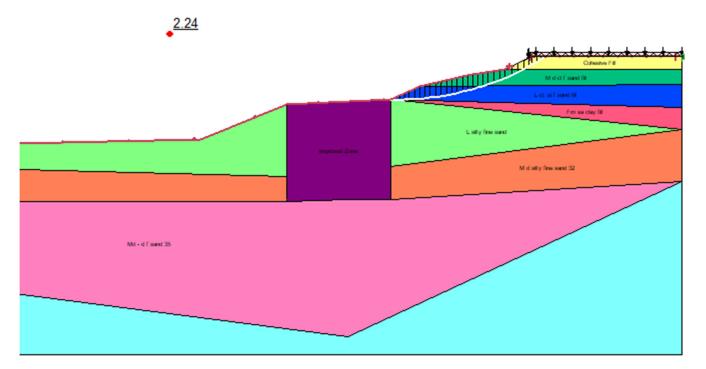

Results of Stability Analyses – Rapid Drawdown Condition from El 231 to El 214 Bent 1 End Slope 2H:1V Slope, H=16 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

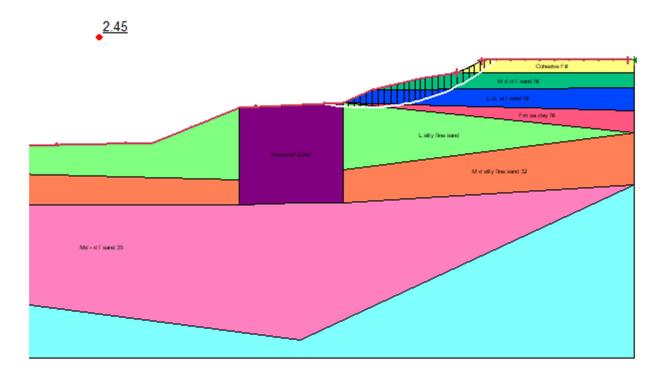

 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.432) \\ \mbox{Bent 1 End Slope} \\ \mbox{2H:1V Slope, H=16 ft \pm} \\ \mbox{23-031 - ArDOT Job No. 101124 - Hwy. 35 over Right Hand Chute of Little River} \end{array}$

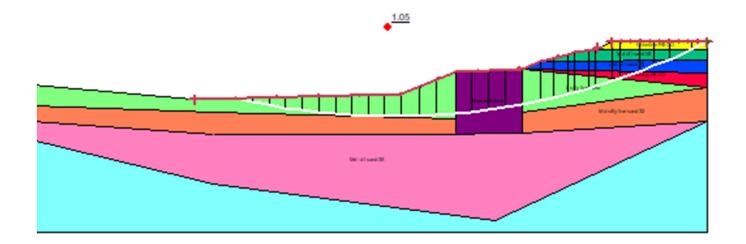

Results of Stability Analyses – End of Construction Bent 1 Side Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River


Results of Stability Analyses – Long Term Condition Bent 1 Side Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

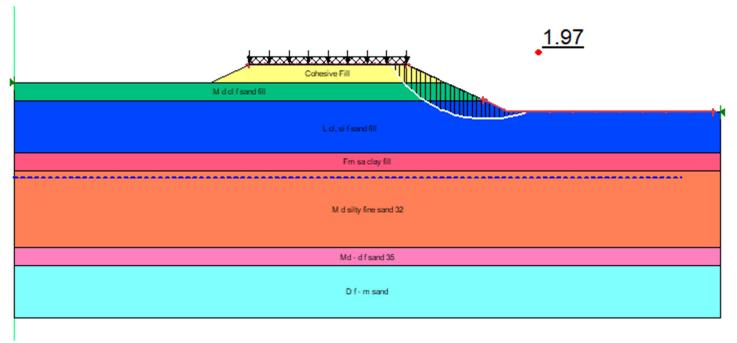

Results of Stability Analyses – Rapid Drawdown Condition from El 231 to Existing Grade Bent 1 Side Slope 2H:1V Slope, H=8 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

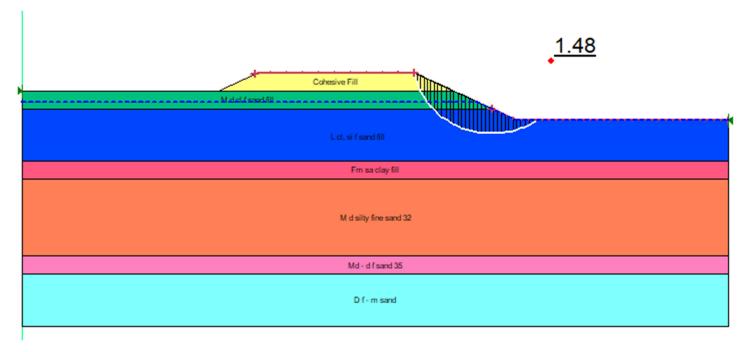

 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.432) \\ \mbox{Bent 1 Side Slope} \\ \mbox{2H:1V Slope, H=8 ft \pm} \\ \mbox{23-031 - ArDOT Job No. 101124 - Hwy. 35 over Right Hand Chute of Little River} \end{array}$

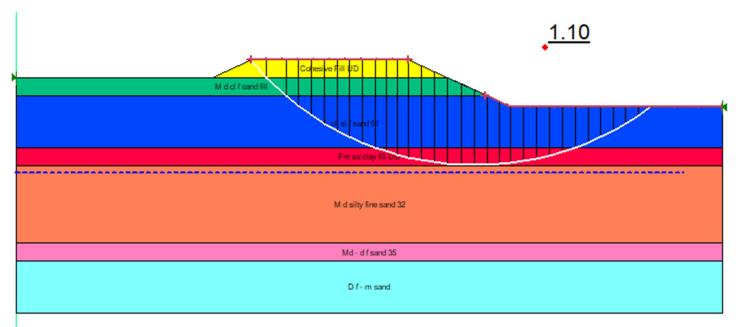

Results of Stability Analyses – End of Construction Bent 8 End Slope 2H:1V Slope, H=33 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River


Results of Stability Analyses – Long Term Condition Bent 8 End Slope 2H:1V Slope, H=33 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

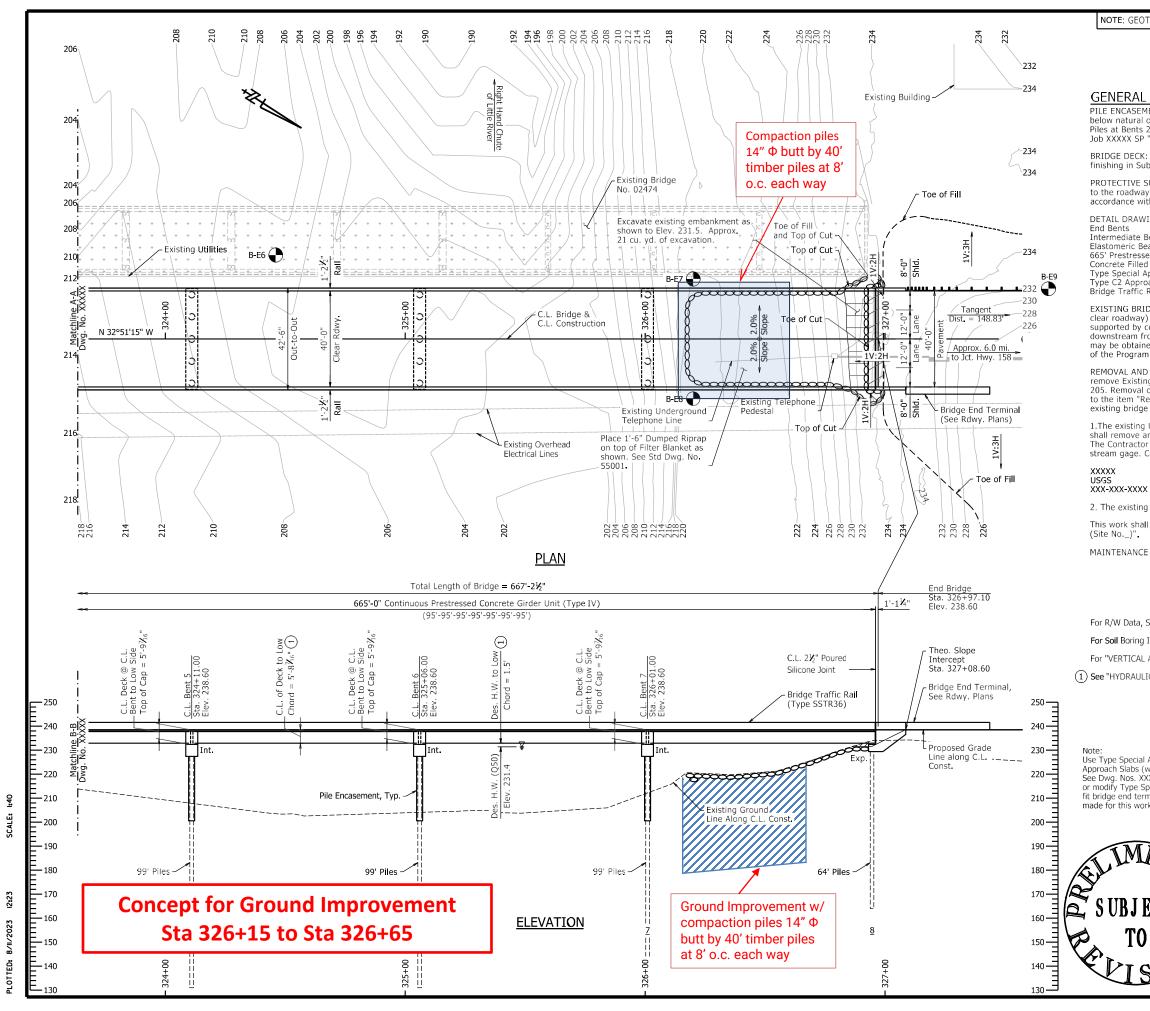
Results of Stability Analyses – Rapid Drawdown Condition, El 231 to El 214 Bent 8 End Slope 2H:1V Slope, H=33 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River


 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition} \ (k_h = A_S \ /2 = 0.432) \\ \mbox{Bent 8 End Slope} \\ \ 2H: 1V \ Slope, \ H = 33 \ ft \pm \\ \ 23-031 - \ ARDOT \ Job \ No. \ 101124 - Hwy. \ 35 \ over \ Right \ Hand \ Chute \ of \ Little \ River \end{array}$


Results of Stability Analyses – End of Construction Bent 8 Side Slope 2H:1V Slope, H=13 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River


Results of Stability Analyses – Long Term Condition Bent 8 Side Slope 2H:1V Slope, H=13 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River

Results of Stability Analyses – Rapid Drawdown Condition from El 231 to Existing Grade Bent 8 Side Slope 2H:1V Slope, H=13 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Right Hand Chute of Little River



 $\begin{array}{c} \mbox{Results of Stability Analyses - Seismic Condition} \ (k_h = A_S \ /2 = 0.432) \\ \mbox{Bent 8 Side Slope} \\ \ 2H: 1V \ Slope, \ H = 13 \ ft \pm \\ \ 23-031 - \ ARDOT \ Job \ No. \ 101124 - \ Hwy. \ 35 \ over \ Right \ Hand \ Chute \ of \ Little \ River \end{array}$

APPENDIX I

dge∖ √dgn\br SCALE:

-I2.dgn

101124×5_

USER: JF5222 DESIGN FILE: G:\221 PLOTTED: 8/11/2023

TECH REPORT PENDING	DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS				
			6	ARK.	00000	2	21				
			XXXXX		LAYOUT		XXXXX				
NOTES (CONT'D). <u>)</u>										
MENT: Pile encasement fo or finished ground. See [or Bents 5 th										
2 thru 4 shall be covered	by 48" Dia	. Isolation C	asings in	accorda	nce with the						
"ISOLATION CASING". See Dwg. No. XXXXX for additional details. The concrete bridge deck shall be given a tine finish as specified for final brocking 802.19 for Class 5 Tipod Bridge Boadway Surface Finish											
bsection 802.19 for Class 5 Tined Bridge Roadway Surface Finish SURFACE TREATMENT: Class 2 Protective Surface Treatment shall be applied											
ith Section 803.											
VINGS:		DRAWING									
Bents earings		XXXXX- XXXXX-	XXXXX								
d Steel Shell Piling		XXXXX- 55021 &	XXXXX								
Approach Gutters oach Slabs		XXX 5504	XX								
Rail		550									
IDGE: Existing Bridge No) and 662' long and consi	. 02474 (Lo ists of steel	g Mile 15.09 I-beam spa) is 28.7' ns (15 sr	' wide (2 bans tota	4' I)						
concrete piles. The existing the construction for the proposed new br	ng bridge is	located app	proximate	ely 41'							
ned upon request to the C m Management Division.											
D SALVAGE: After the ne	w bridae is	open to traf	fic, the C	ontracto	r shall						
ng Bridge No. 02474, incl of existing riprap will not	uding existi	ng riprap, in	n accorda	nce with	Section						
Removal of Existing Bridge e shall become the prope	e Structure (Site No)".	. All mate	erial from	the						
g USGS stream gage shall											
and store the stream gage shall or shall notify the USGS 7	e on site in	a manner aj	pproved l	by the Er	ngineer.						
Contact information is as		iyə in auvdil	ice of refi	ioving ti	ic chiatility						
x											
g utilities attached to the	bridge shal	l remain the	e property	/ of the >	XXXXX.						
II be considered incidenta	al to the iter	n "Removal									
E OF TRAFFIC: See Road	way Plans		Туріса		paction Pile						
	,				out = 1')						
				(1)	1						
See Roadway Plans.			א ≺	8'	8' ←	1					
Information, see Dwg. Nos	5. XXXXX & X	xxxx.		\cap	\cap	♦					
ALIGNMENT DATA", see D	wg. No. XXX	xx.	\bigcirc	\bigcirc	\bigcirc						
_IC DATA" table on Dwg. No	D. XXXXX.					8'					
-			\bigcirc	\bigcirc	\bigcirc —						
						1					
		Note:									
I Approach Gutters and Typ (width = $24'-0''$) at both end	ts of bridge.	shown	are theor	etical wo	C.L. Construction rking point elevati	ions at C.	L. Bridge.				
XXXX & 55040C2, respectiv Special Approach Gutter cur	ely. Eliminat b section to	theore	tical worki	ing point	ferenced to C.L. D elevation at C.L. I	Deck is ba Bridge. Se	sed on ee				
minal. No additional payme					Dwg. No. XXXXX.	J . 34					
		-	~	2 05	4						
-			SHEET OUT (
ЛЛ нили	(. <u>135</u> O				CHUTE LITT	LE RI	VER				
					PPRS. (S)						
[*] BI			NSET		• • •						
ECT 🖂 📖	NK & 5					1000					
	(KANSA		ATE H		AY COMN	112210	NN				
/ ≳ ₀	RAWN BY:		ATE: <u>10-1</u>		FILENAME: b101124	x5_l2.dgn	_				
	ESIGNED BY:		ATE: 11-07		SCALE: <u>1" = 20'</u>		-				
5 1 /	RIDGE NO.				G NO. XXXXX						

APPENDIX J

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX K

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \le 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

Payment will be made under:

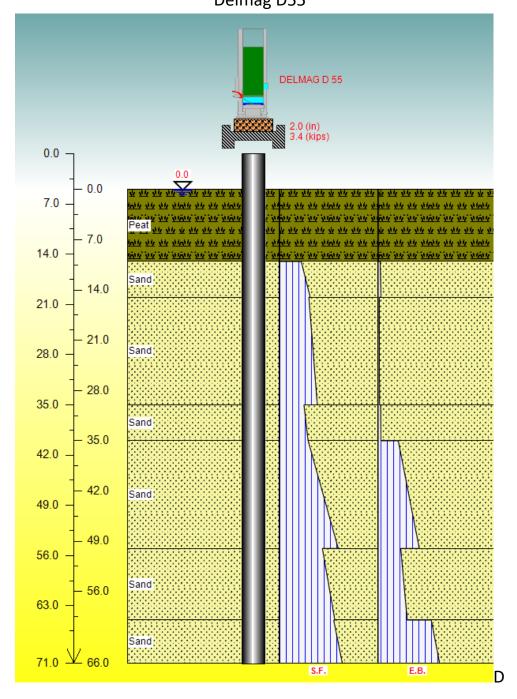
Pay Item

Pay Unit

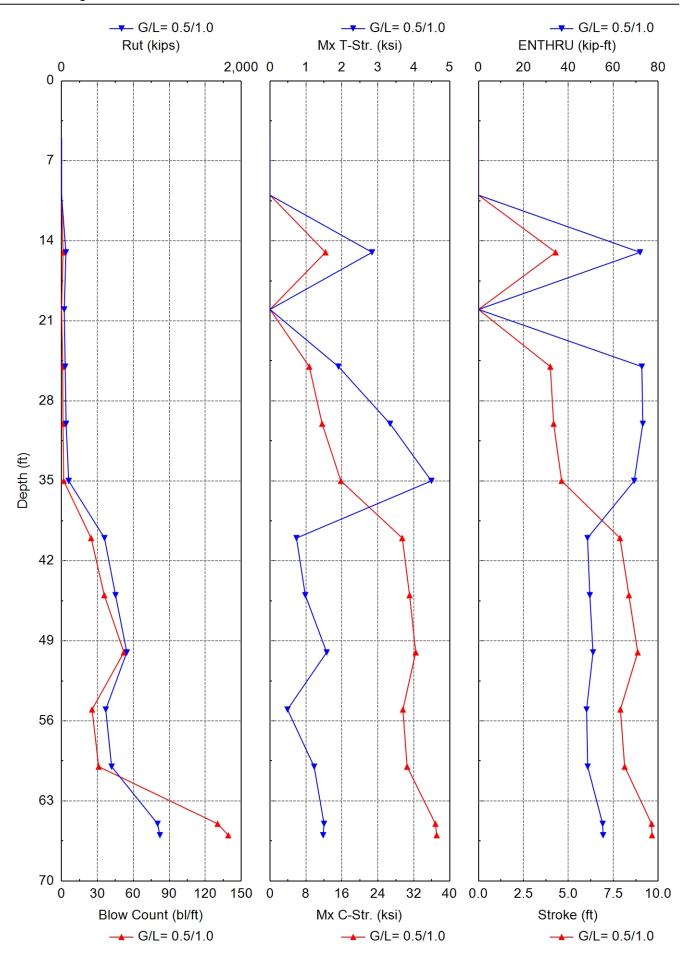
Compacted Embankment

Cubic Yard

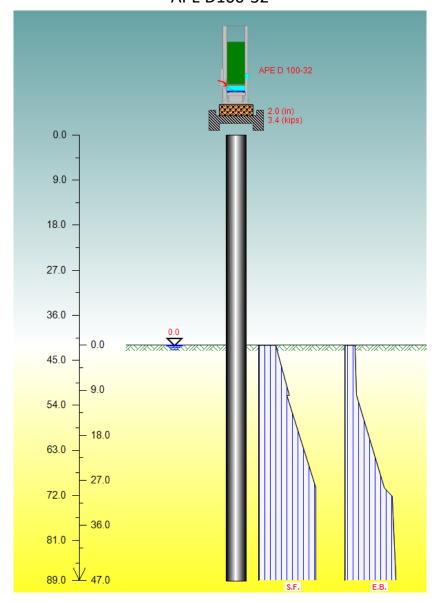
APPENDIX L

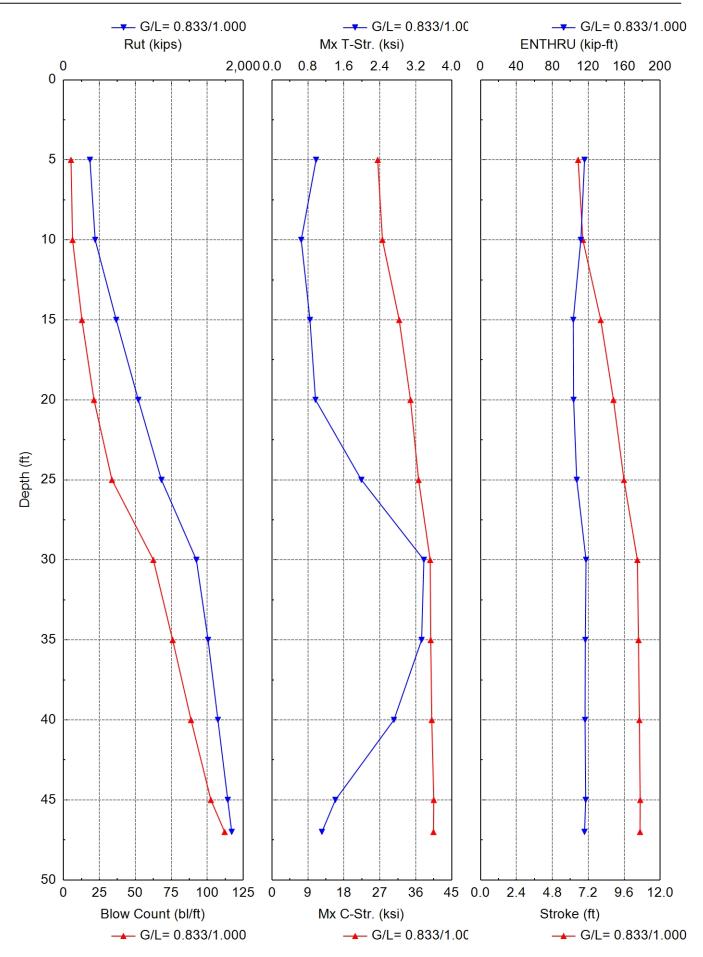

WEAP ANALYSES - STEEL SHELL PILES

Project: 101124 - Hwy 135 Poinsett County, Arkansas GHBW Project No: 23-031


Bridge	Bent	Pile Diameter (in)	Wall Thickness (in)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El.	Min Tip El.	Pile Length (ft)	Min Hammer Energy (ft- kip)	Max Comp Stress, ksi
	1	24	0.75	428	230	164	66	125	37.1
	2	30	0.75	856	220	136	84	248	40.5
	3	30	0.75	856	216	136	80	212	40.4
5 - Right Hand Chute	4	30	0.75	856	216	136	80	212	40.4
of Little River	5	30	0.75	863	208	131	77	212	39.3
	6	30	0.75	863	204	131	73	212	40.0
	7	30	0.75	863	212	131	81	212	39.0
	8	24	0.75	428	230	164	66	125	35.4

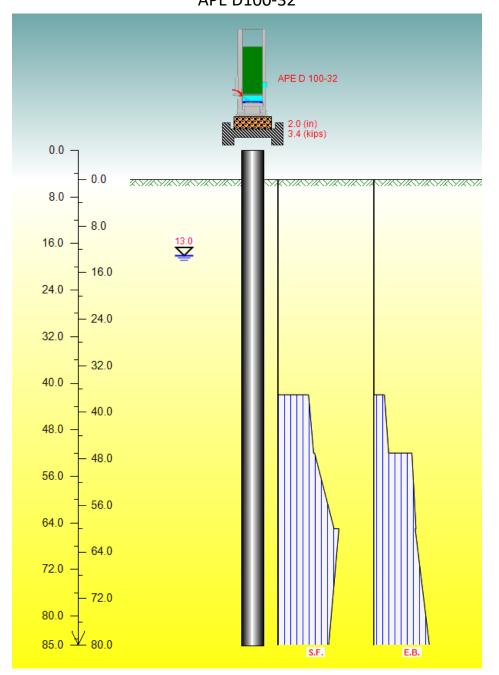
ArDOT 101124 Hwy 135 over RHC of Little River Bent 1 24-in-diameter Steel Shell Pile Delmag D55

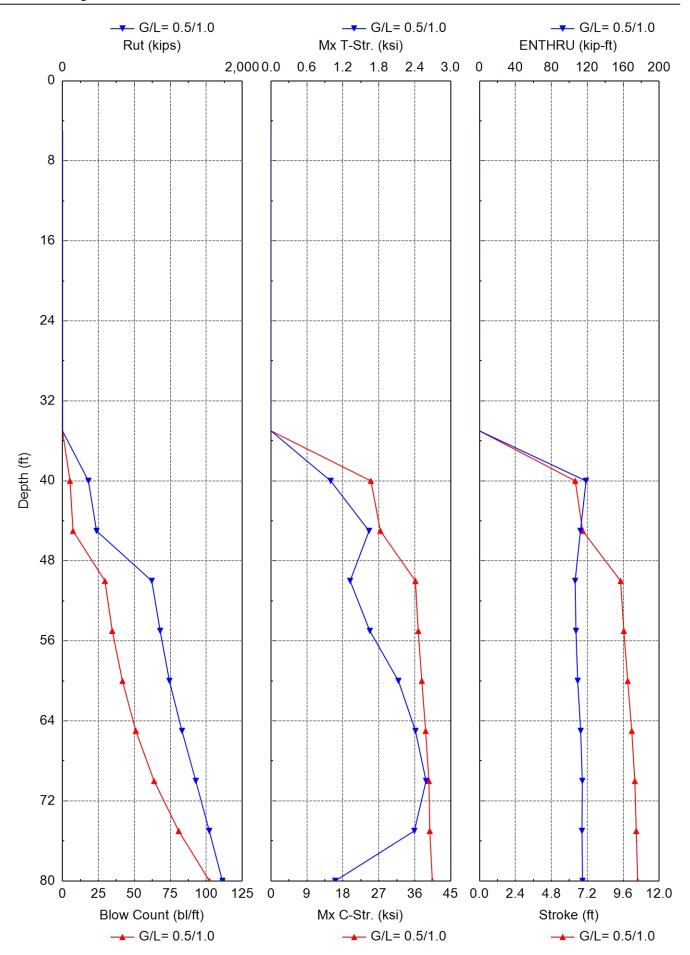



Gain/Loss Factor at Shaft/Toe = 0.500/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str.	Mx T-Str.	Stroke	ENTHRU	Hammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	3 11		
5.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55		
10.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55		
15.0	48.8	6.3	42.4	1.3	12.349	2.839	4.29	71.9	D 55		
20.0	30.8	13.8	17.0	0.0	0.000	0.000	0.00	0.0	D 55		
25.0	40.4	21.9	18.5	1.0	8.742	1.903	4.00	72.7	D 55		
30.0	50.7	30.7	20.0	1.2	11.603	3.340	4.18	73.2	D 55		
35.0	79.9	37.1	42.8	1.8	15.767	4.490	4.62	69.3	D 55		
40.0	478.1	45.2	432.8	24.7	29.438	0.736	7.87	48.5	D 55		
45.0	601.2	55.8	545.4	35.7	31.069	0.982	8.37	49.6	D 55		
50.0	726.8	68.8	658.0	52.1	32.434	1.577	8.86	51.0	D 55		
55.0	492.3	80.0	412.4	25.5	29.582	0.486	7.90	48.1	D 55		
60.0	557.5	92.6	464.9	31.0	30.519	1.227	8.13	48.6	D 55		
65.0	1069.3	106.6	962.7	130.3	36.818	1.503	9.63	55.3	D 55		
66.0	1094.9	109.6	985.3	139.2	37.102	1.478	9.65	55.5	D 55		

Total driving time: 33 minutes; Total Number of Blows: 1334 (starting at penetration 5.0 ft)

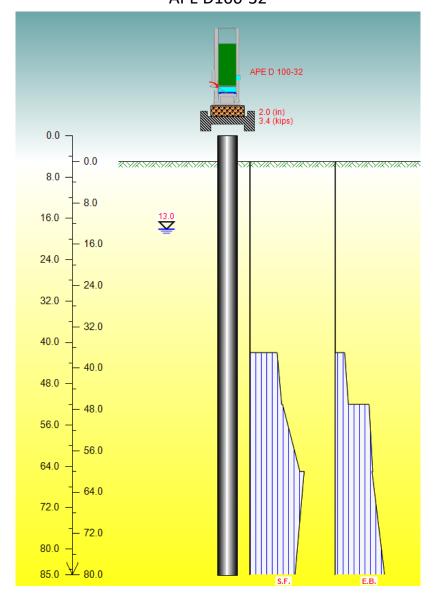
ArDOT 101124 Hwy 135 over RHC of Little River Bent 2 30-in-diameter Steel Shell Pile APE D100-32

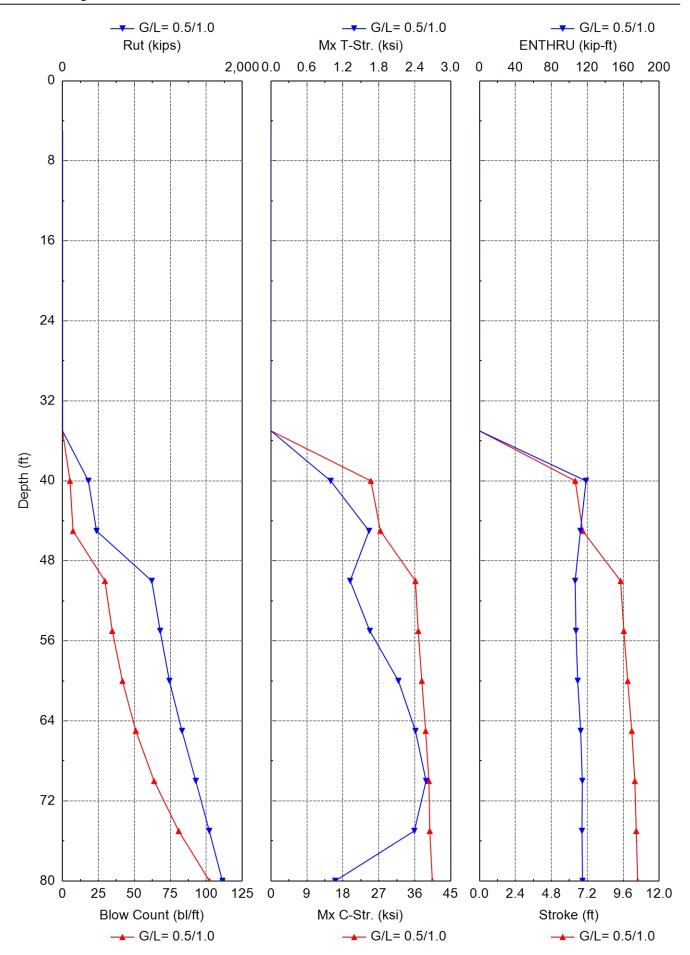



Gain/Loss Factor at Shaft/Toe = 0.833/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str.	Mx T-Str	. Stroke	ENTHRU	Hammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	3 -		
5.0	293.9	28.8	265.1	5.2	26.466	0.981	6.52	115.8	D 100-32		
10.0	352.2	67.5	284.7	6.3	27.653	0.650	6.83	111.7	D 100-32		
15.0	586.8	113.1	473.8	12.8	31.849	0.845	8.03	103.3	D 100-32		
20.0	832.8	170.0	662.8	21.2	34.676	0.968	8.88	103.6	D 100-32		
25.0	1090.1	238.2	851.9	33.7	36.705	1.990	9.58	107.1	D 100-32		
30.0	1478.7	317.2	1161.5	62.5	39.608	3.381	10.47	117.4	D 100-32		
35.0	1608.8	399.0	1209.7	75.9	39.746	3.330	10.55	116.6	D 100-32		
40.0	1718.3	480.9	1237.5	88.7	40.000	2.714	10.61	116.3	D 100-32		
45.0	1827.9	562.7	1265.2	102.5	40.502	1.411	10.66	117.0	D 100-32		
47.0	1871.7	595.4	1276.3	112.1	40.430	1.111	10.65	115.8	D 100-32		

Total driving time: 54 minutes; Total Number of Blows: 1989 (starting at penetration 5.0 ft)

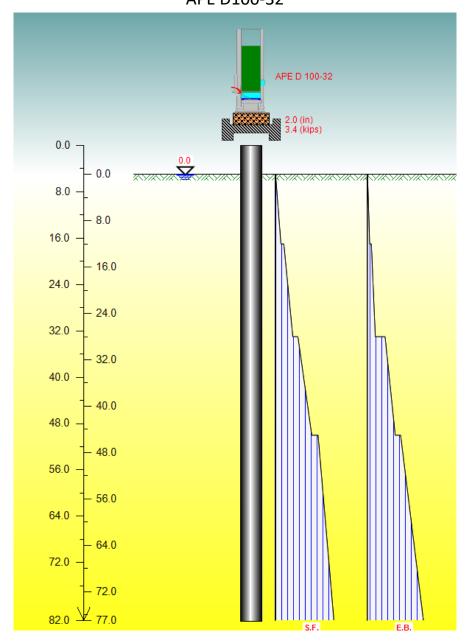
ArDOT 101124 Hwy 135 over RHC of Little River Bent 3 30-in-diameter Steel Shell Pile APE D100-32

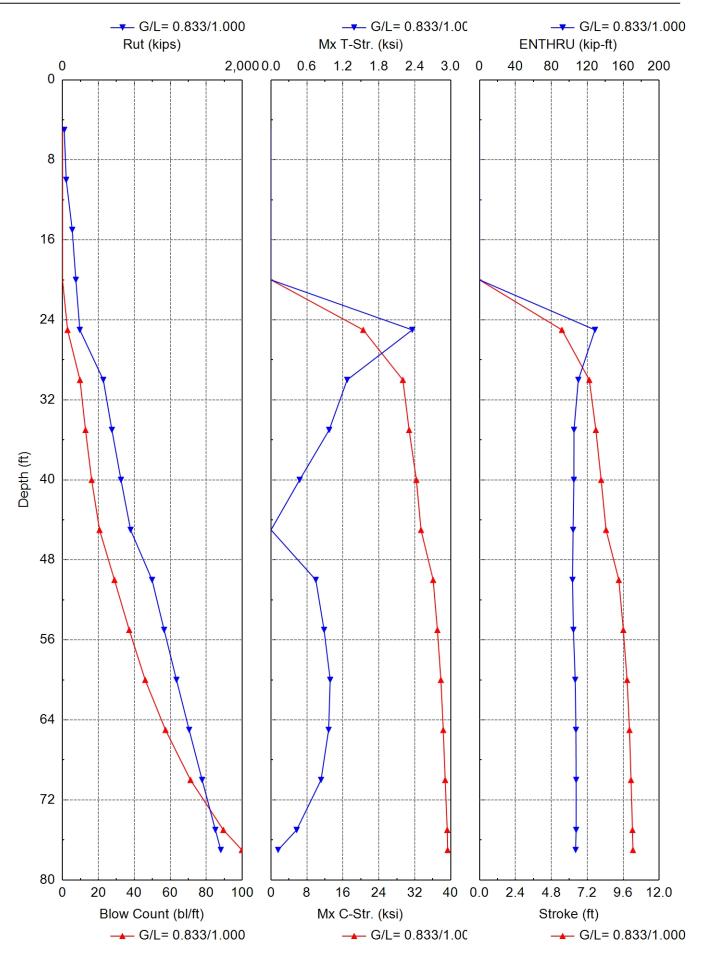



Gain/Loss Factor at Shaft/Toe = 0.500/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	Hammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-		
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	0 100-32		
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
15.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
20.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
25.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
30.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
35.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0 E	0 100-32		
40.0	288.3	24.2	264.2	5.2	25.009	0.995	6.39	118.5 E	0 100-32		
45.0	378.9	67.0	311.8	7.3	27.398	1.637	6.89	112.4 [0 100-32		
50.0	993.5	115.1	878.4	29.5	36.156	1.321	9.42	106.4 E	0 100-32		
55.0	1086.7	172.9	913.9	34.6	36.862	1.650	9.64	107.4 E	0 100-32		
60.0	1189.6	240.4	949.3	41.7	37.766	2.127	9.90	109.2 E	0 100-32		
65.0	1329.7	317.3	1012.4	51.0	38.717	2.411	10.17	112.6 E	0 100-32		
70.0	1483.0	390.8	1092.2	63.7	39.538	2.588	10.37	114.4 E	0 100-32		
75.0	1633.1	461.1	1172.0	80.8	39.759	2.393	10.47	114.0 E	0 100-32		
80.0	1779.8	528.1	1251.7	102.2	40.395	1.071	10.56	114.7 [0 100-32		

Total driving time: 49 minutes; Total Number of Blows: 1834 (starting at penetration 5.0 ft)

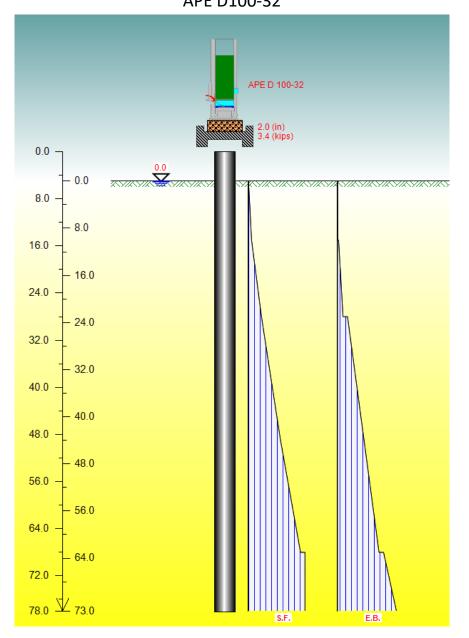
ArDOT 101124 Hwy 135 over RHC of Little River Bent 4 30-in-diameter Steel Shell Pile APE D100-32

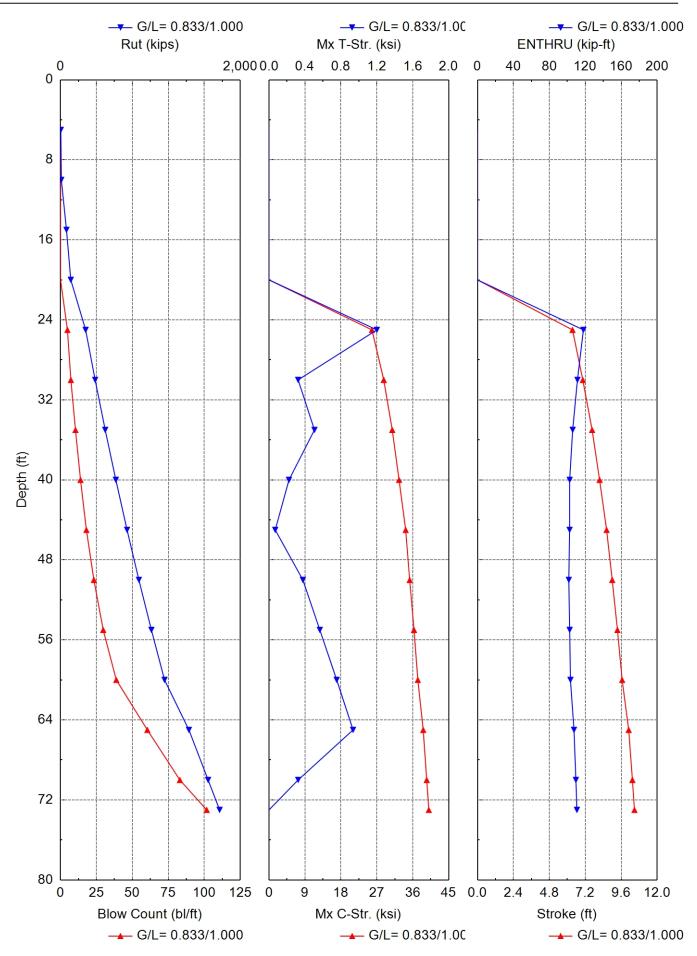



Gain/Loss Factor at Shaft/Toe = 0.500/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-		
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
15.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
20.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
25.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
30.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
35.0	0.0	0.0	0.0	0.3	0.000	0.000	11.25	0.0	D 100-32		
40.0	288.3	24.2	264.2	5.2	25.009	0.995	6.39	118.5	D 100-32		
45.0	378.9	67.0	311.8	7.3	27.398	1.637	6.89	112.4	D 100-32		
50.0	993.5	115.1	878.4	29.5	36.156	1.321	9.42	106.4	D 100-32		
55.0	1086.7	172.9	913.9	34.6	36.862	1.650	9.64	107.4	D 100-32		
60.0	1189.6	240.4	949.3	41.7	37.766	2.127	9.90	109.2	D 100-32		
65.0	1329.7	317.3	1012.4	51.0	38.717	2.411	10.17	112.6	D 100-32		
70.0	1483.0	390.8	1092.2	63.7	39.538	2.588	10.37	114.4	D 100-32		
75.0	1633.1	461.1	1172.0	80.8	39.759	2.393	10.47	114.0	D 100-32		
80.0	1779.8	528.1	1251.7	102.2	40.395	1.071	10.56	114.7	D 100-32		

Total driving time: 49 minutes; Total Number of Blows: 1834 (starting at penetration 5.0 ft)

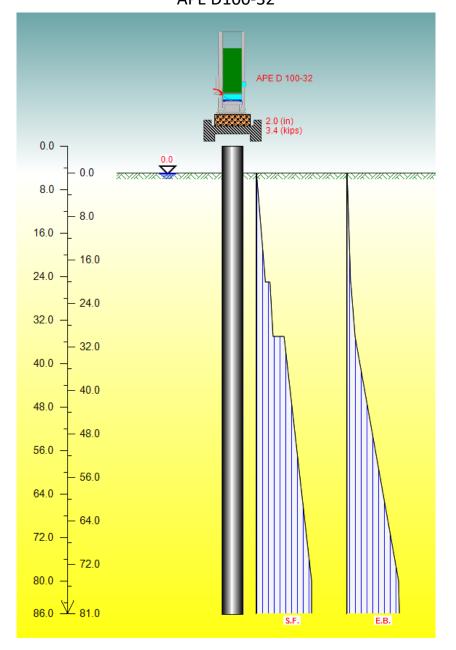
ArDOT 101124 Hwy 135 over RHC of Little River Bent 5 30-in-diameter Steel Shell Pile APE D100-32

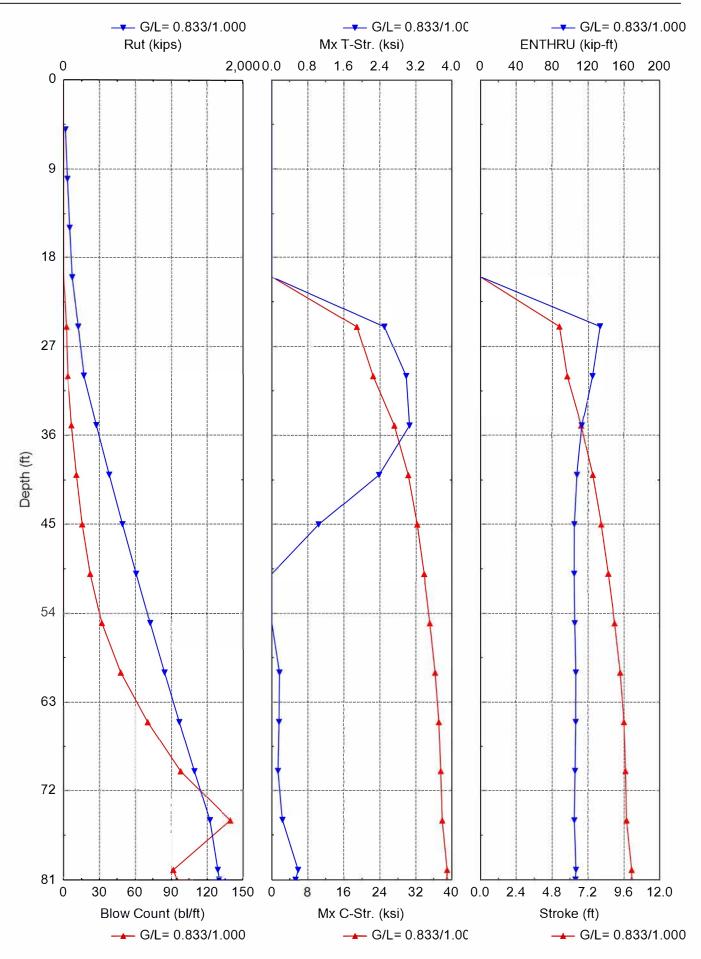



Gain/Loss Factor at Shaft/Toe = 0.833/1.000										
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRUH	ammer	
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-	
5.0	19.0	1.5	17.5	0.3	0.000	0.000	11.25	0.0 D	100-32	
10.0	41.0	6.0	35.0	0.0	0.000	0.000	0.00	0.0 D	100-32	
15.0	108.1	16.0	92.1	0.0	0.000	0.000	0.00	0.0 D	100-32	
20.0	148.4	31.3	117.1	0.0	0.000	0.000	0.00	0.0 D	100-32	
25.0	192.4	50.4	142.1	2.8	20.521	2.358	5.50	128.5 D	100-32	
30.0	453.8	76.1	377.7	9.7	29.349	1.271	7.33	110.0 D	100-32	
35.0	549.5	111.1	438.3	12.8	30.739	0.971	7.77	105.2 D	100-32	
40.0	650.6	151.7	499.0	16.2	32.361	0.478	8.12	105.0 D	100-32	
45.0	757.3	197.7	559.6	20.6	33.387	0.000	8.45	104.2 D	100-32	
50.0	996.3	256.6	739.7	28.9	36.091	0.748	9.30	103.5 D	100-32	
55.0	1130.7	318.9	811.8	37.1	37.043	0.886	9.60	104.5 D	100-32	
60.0	1268.3	384.5	883.9	46.0	37.811	0.988	9.86	106.5 D	100-32	
65.0	1409.3	453.4	956.0	57.3	38.341	0.962	10.01	107.3 D	100-32	
70.0	1553.7	525.6	1028.1	71.2	38.767	0.835	10.12	107.6 D	100-32	
75.0	1701.3	601.1	1100.2	89.5	39.230	0.428	10.21	107.6 D	100-32	
77.0	1761.3	632.3	1129.0	99.8	39.317	0.119	10.25	107.0 D	100-32	

Total driving time: 51 minutes; Total Number of Blows: 1927 (starting at penetration 5.0 ft)

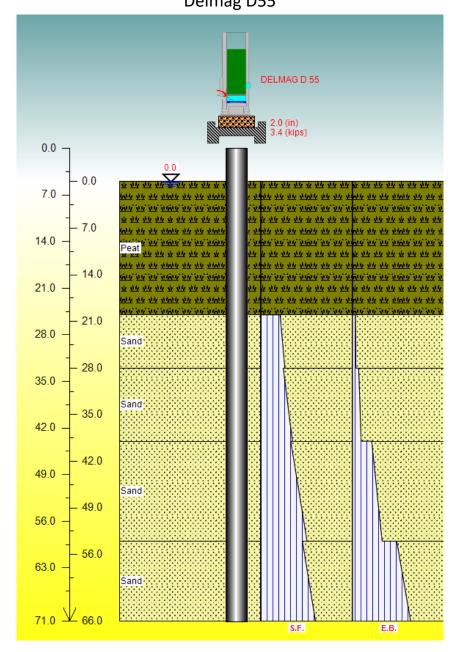
ArDOT 101124 Hwy 135 over RHC of Little River Bent 6 30-in-diameter Steel Shell Pile APE D100-32

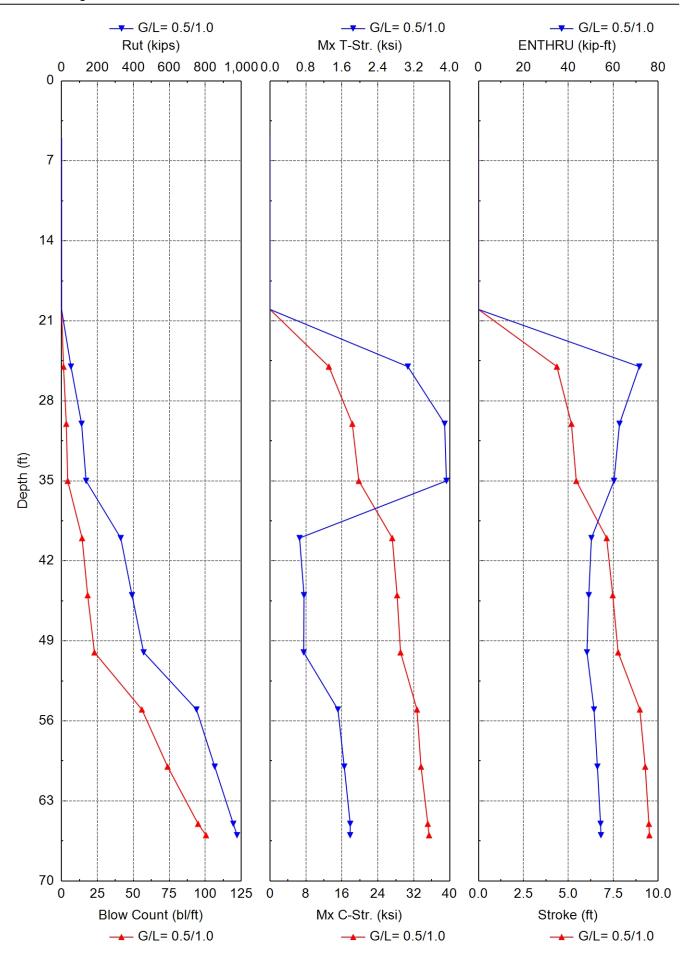



			Gain	/Loss Fa	ctor at Sh	naft/Toe =	0.833/1.0	000	
De	pth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRUHammer
f	ť	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft -
5.	.0	3.4	1.1	2.3	0.3	0.000	0.000	11.25	0.0 D 100-32
10	.0	8.9	4.3	4.7	0.3	0.000	0.000	11.25	0.0 D 100-32
15	.0	66.2	11.2	55.1	0.0	0.000	0.000	0.00	0.0 D 100-32
20	.0	114.3	23.3	90.9	0.0	0.000	0.000	0.00	0.0 D 100-32
25	.0	279.4	40.9	238.5	4.8	25.776	1.200	6.34	117.9 D 100-32
30	.0	385.2	64.6	320.6	7.2	28.734	0.324	7.03	111.2 D 100-32
35	0.0	497.3	94.6	402.8	10.4	30.858	0.506	7.65	105.9 D 100-32
40	.0	615.7	130.9	484.9	13.9	32.565	0.222	8.15	102.6 D 100-32
45	. 0	740.5	173.5	567.0	18.0	34.220	0.069	8.62	102.5 D 100-32
50	.0	872.3	223.1	649.1	23.2	35.226	0.377	9.00	101.6 D 100-32
55	0.0	1011.3	280.1	731.3	29.7	36.310	0.565	9.34	102.6 D 100-32
60	.0	1157.7	344.3	813.4	38.8	37.266	0.753	9.66	103.4 D 100-32
65	.0	1429.0	417.8	1011.2	60.4	38.616	0.935	10.09	107.4 D 100-32
70	.0	1642.6	496.4	1146.2	83.0	39.485	0.324	10.34	109.5 D 100-32
73	.0	1770.7	543.5	1227.2	101.7	40.025	0.000	10.48	110.6 D 100-32

Total driving time: 40 minutes; Total Number of Blows: 1519 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over RHC of Little River Bent 7 30-in-diameter Steel Shell Pile APE D100-32




		Gain	/Loss Fa	ctor at Sh	naft/Toe =	0.833/1.0	000	
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRUHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft -
5.0	19.0	1.5	17.5	0.3	0.000	0.000	11.25	0.0 D 100-32
10.0	41.1	6.1	35.0	0.0	0.000	0.000	0.00	0.0 D 100-32
15.0	66.1	13.6	52.5	0.0	0.000	0.000	0.00	0.0 D 100-32
20.0	94.2	24.2	70.0	0.0	0.000	0.000	0.00	0.0 D 100-32
25.0	161.4	43.6	117.8	2.3	18.842	2.497	5.26	132.8 D 100-32
30.0	227.1	65.1	162.0	3.5	22.430	2.978	5.79	124.5 D 100-32
35.0	366.1	104.8	261.3	6.6	27.144	3.051	6.73	112.9 D 100-32
40.0	509.3	148.8	360.5	10. <mark>8</mark>	30.236	2.374	7.50	107.5 D 100-32
45.0	656.6	196.8	459.8	15.6	32.233	1.042	8.07	104.6 D 100-32
50.0	808.2	249.1	559.1	22.3	33.776	0.000	8.54	104.5 D 100-32
55.0	963.9	305.6	658.3	31.9	35.103	0.000	8.97	105.1 D 100-32
60.0	1123.8	366.2	757.6	47.7	36.294	0.169	9.35	106.3 D 100-32
65.0	1287.9	431.0	856.8	70.2	37.120	0.159	9.60	106.2 D 100-32
70.0	1456.1	500.0	956.1	97.7	37.548	0.136	9.70	105.4 D 100-32
75.0	1628.6	573.2	1055.4	139.2	37.875	0.233	9.77	104.6 D 100-32
80.0	1716.1	648.4	1067.7	91.6	38.966	0.579	10.11	106.5 D 100-32
81.0	1733.6	663.5	1070.1	94.7	38.930	0.523	10.11	105.9 D 100-32

Total driving time: 67 minutes; Total Number of Blows: 2561 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over RHC of Little River Bent 8 24-in-diameter Steel Shell Pile Delmag D55

		Gain/	′Loss Fa	ctor at Sh	naft/Toe =	0.500/1.0	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	Hammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55
10.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55
15.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55
20.0	0.0	0.0	0.0	0.3	0.000	0.000	10.54	0.0	D 55
25.0	52.6	6.3	46.3	1.4	13.101	3.068	4.36	71.6	D 55
30.0	111.7	13.4	98.3	3.3	18.322	3.887	5.17	62.8	D 55
35.0	136.7	21.4	115.4	4.3	19.766	3.927	5.44	60.3	D 55
40.0	329.5	30.5	299.0	14.3	27.209	0.658	7.13	50.3	D 55
45.0	392.4	40.8	351.5	18.2	28.290	0.756	7.47	49.1	D 55
50.0	456.9	52.8	404.1	22.9	29.054	0.750	7.77	48.3	D 55
55.0	750.9	66.1	684.7	55.9	32.706	1.512	8.98	51.4	D 55
60.0	852.6	80.0	772.5	73.8	33.612	1.652	9.28	52.9	D 55
65.0	955.9	95.6	860.4	95.0	35.125	1.785	9.48	54.3	D 55
66.0	976.8	98.9	877.9	100.5	35.410	1.784	9.51	54.5	D 55

Total driving time: 33 minutes; Total Number of Blows: 1310 (starting at penetration 5.0 ft)

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 15, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER BUFFALO CREEK (SITE 6) ARDOT 101124 HWY. 135 STR. & APPRS. (S) POINSETT COUNTY, ARKANSAS

INTRODUCTION

Presented herein are the final results of the geotechnical investigation performed for the Hwy. 135 over Buffalo Creek replacement bridge in Poinsett County, Arkansas. This bridge is Site 6 of the ARDOT 110124 Hwy. 135 Strs. & Apprs. (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on May 26, 2023.

We understand the replacement bridge will be a prestressed concrete girder unit with four (4) bents, three (3) spans, and a total length of approximately 213 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed east of the existing bridge. Site grading will include about 12 ft of fill for the new embankments. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through

the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the Site 6 replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Site 6 replacement bridge alignment were explored by drilling four (4) sample borings to 100- to 120-ft below existing grades. The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset, ft	GPS Coordinates (degrees)		Approx Surf El, ft	Completion Depth, ft
		11	Latitude	Longitude	п	
F1	347+60	5 ft Lt	35.67805573	-90.34020542	226.9	110
F2	348+65	35 ft Lt	35.67813758	-90.34055788	207±	100
F3	349+45	15 ft Rt	35.67838635	-90.34070662	214.5	110
F4	349+70	20 ft Lt	35.6783424	-90.34083024	226.0	120

 Table 1: Summary of Site 6 Exploration Program

The boring logs, presenting descriptions of the soil strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 14. The centerline station and offset of the boring locations and ground surface elevation, as surveyed, is also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 15.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profile should be anticipated.

The borings were drilled with a truck-mounted CME-55 HTX rotary-drilling rig, a truckmounted SIMCO 2800 rotary-drilling rig, and a track-mounted Diedrich D-50 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.-diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 34 natural water content determinations were performed to develop data on in-situ soil water content for each

boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 2 liquid and plastic (Atterberg) limit determinations and 28 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The Site 6 location is on Hwy. 77, approximately 250 feet southeast of the intersection of Hwy.77 and Rivervale Lane in Poinsett County. The existing bridge is a two-lane structure with a concrete deck, steel girders, and a concrete pile foundation system. The channel at this location is moderate with well-defined banks. The creek banks are fairly steep and are covered with thick underbrush and numerous trees. The project locale is primarily agricultural land consisting of large, flat fields. Several houses are located south of the bridge along Rivervale Lane. The existing pavements are in poor condition with numerous cracks and some full depth repairs. Surface drainage along the roadway is poor and standing water is common after rain events. <u>Site Geology</u>

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent Alluvium and variable Tertiary sediments. The <u>Geologic</u> <u>Map of Arkansas¹</u> indicates the alignment extends through exposures of Quaternary Terrace Deposits. The Terrace deposits are comprised of a complex sequence of unconsolidated gravel, sand, silt and clay. Individual Terrace deposits are often lenticular and discontinuous. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

Seismic Conditions

In light of the results of the borings and the surface geology, a Seismic Site Class D (stiff soil profile) is considered applicable to the bridge location at Site 6 with respect to the criteria of the <u>AASHTO LRFD Bridge Design Specifications Eighth Edition 2017</u>². Given the location and AASHTO code-based values, recommended seismic parameters are summarized below.

- Seismic Site Class D
- 1.0-sec period spectral acceleration coefficient $(S_1) = 0.539$
- Site amplification factor at 1.0 second $(F_v) = 1.5$
- 1.0-sec period spectral acceleration coefficient $(S_{D1}) = 0.809$
- Acceleration for a short (0.2 sec) period $(S_s) = 1.876$
- Site amplification factor for short period $(F_a) = 1.0$
- Peak ground acceleration (PGA) = 1.047
- Site amplification factor at PGA (F_{PGA}) = 1.0
- $A_s = 1.047$

Utilizing these parameters, AASHTO LRFD Seismic Bridge Design Specifications indicate that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Site 6 location of the Hwy. 135 bridge over Buffalo Creek.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 1.047 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Appendix D as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the analyses results are shown on the generalized subsurface profile also provided in Appendix D. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix D.

² <u>AASHTO LRFD Bridge Design Specifications</u>, 8th Edition; AASHTO; 2017.

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

Subsurface Conditions

Based on the results of the borings, the surface and near-surface soils to 2- to 18-ft are comprised of interbedded brown, reddish brown, grayish brown, dark gray, and reddish tan very loose to loose silty and clayey fine sand and very soft to firm clay, silty clay, and fine sandy clay. These soils exhibit low relative density or shear strength and high compressibility. These soils typically classify as A-3, A-4, and A-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to fair subgrade support for pavement structures.

The weak surficial soil units are underlain below 2 to 18 ft by medium dense to dense brown, gray, dark gray, tan, grayish tan, and brownish gray silty fine sand and fine to medium sand units. Some coarse sand and fine gravel are present at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth. <u>Groundwater Conditions</u>

Groundwater was encountered in the borings at 7.7- to 18.7-ft depth in May and June 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the creek and other surface water features.

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 6 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors, such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

Piling

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 18-in.-diameter steel shell piles are planned for bridge ends and 28-in.-diameter steel shell piles are planned for the interior bents. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix E. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength was mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (ϕ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (ϕ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects. The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical.

We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix F.

End Slope Stability

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 4) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 23 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020⁴ and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.5235. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 222 to El 212 was assumed.

Stability analyses results are summarized and presented graphically in Appendix G. As shown in the results, the analyses of the seismic stability of the plan 2H:1V Bent 4 end slope indicates a calculated minimum factor of safety significantly less than 1.05. However, a simplified Newmark block analysis indicates that a maximum permanent displacement of 4.3 inches is expected for the north embankment. We understand that a Newmark displacement of less than 6 inches is typically acceptable for bridges designated as "Other."

The results of slope stability analyses utilizing residual strengths in soil zones susceptible to liquefaction triggering indicate a calculated minimum factor of safety against sliding in excess of 1.0. Consequently, the potential for flow slide instability is considered low. Given the results of the stability analyses and Newmark block analysis, the stabilities of the slope configurations are considered acceptable.

Subgrade Support

It is understood that pavement sections for the approach roads will be developed by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-3, A-4, and A-6. These classifications correlate

⁴ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, undercuts or improvement depths on the order of 2 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. for cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified

material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, undercutting is expected to be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 13 to 18 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix H. Where embankment heights are less than about 4 ft, undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow within about 100 ft of the bridge ends. An example special provision for cohesive embankment fill is provided in Appendix I.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be "notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent

saturation of subgrade soils. Density and water content of all earthwork should be maintained until embankments and bridge work are completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Groundwater was encountered between 7 and 19 ft in May and June 2023. Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

Piling

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered. Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁵. In the driveability analyses, the steel shell piles were assumed to be driven

⁵ <u>GRLWEAP 2014;</u> Pile Dynamics, Inc.

from the plan cap bottom elevation or existing grade. Graphical and tabulated results of these analyses are provided in Appendix J.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 74 ft-kips per blow for driving the steel shell piles at the end bents and at least 186 ft-kips per blow for the intermediate bents. A specific review and analysis of the pile-hammer system proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

The following illustrations are attached and complete this submittal.

Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 14	Boring Logs
Plate 15	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Liquefaction Analysis Results
Appendix E	Nominal Pile Capacity Curves

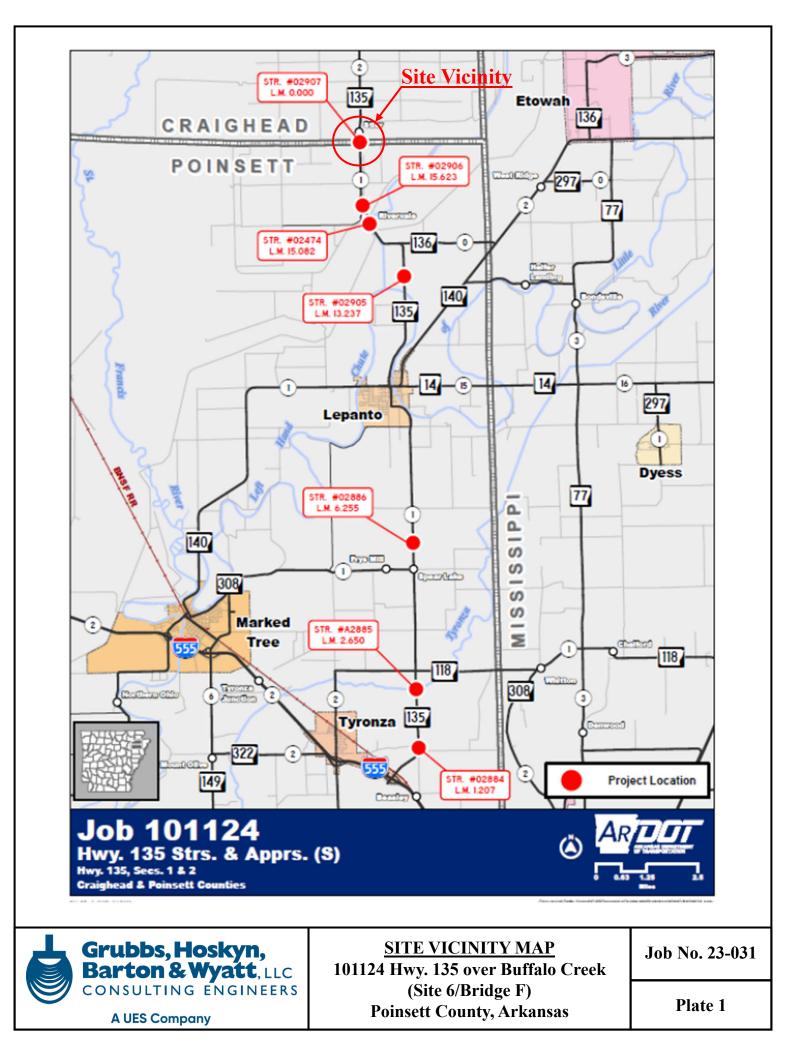
GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 6 – BUFFALO CREEK

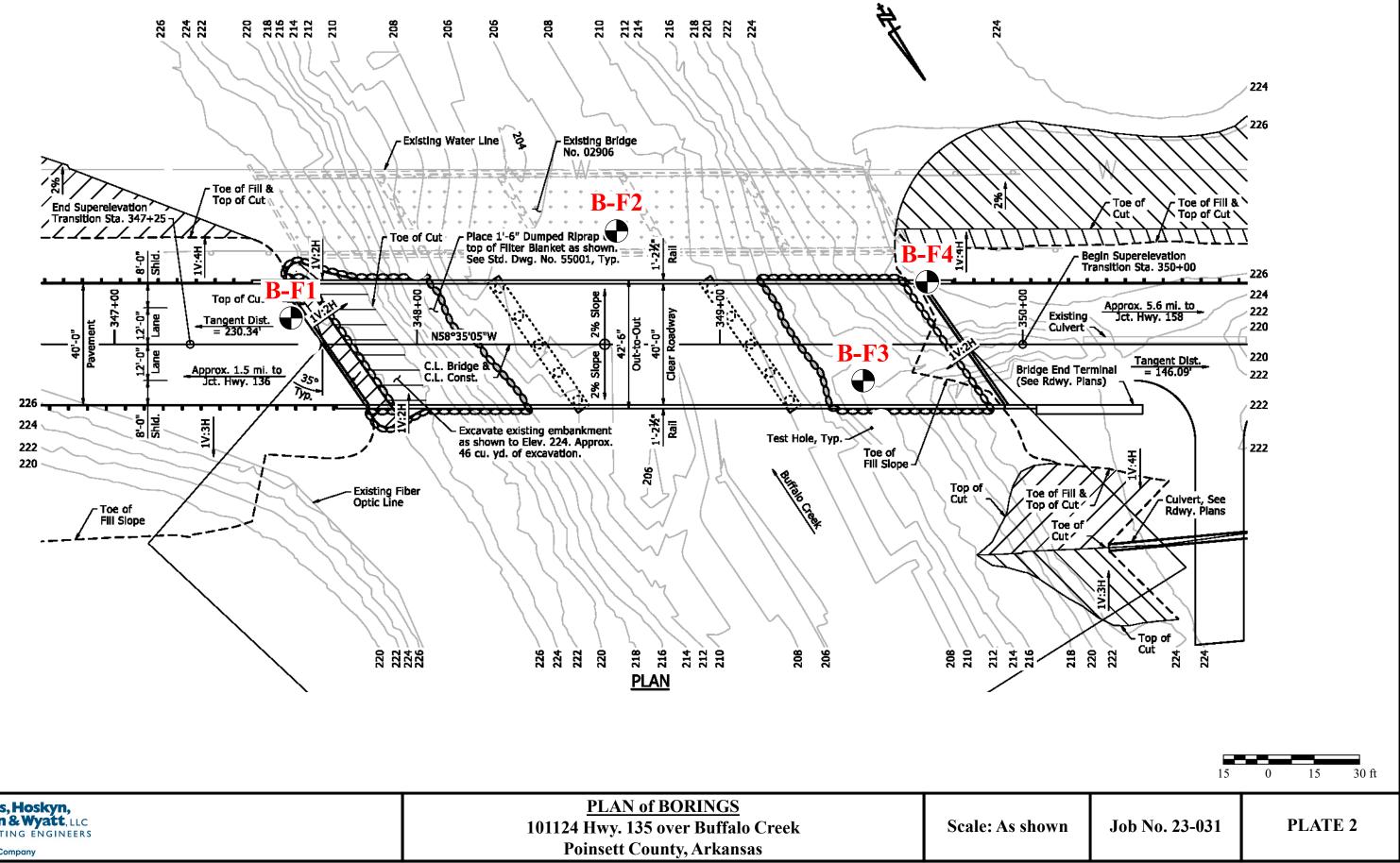
Appendix F	Lateral Load Parameters
Appendix G	Results of Stability Analyses
Appendix H	Example SP – Woven Geotextile
Appendix I	Example SP – Cohesive Embankment Fill Special
	Provision
Appendix J	Driveability Analysis Results

* * * * *

We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,


GRUBBS, HOSKYN, BARTON &WYATT, LLC


Vellet M. Sett

Velleta M. Scott, P.E. Sr. Project Engineer Mark E. Wyatt, P.E. President No. 7791

VMS/MEW:jw

Copies submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Crafto	n Tull & Associates, Inc.	
	Attn:	Mr. Mike Burns, P.E.	(1-email)
	Attn:	Mr. Chuck Wipf, P.E.	(1-email)

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS	<u>PLAN of BORINGS</u> 101124 Hwy. 135 over Buffalo Creek	Scale: As s
A UES Company	Poinsett County, Arkansas	

	TYPE:	Auger to 10 ft /Wash	LC	OCATIO	DN: /	Appro	x Sta	347+	60, 5 f	't Lt			
				μ		(сон	ESION	I, TON	I/SQ I	FT		
Τ, FT	30L	2	3PF	γ ΓΤ	0.	2 0	.4	0.6	0.8	1.0	1.2	1.4	
ОЕРТН, FT	SYMBOL		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLA	STIC		W	ATER NTENT			QUID	
Δ		SURF. EL: 226.9	2	L N	LI 1(MIT +	 20	30	•	 50		MIT + 70	
		Loose brown silty fine sand (SM) w/clayey fine sand pockets	8			<u> </u>			-+0				+
		- medium dense from 2 to 4 ft	20										
		- very loose below 4 ft											
5 -		•	0/WO	Н								<u> </u>	_ 4
		Very soft grayish brown clay (CH) w/fine sand pockets	ø/wo	н			•						
	$M_{ m v}$	Firm yellowish red and gray fine sandy clay (CL)	10			<u>т</u>			_				
10 -	\square		10			+		+ + (- G _s = 2.5	53			- '
		Medium dense tan and brown fine										<u> </u>	
15-	X	sand, slightly silty (SM-SP)	13			•						+	- 1
		Medium dense brownish gray fine											-
20 -	X	sand (SP)	23										_
25 -			14				•						
20													
	X		17										
30 -													
	∇	Medium dense brownish gray fine to medium sand (SP)	27										
35 -						•					+		-
		- dense below 38 ft											
40 -	X		45								+	+	-
			37										

	23-03												
	Gru Barl Consu	bbs, Hoskyn, on & Wyatt, Inc. ^{ing Engineers} LOGOF 101124 Hwy. Poinsett	135 ov	er Bu	ffalo	Cree							
		· Auger to 10 ft /Wash	1.0	OCATIO	יואר	Appro		247.	+60 5	ft f			
		: Auger to 10 ft /Wash			JN.				N, TO		FT		
Ē	5	ES	Ц Н	۲ MT	0			0.6	0.8	1.0	1.2	1.4	200 %
DEPTH,	SYMBOL	တ္အခါ DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL	ASTIC	1	N CC	ATER	T	L		°. N
		(continued)		5		+	 20	30	- ● 40	50	 60	- + 70	1
- 50		ζ	39										
- 55		- slightly silty (SM-SP) with trace coarse sand and a little fine grave below 53 ft	I 40										_ 8
- 60			45										
- 65			45										
- 70			48										
- 75			42										
- 80			45										_ 5
LGBNEW 23-031 BRIDGE F.GPJ 7-28-23			48										_
23-031		Dense dark brownish gray fine to coarse sand (SW) w/some fine	49										3
BNEW		LETION DEPTH: 110.0 ft 5-17-23	DEPTH IN BORI			10 ft						: 5/16/2	2023
<u>۳</u>		-			,								TE 4

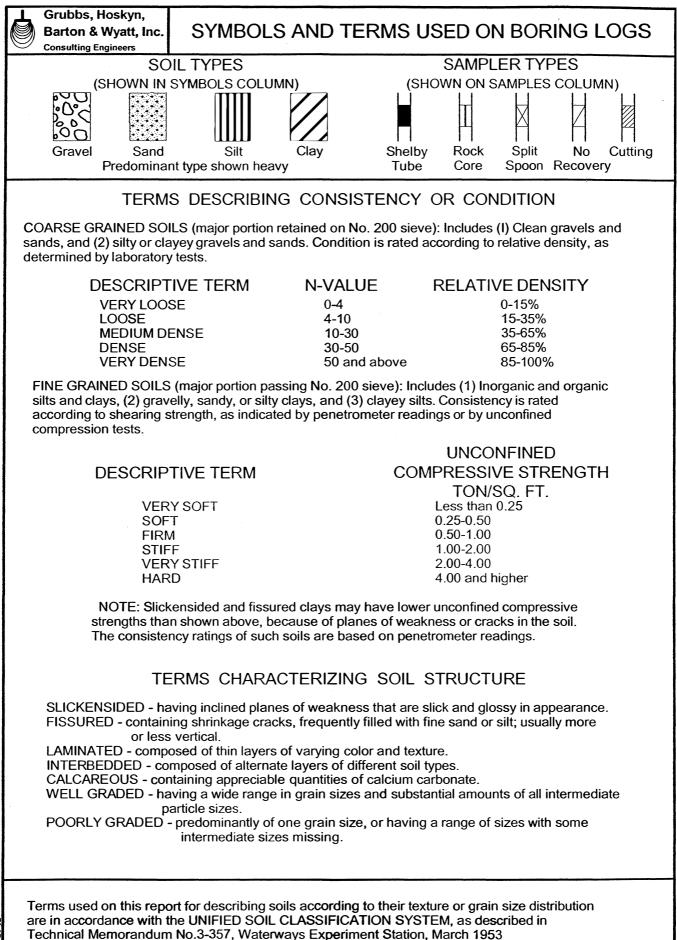
	23-03	31												
	Gru Bar _{Consu}	Ibbs, Hoskyn, ton & Wyatt, Inc. ^{ulting Engineers}	LOGOF B 101124 Hwy. 1 Poinsett (135 ove	er But	ffalo (Creek							
	TYPE	E: Auger to 10 ft /Was	h	LC	CATIO	DN: /	Approx	c Sta 3	47+6), 5 ft I	_t			
										TON/S				
뵤	5	B		ц	L V	0.			C)(4	% (
DEPTH,	SYMBOL	DESCRIPTION	ON OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	I	ASTIC MIT		WA1 CON1	1		LIQU		- No. 200 %
		(continued)					╋╴──		•			+		'
_		gravel				10	0 20) 30) 40	0 50) 60) 7	0	
- 95 -		X		49										
-100-		X		58										
-105-		Dense brownish medium sand (S	gray fine to P)	61										
-115-		NOTE: Drilled w ECF= 1.19	ith SIMCO 2800											
-120 														
V 23-0						TEE								
-GBNEV		PLETION DEPTH: 110 E: 5-17-23		DEPTH ⁻ N BORII			0 ft				DA	TE: 5	/16/20	23
														- 5

	Bar	bb tor	s, Hoskyn, & Wyatt, Inc. ^{J Engineers} J Engineers J D G O F B 101124 Hwy. 13 Poinsett C	35 ov	er Buf	falo	Cre								
	TYPE	:	Wash	LC	OCATIO	DN:	Арр	rox S	ta 34	8+65	5, 35	ft Lt			
					Ц			со	HESI	ON,	TON	I/SQ	FT		
Ц Т Т	BOL	LES		BPF	J FT	().2	0.4	0.6	0.8	3	1.0	1.2	1.4	200 %
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , I	UNIT DRY WT LB/CU FT	PL	ASTI IMIT	С	C	WAT	ER			IQUID _IMIT	No.
			SURF. EL: 207±		5		+	 20	30	• 40)	 50	- <u>—</u> — 60	- + 70	'
		Ŕ	Very loose dark gray clayey fine sand (SC)	3						-	-				
		X	Dense brown and gray fine sand (SP)	61				•							3
- 5 -		X		73	-										
		X	Dense gray and brown fine to medium sand, slightly silty (SM-SP)	64				•							5
- 10 -		X	Medium dense dark brown and grav fine to medium sand slightly	17				•							7
			gray fine to medium sand, slightly silty (SP-SM) w/organic inclusions												
			Dense brownish gray fine to medium sand (SP) w/trace coarse sand												
15-		X	Sanu	61											_
20-		X		59											
		∇	- medium dense at 24 to 29 ft	36											
- 25 -															
- 30 -		X	- dense below 29 ft	74	-			•							4
- 35 -		X		65											
67-07-1															
- 40 -		X		87								+			
			Madium danas area first and												
		<u> </u>	Medium dense gray fine sand, slightly silty (SM-SP)	22					•						10
	COMF				TO WA NG: N							Г	DATE	: 6/7/	2023

	23-031												
		os, Hoskyn, n & Wyatt, Inc. g Engineers LOGOF 101124 Hwy Poinse		er Bu	ffalo	Cree							
	TYPE:	Wash	LC	CATI	ON:	Appro	ox Sta	348+	65, 35	ft Lt			
Ι.				E			СОН	ESION		I/SQ	FT		
Ť, FT	30L		3PF	DRY WT /CU FT	0	.2 ().4	0.6	0.8	1.0	1.2	1.4	% 00
ОЕРТН,	SYMBOL	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DF LB/CL	PL/ L	ASTIC IMIT			ATER NTENT		LIC	DUID MIT	- No. 200
		(continued)		5	1	╋	— — — 20	- — — –	●- — - 40	 50	 60	+ 70	
- 50 -		Dense gray fine to medium sand slightly silty (SM-SP) w/trace coarse sand	, 72										-
- 55 -		- medium dense at 53 to 58 ft	35										
- 60		- dense at 58 to 63 ft - dark gray and brown with trace fine gravel below 59 ft	47			•							6
- 65 -		- medium dense at 63 to 78 ft - slightly clayey at 63 to 68 ft	37										_
- 70 -			27										_
- 75 -		- with occasional fine to coarse gravel below 74 ft	33										_
- 80 -		- dense below 78 ft	51										_
			58										_
3-031 BKI			72										6
		TION DEPTH: 100.0 ft	DEPTH				1						
	DATE: 6	5-7-23	IN BORI	NG: N	A					C	ATE:	6/7/20	
												PLA ⁻	

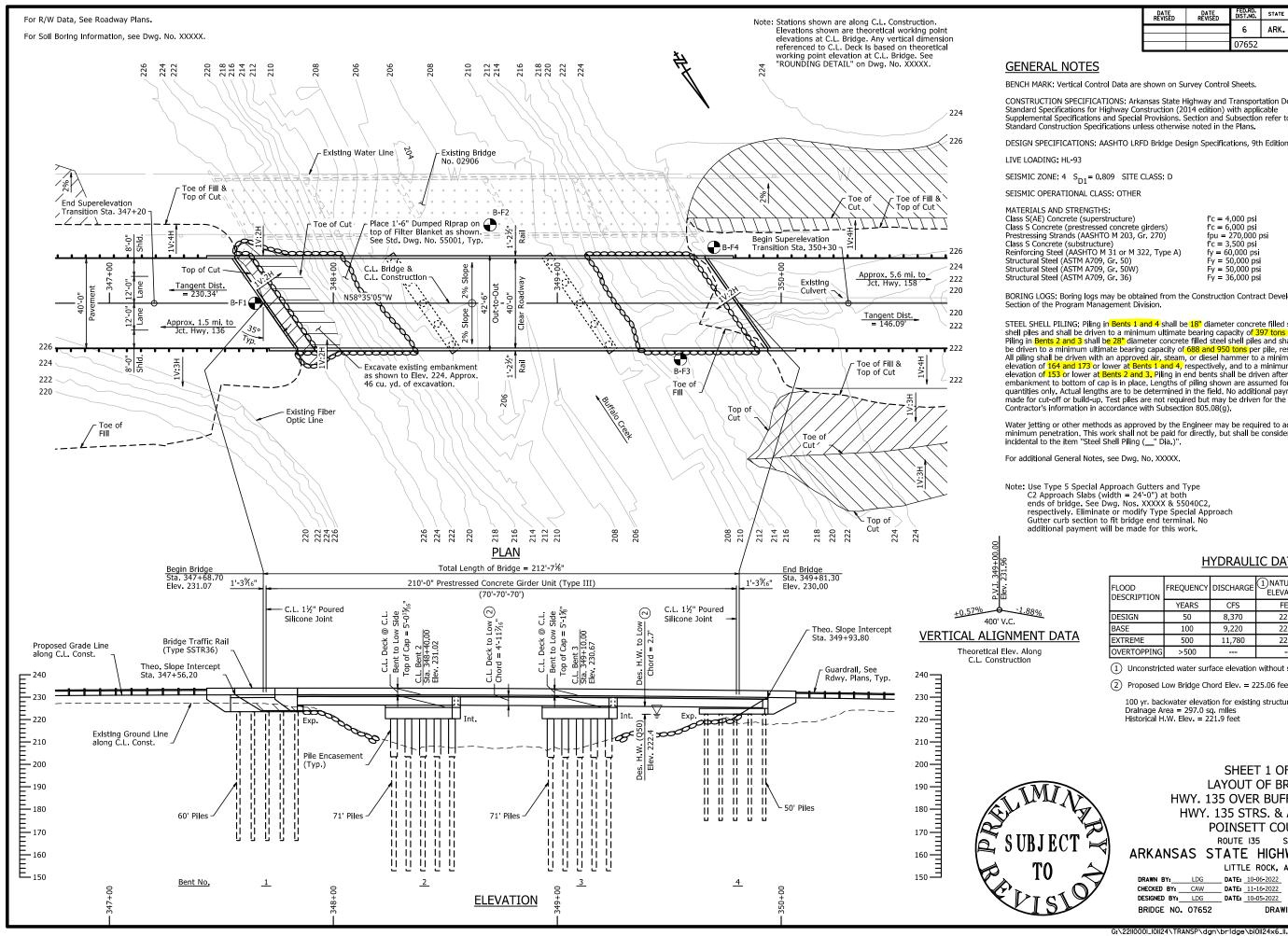
	Gru Bar Consu	bb	bs, Hoskyn, a & Wyatt, Inc. J Engineers D B O F 101124 Hwy. Poinsett	135 ov	er But	ffalo	Cree							
	ТҮРГ	:	Wash	-				x Sta	348+6	5. 35 f	ťt Lt			
										, TON/		r		
뵤	Ъ	ß		Щ	Γ	0			——(Э——С			.4	% 0
DEPTH, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PĻ	ASTIC	I	WA		<u> </u>	LIQU		No. 200
			(continued)				+	 20 :		-	0 6	· +		•
- 95 - - 100 - 105 - 100 - 105 - 100 - 105 - 100 - 110 - 110			NOTE 1: Drilled from bridge deck. NOTE 2: Deck to water: 18.1 ft NOTE 3: Deck to mudline: 21.6 ft NOTE 4: Set 45 ft HDX Casing. NOTE 5: Drilled with CME-55 HT> ECF= 1.28											
	COMF DATE		TION DEPTH: 100.0 ft -7-23	DEPTH IN BORI							DA	TE: 6	/7/2023	3

	23-031												
	Bart	bbs, Hoskyn, on & Wyatt, Inc. ting Engineers LOGOFB 101124 Hwy. 1											
		Poinsett C											
	TYPE	: Auger to 10 ft /Wash	LC	CATIO	ON:	Appr	ox Sta	a 349+	45, 15	i ft Rt			
FТ		o		T V T			COH	ESION		N/SQ	FT		%
ОЕРТН, Р	SYMBOL		N ₆₀ , BPF	DRY CU F		1	0.4			1.0		1.4	No. 200 %
DEF	γ	ຊັ ທີ່ SURF. EL: 214.5	Nec	UNIT DRY WT LB/CU FT	PL		; 		ATER NTENT			UID AIT	No No No
		Soft brown silty clay (CL) w/silty fine sand seams	7			10	20	30	40	50	60	70	
		fine sand seams	7										
- 5 -		Very loose to loose gravish brown fine sand, slightly silty (SM-SP)	6										-
- 3 -		fine sand, slightly silty (SM-SP)											
		- medium dense, grayish tan below 8 ft	11					,					7
- 10 -		8 ft	16										-
		Z	17										9
- 15 -													
- 20 -			29					_	_				_
		7	22										
25 -			33										
- 30 -		- greenish gray and tan with occasional dark gray nodules at 28 to 38 ft	30										
		7	00										
- 35 -			29										
		availab tax balaw 20 ft											
- 40 -		- grayish tan below 38 ft	30										_
		Medium dense grayish tan fine to medium sand (SP)											
		LETION DEPTH: 110.0 ft D	31 EPTH				9					0/04/5	4
	DATE:	6-21-23 IN	I BORI	NG: 7	./ ft						DATE:	6/21/2 PLA	


	<u>23-03</u> Gru Bar Consu		bs, Hoskyn, n & Wyatt, Inc. g Engineers L O G O F B 101124 Hwy. 13 Poinsett Co	5 ov	er But	ffalo	Cre								
	TYPE	≣:	Auger to 10 ft /Wash	LC	CATIO	DN:	Арр	rox S	Sta 34	9+4	5, 15	5 ft Rt			1
ЕŢ		် ပ			ΤVT			СО	HES	ION,		N/SQ	FT		8
	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	().2	0.4	0.6	0	.8	1.0	1.2	1.4	- No 200 %
DEPTH ,	SYN	SAN		N ₆₀ ,	NIT [LB/0	PL L	ASTI .IMIT	С	(WA [.]		г	L	IQUID LIMIT	Z
			(continued)				10	20	30	— — 4)	50	60	- + 70	
- 50 -		X	- slightly silty (SM-SP) below 53 ft	33											
55	- - - - - - - -	X		36											
60		X		33											
65		X		34											
70		X	- dense below 68 ft	43											(
75		X		54											
80		X		57											
85		X	- with more medium sand (SM-SW) below 83 ft	63											
				63											
				PTH	TOWA		1				1				
	DATE	: 6	5-21-23 IN	BUKI	NG: 7.	./π							JAIE	: 6/21/ PLA	

	23-03 ⁻													
	Gru Barl	bb or	s, Hoskyn, & Wyatt, Inc. Engineers LOGOFB 101124 Hwy. 13 Poinsett Co	5 ov	er Bu	ffalo	Cree							
	TYPE	:	Auger to 10 ft /Wash	LC	OCATIO	ON:	Appro	ox Sta	349+4	45, 15	ft Rt			
			5							I, TON		Т		
, FT	OL	В П		Ц	≥⊤ ≻∃	C).2 ().4 ().6	0 <u>.8</u>	1.0	1.2 1	.4	% 0(
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL	ASTIC		WA CON				JID IT	- No. 200 %
			(continued)				10 · · ·	20	30	• 40	50	+ 60 7	• 70	
- 95 -		X	- with trace coarse sand at 93 to 98 ft	66										
-105-														
-110-		X		69										
-115-			NOTE: Drilled with Diedrich D-50 ECF= 1.43											
-120-														
-125- -125- -125- 														
23-031 BRIDGE F.C)TER								
GBNEV	COMF DATE				TO WA NG: 7						DA	ATE: 6	6/21/20)23
													LATE	11

L	23-031 Grub	bs, Hoskyn,										
	Barto	n & Wyatt, Inc. ^{ng Engineers} LOG OF B 101124 Hwy. 13 Poinsett C	35 ov	er But	ffalo C							
	TYPE:	Auger to 20 ft /Wash	LC	OCATIO	DN: A	pprox	sta 3	349+7	0, 20 ft	Lt		
				Τ		С	OHE	SION	, TON/S	Q FT		
Η, FT			BPF	K ₹ V	0.2	0.4	4 0.	.6 0	.8 1.0	1.2	1.4	00 %
ОЕРТН,	SYMBOL SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , E	UNIT DRY WT LB/CU FT	PLAS	STIC IIT		WA CON	TER TENT		LIQUID LIMIT	- No. 200 %
		SURF. EL: 226.0			10	20) 3	0 4	10 50	60	70	
	X	Loose brown silty fine sand (SM) w/organics (possible fill)	7									
	X	Loose reddish brown silty fine sand (SM) w/clay pockets	7									
5 -	X		7		•							17
		Very loose brown clayey fine sand (SC)	4									
- 10 -		- loose below 8 ft	6				+	G	<u>= 2.58</u>			47
		- reddish tan and light brownish gray below 13 ft										
15-		gray below 13 ft	11				•					
		Madium dance brown fine cond										
- 20 -	X	Medium dense brown fine sand, slightly silty (SM-SP)	15				•					5
0.5	\overline{X}	- brownish gray below 23 ft	17				•					8
25 -												
30 -	X		24									
- 35 -			30									
	Π	Dense brownish gray fine to medium sand (SM-SP)	37									
40 -			31									
	X		49			•)					4
	COMPL DATE:			TO WA NG: 10		_	_	_		חעח	=· 5/1	8/2023
	UNIC.	5-15-20 IIN	DOKI	NG. 1	0. <i>1</i> IL					DAT		ATE 12


	23-031												
	Grui Bart _{Consult}	bbs, Hoskyn, on & Wyatt, Inc. ing Engineers Dobs, Hoskyn, 101124 Hwy. 13 Poinsett C	35 ov	er But	ffalo (Creel							
	TYPE	: Auger to 20 ft /Wash	LC	OCATIO	ON: /	Approx	x Sta	349+7	70, 20	ft Lt			
				F		(COHE	SION		I/SQ I	FT		
, FT	Ы		ЦЦ	ΥN	0.	2 0.	4 0).6	0.8	1.0	1.2	1,4	% 0(
DEPTH,	SYMBOL	S DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLA	ASTIC MIT					LIC		- No. 200 %
		(continued)		٦ ا	10	+	 0 :		•	 50		+ 70	
- 50 -			48										-
- 60 -		- with more medium sand below 58	55 71 65			•							2
- 75 -		- with occasional organic inclusions below 73 ft	55					•					4
- 80 -		- dark brownish gray below 78 ft	57										_
GBNEW 23-031 BRIDGE F.GPJ 7-28-23		Dense gray fine to coarse sand (SW) w/trace fine gravel	57			•							2
			PTH	TOWA				1	1				<u> </u>
LGBN	DATE:	5-19-23 IN	BORI	NG: 1	6.7 ft					D	ATE:	5/18/20)23
													- 40

	23-03	1												
	Grubbs, Hoskyn, Barton & Wyatt, Inc. Consulting Engineers LOG OF BORING NO. F4 101124 Hwy. 135 over Buffalo Creek Poinsett County, Arkansas													
	TYPE	E: Auger to 20 ft /Was	h	LC	CATIO	ON:	Appro	x Sta	349+7	70, 20	ft Lt			
Ι.				F		(SION	, TON	/SQ F	Г			
H, FT	BOL	DESCRIPTION OF MATERIAL			N × N	0.	.2 0	.4 0	.6 0).8 1	.0 1	0 1.2 1.4		
DEPTH,	SYMBOL	DESCRIPTION	ON OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL/	ASTIC MIT		WA			LIQUID LIMIT		- No. 200 %
		(continued)					+		(•	- <u> </u>	+		1
- 95 - - 95 - - 100- - 105- - 105- - 105- - 105- - 105- - 105- - 105- - 105- - 105- - 100- - 105- - 100- -			rith SIMCO 2800	55 56 57										
		PLETION DEPTH: 120 :: 5-19-23										 .TE: 5	/18/20)23
		-									/			

(EY 9-26-02

APPENDIX A

ċ SCALE: РМ ۍ. CTAUSER 8/24 AUS A FILE: JSER:

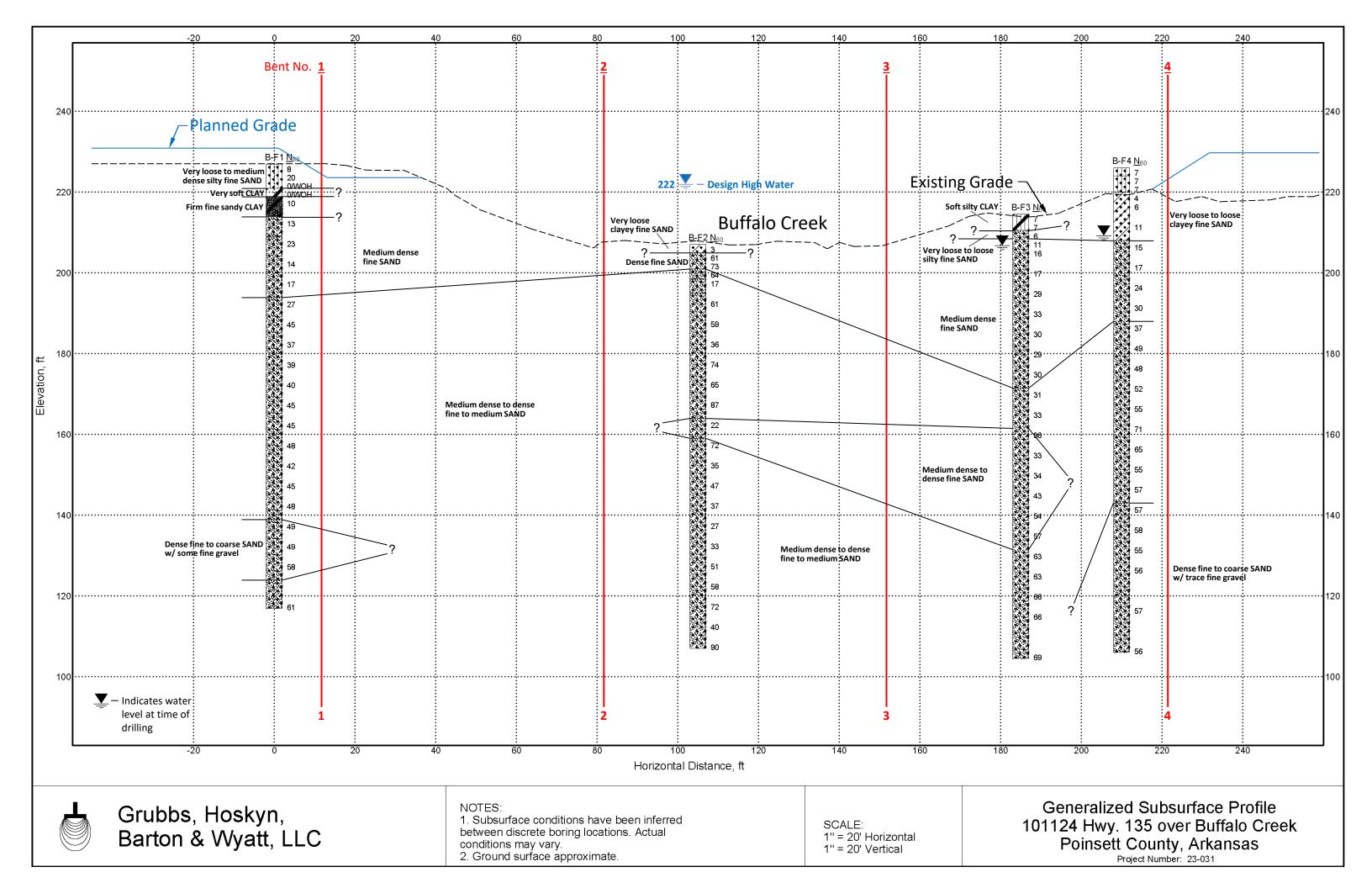
	DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
	REVISED	REVISED	6	ARK.	101124	230	356
			07652		LAYOUT		66676
L NOTES							
C: Vertical Control Data are	e shown on Si	irvev Contro	l Sheets				
ION SPECIFICATIONS: Arl ecifications for Highway Co	onstruction (20	014 edition)	with appli	cable .			
I Specifications and Specia struction Specifications u				n refer to t	he		
CIFICATIONS: AASHTO LR	FD Bridge De	sign Specific	ations, 9th	n Edition (2	2020).		
IG: HL-93							
NE: 4 S _{D1} = 0.809 SITE	CLASS: D						
ERATIONAL CLASS: OTHER							
AND STRENGTHS: Concrete (superstructure) rete (prestressed concrete Strands (AASHTO M 203, rete (substructure) steel (AASHTO M 31 or M 1 ceel (ASTM A709, Gr. 500) cel (ASTM A709, Gr. 50W) cel (ASTM A709, Gr. 36)	Gr. 270) 322, Type A)	f'c = 6 fpu = f'c = 3 fy = 6 Fy = ! Fy = !	4,000 psi 5,000 psi 270,000 p 3,500 psi 50,000 psi 50,000 psi 50,000 psi 36,000 psi				
iS: Boring logs may be obt e Program Management D		e Constructi	on Contra	ct Develop	ment		
. PILING: Piling in Bents 1 d shall be driven to a mini s 2 and 3 shall be 28" dial a minimum ultimate beari l be driven with an approv 164 and 173 or lower at B 153 or lower at Bents 2 an to bottom of cap is in pla ly, Actual lengths are to b	mum ultimate meter concrete og capacity of ved air, steam ents 1 and 4, d 3. Piling in 6 ce. Lengths of	bearing cap e filled steel 688 and 950 or diesel ha respectively, end bents sh f piling show	bacity of 3 shell piles 0 tons per ammer to and to a hall be driv on are assu	97 tons pe and shall pile, respe a minimum minimum en after umed for e	r pile. ectively. n tip ip stimating		

Water jetting or other methods as approved by the Engineer may be required to achieve minimum penetration. This work shall not be paid for directly, but shall be considered incidental to the item "Steel Shell Piling (__ Dia.)".

Note: Use Type 5 Special Approach Gutters and Type C2 Approach Slabs (width = 24'-0") at both ends of bridge. See Dwg. Nos. XXXXX & 55040C2, respectively. Eliminate or modify Type Special Approach Gutter curb section to fit bridge end terminal. No additional payment will be made for this work.

HYDRAULIC DATA

FLOOD DESCRIPTION	FREQUENCY	DISCHARGE	1 NATURAL W.S. ELEVATION	W.S. ELEVATION WITH BACKWATER				
	YEARS	CFS	FEET	FEET				
DESIGN	50	8,370	222.4	222.4				
BASE	100	9,220	222.6	222.6				
EXTREME	500	11,780	223.3	223.3				
OVERTOPPING	>500							


(1) Unconstricted water surface elevation without structure or roadway approaches.

(2) Proposed Low Bridge Chord Elev. = 225.06 feet at Station 349+80.00

100 yr. backwater elevation for existing structure = 222.7 feet DraInage Area = 297.0 sq. mlles Historical H.W. Elev. = 221.9 feet

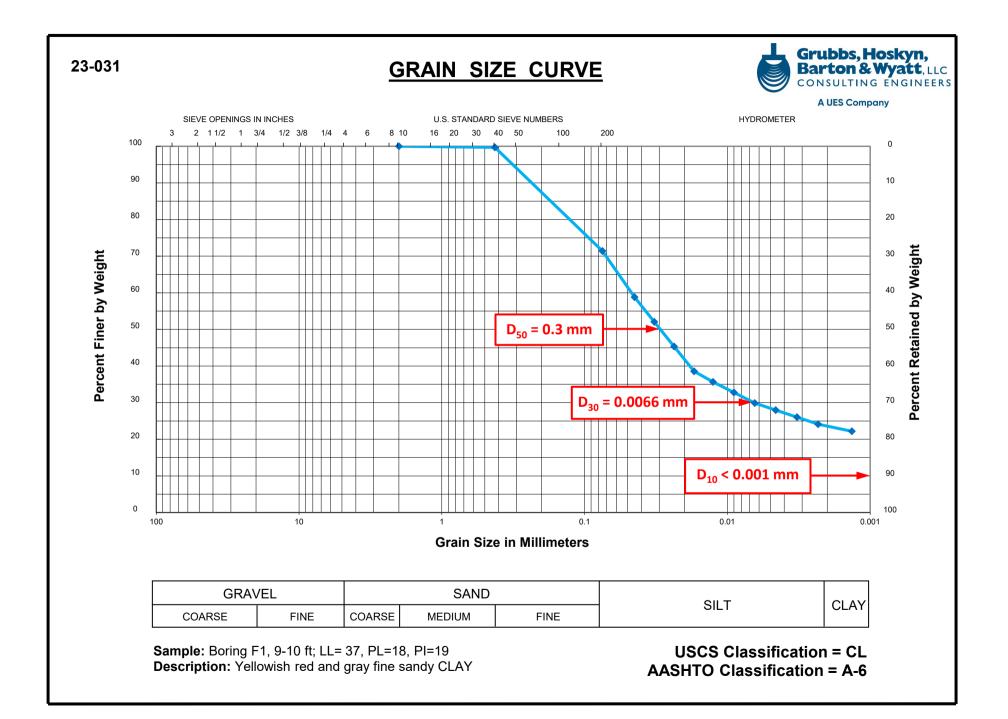
SHEET 1 OF 2 LAYOUT OF BRIDGE HWY. 135 OVER BUFFALO CREEK HWY. 135 STRS. & APPRS. (S) POINSETT COUNTY ROUTE 135 SEC. I ARKANSAS STATE HIGHWAY COMMISSION LITTLE ROCK, ARK. DRAWN BY: LDG DATE: 10-06-2022 FILENAME: b101124x6_l1.dgn CHECKED BY: _____ CAW ____ DATE: _____11-16-2022 SCALE: <u>1" = 20'</u> DESIGNED BY: LDG DATE: 10-05-2022 BRIDGE NO. 07652 DRAWING NO. 66676

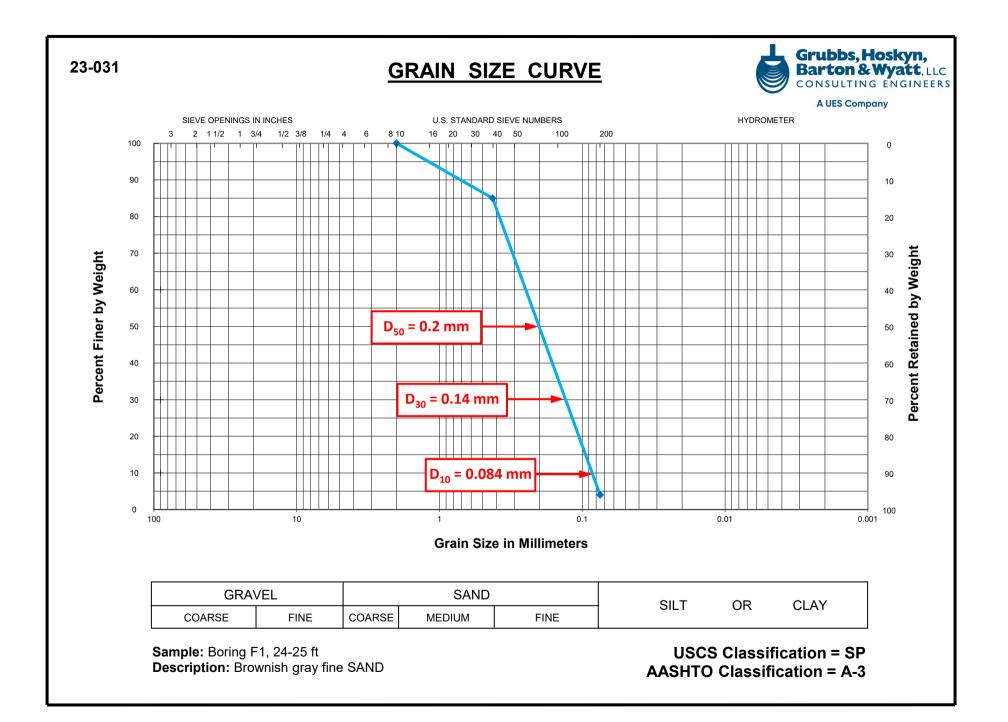
APPENDIX B

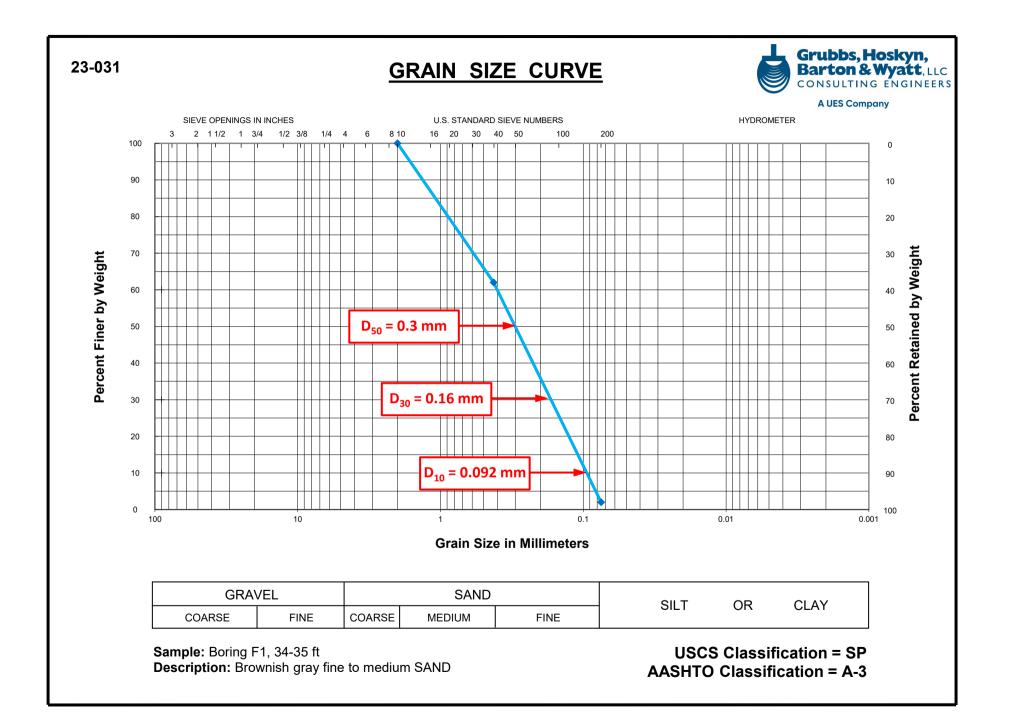
APPENDIX C

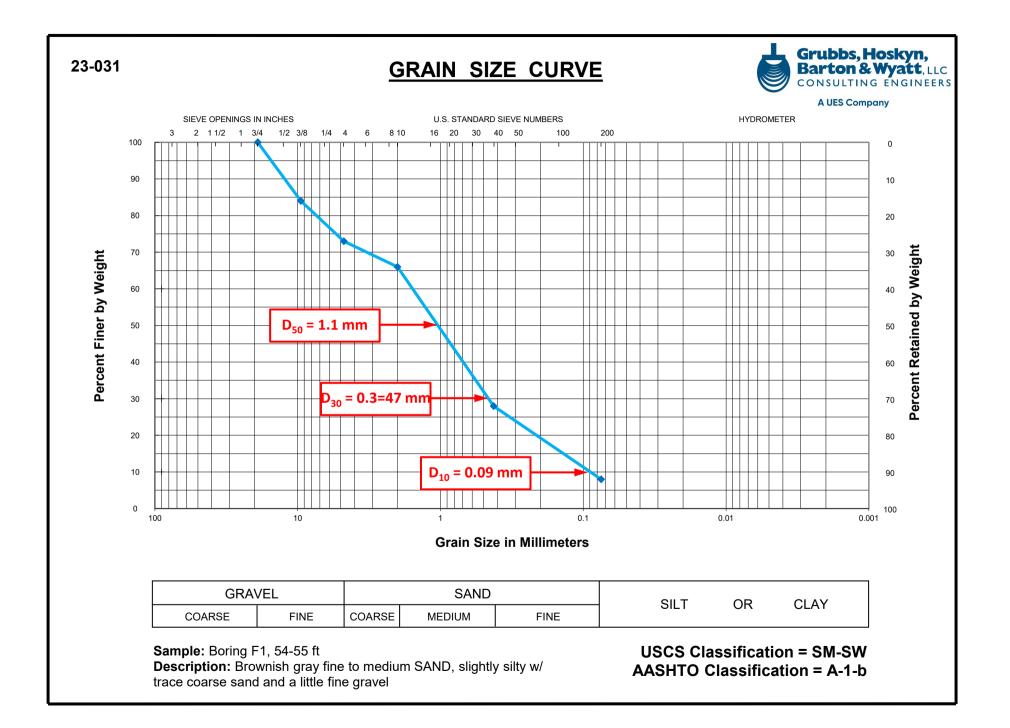
SUMMARY of CLASSIFICATION TEST RESULTS

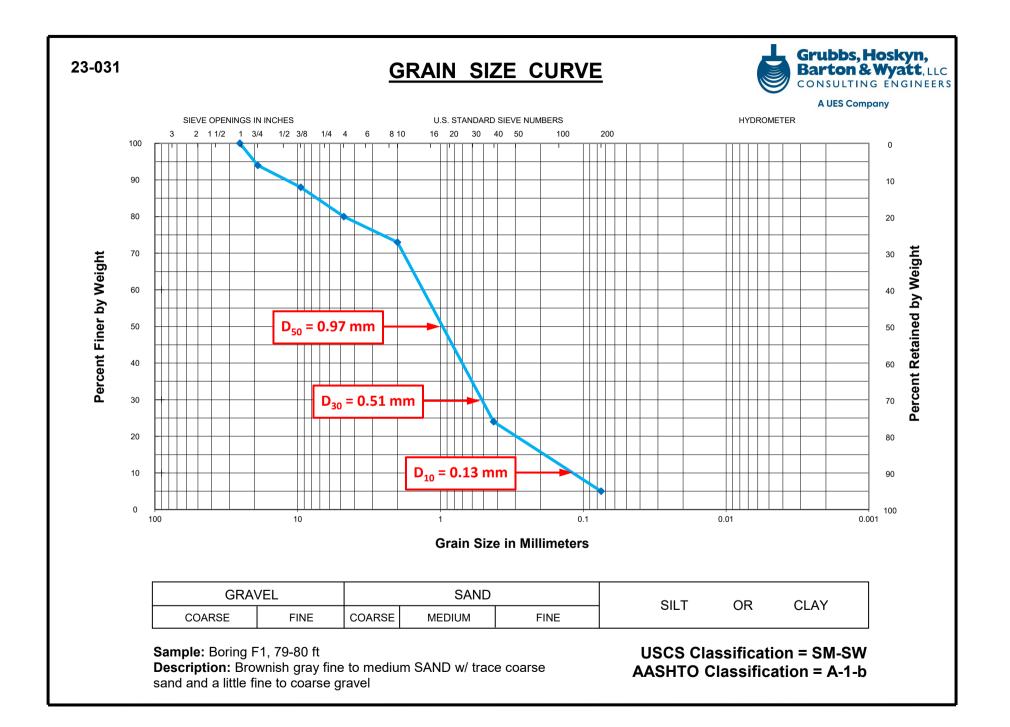
PROJECT: 101124 Hwy. 135 over Buffalo Creek (Site 6) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

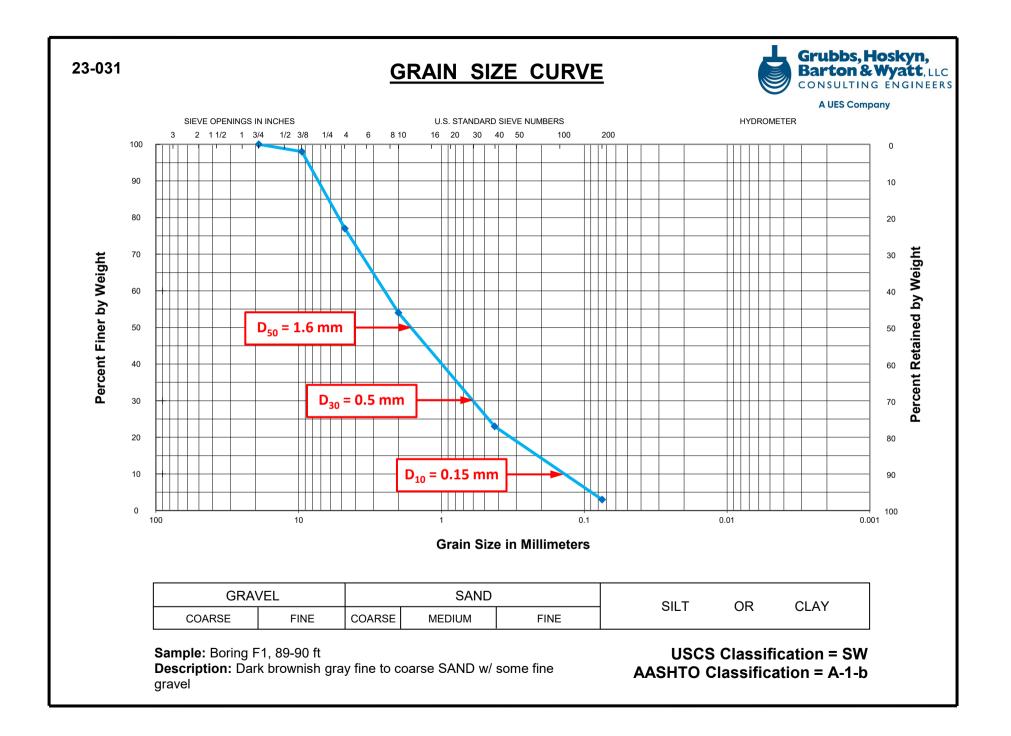

BOBING	SAMPLE	WATER	AT	TERBERG LI	MITS			SI	EVE A	NALY	SIS			USCS	
BORING No.	DEPTH (ft)	CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PERCENT PASSING 2 in. 1 in. 3/4 in. 3/8 in. #4 #10 #4							#200	CLASS.	AASHTO CLASS.
F 1		· · ·										#40		CM	A 1
F1	4.5-5.5	22								100			44	SM	A-4
F1	9-10	22	37	18	19	100	100	100	100	100	100	100	71	CL	A-6
F1	14-15	15								100			10	SM-SP	A-3
F1	24-25	25				100	100	100	100	100	100	85	4	SP	A-3
F1	34-35	19				100	100	100	100	100	100	62	2	SP	A-3
F1	54-55	19				100	100	100	84	73	66	28	8	SM-SW	A-1-b
F1	79-80	18				100	100	94	88	80	73	24	5	SM-SW	A-1-b
F1	89-90	15				100	100	100	98	77	54	23	3	SW	A-1-b
F2	2.5-3.5	23								100			3	SP	A-3
F2	6.5-7.5	21				100	100	100	100	100	100	62	5	SM-SP	A-3
F2	9-10	22								99			7	SM-SP	A-3
F2	29-30	18				100	100	100	100	100	100	40	4	SP	A-1-b
F2	44-45	30				100	100	100	100	100	100	94	10	SM-SP	A-3
F2	59-60	15				100	100	100	99	96	90	39	6	SM-SP	A-1-b
F2	89-90	13				100	100	100	91	88	82	30	6	SM-SW	A-1-b
F3	4.5-5.5	23								100			7	SM-SP	A-3
F3	14-15	23				100	100	100	100	100	100	84	9	SM-SP	A-3
F3	44-45	19				100	100	100	100	100	99	43	4	SP	A-1-b
F3	69-70	16				100	100	100	100	99	97	58	6	SM-SP	A-3
F3	84-85	17				100	100	100	100	99	97	24	6	SM-SW	A-1-b
F4	4.5-5.5	10								100			17	SM	A-2-4
F4	9-10	10	27	17	10	100	100	100	100	100	100	99	47	SC	A-4

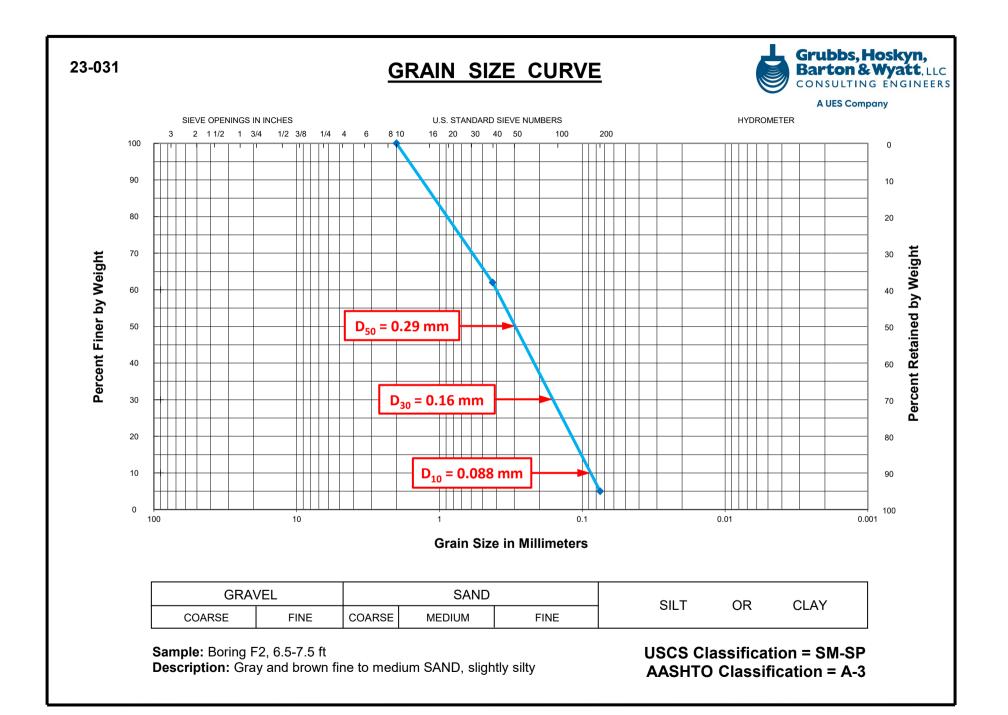

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

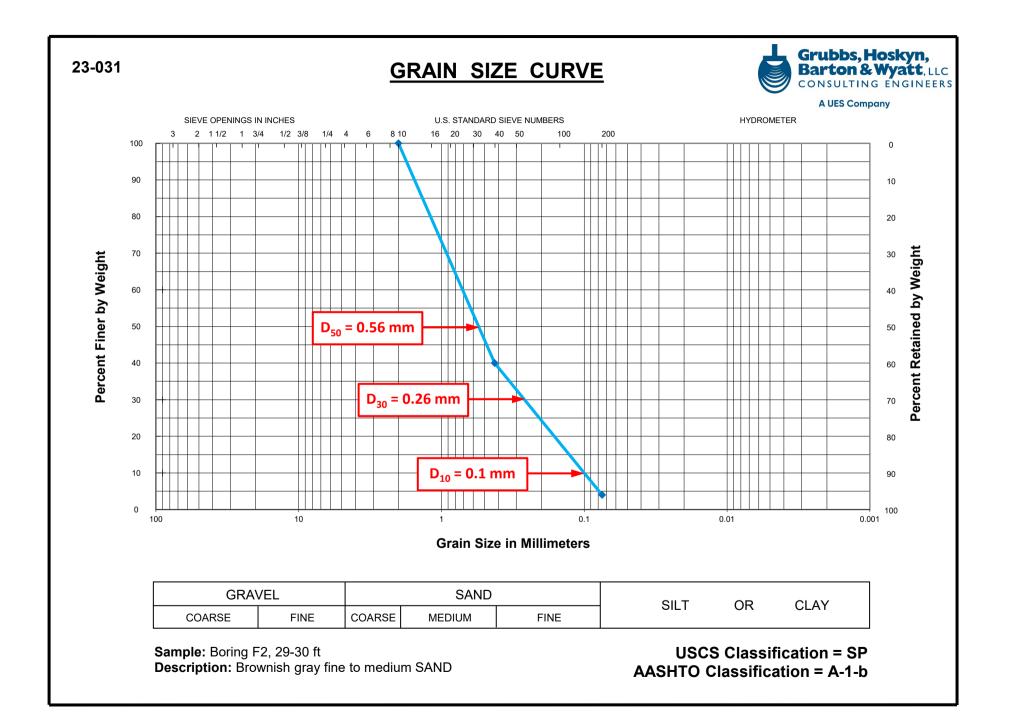

SUMMARY of CLASSIFICATION TEST RESULTS

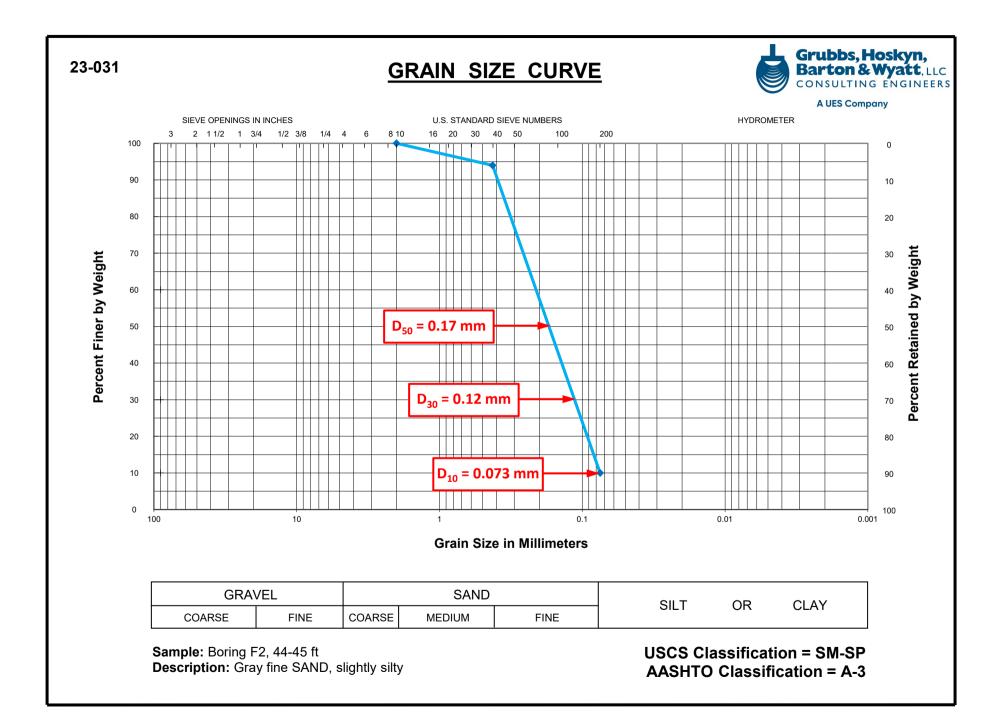

PROJECT: 101124 Hwy. 135 over Buffalo Creek (Site 6) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

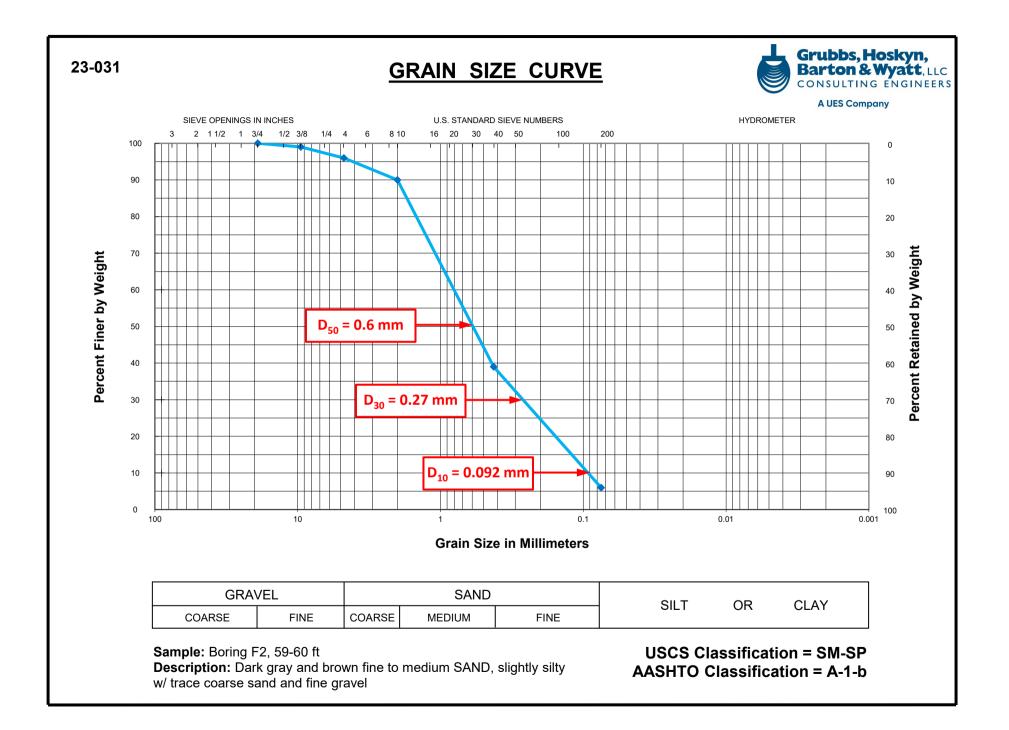

BORING	SAMPLE	WATER	AT	TERBERG LI	MITS			SI	EVE A	NALY	SIS			USCS	AASHTO
No.		CONTENT	LIQUID	PLASTIC	PLASTICITY	PERCENT PASSING								USCS CLASS.	CLASS.
1.00	(ft)	(%)	LIMIT	LIMIT	INDEX	2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200	CLINDS:	CLINDO.
F4	19-20	25								100			6	SM-SP	A-3
F4	24-25	27								99			8	SM-SP	A-3
F4	44-45	20				100	100	100	99	99	98	76	5	SM-SP	A-3
F4	59-60	19				100	100	100	100	100	100	22	2	SP	A-1-b
F4	74-75	21				100	100	100	100	100	99	36	4	SP	A-1-b
F4	84-85	17				100	100	100	96	90	78	15	2	SW	A-1-b

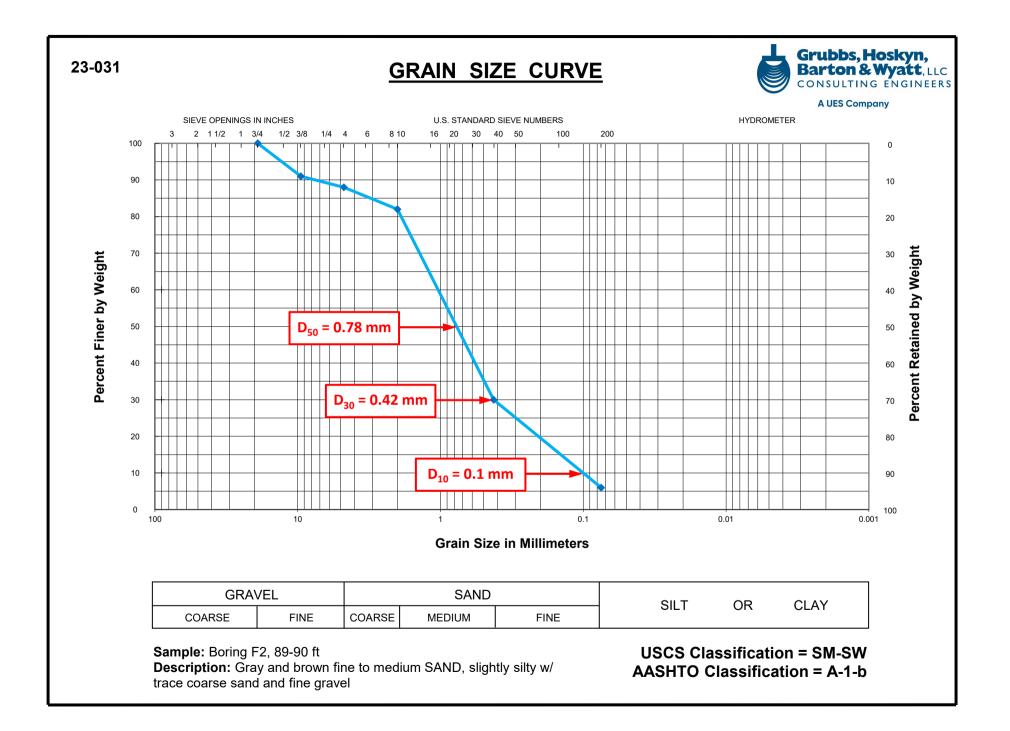


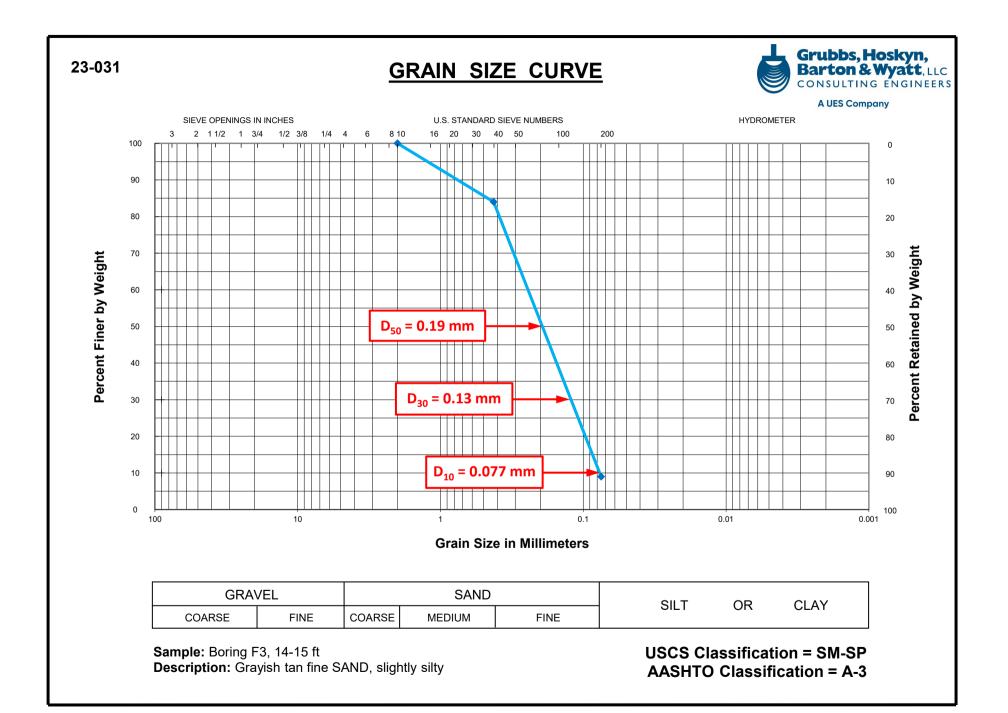


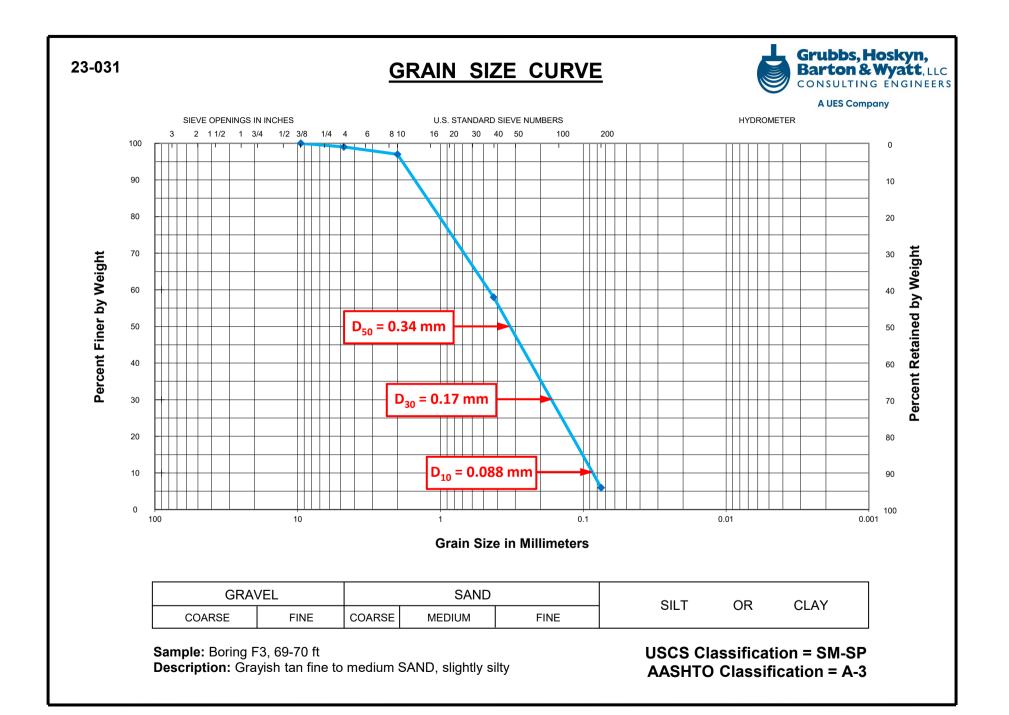


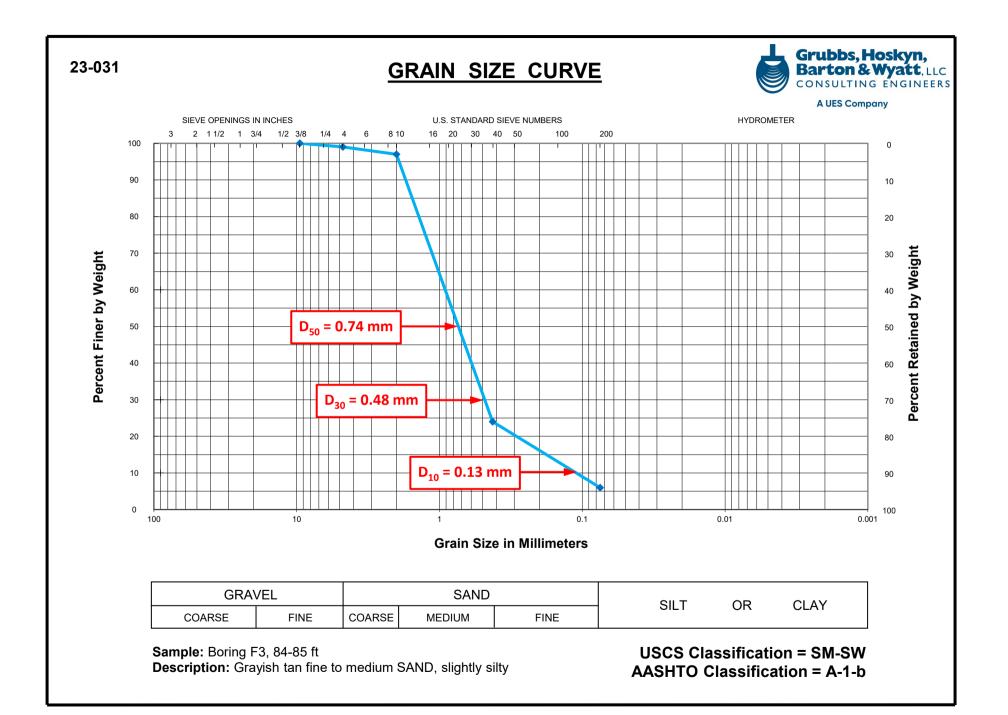


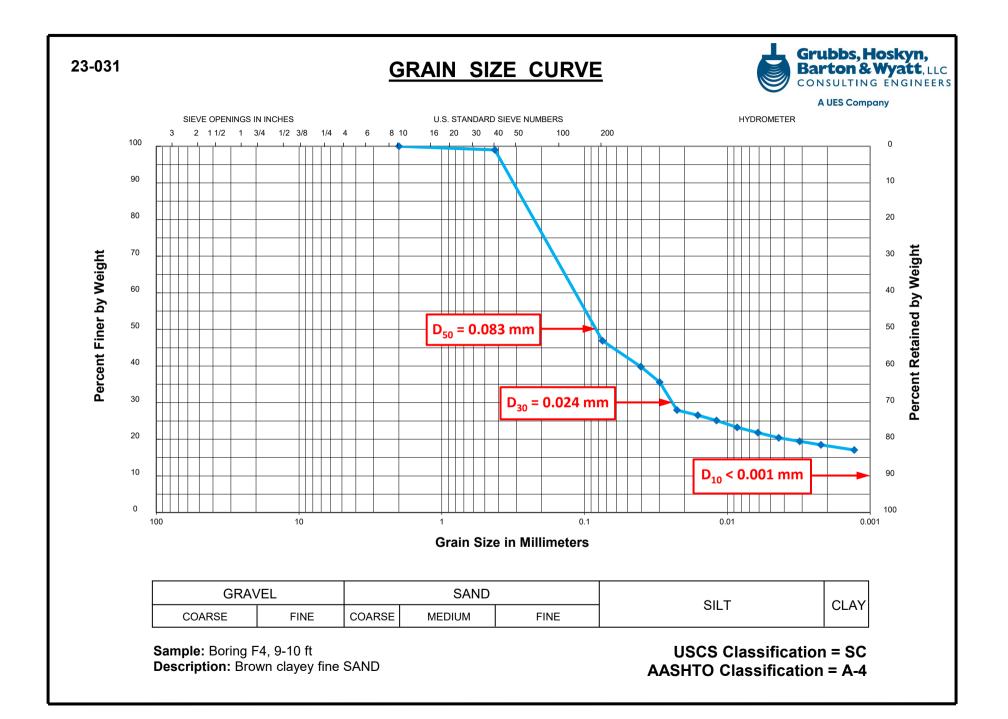


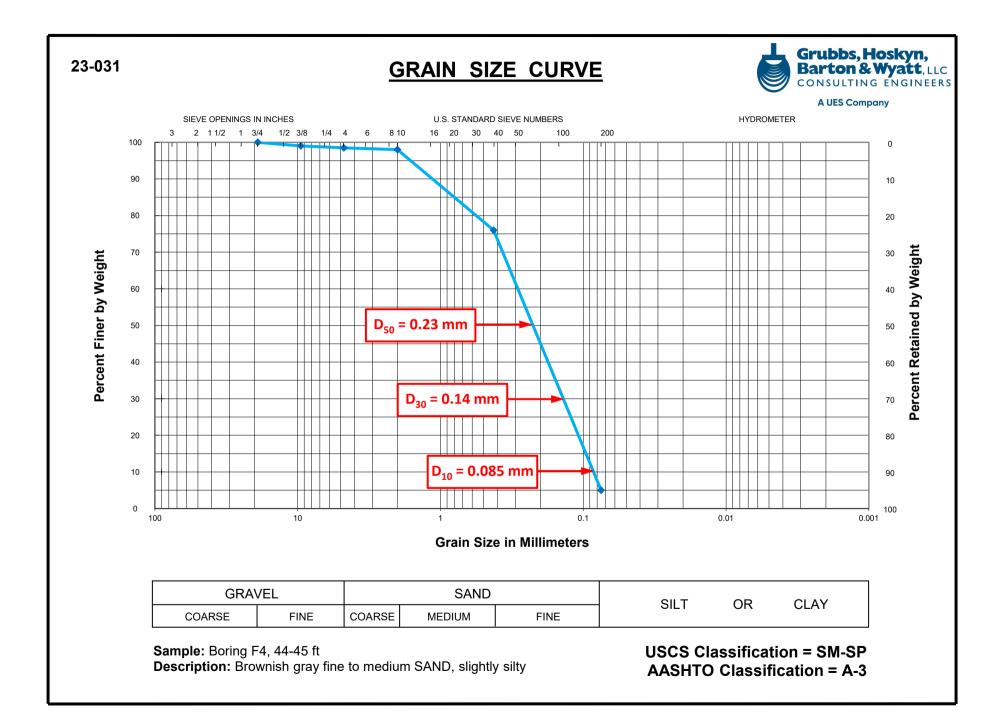


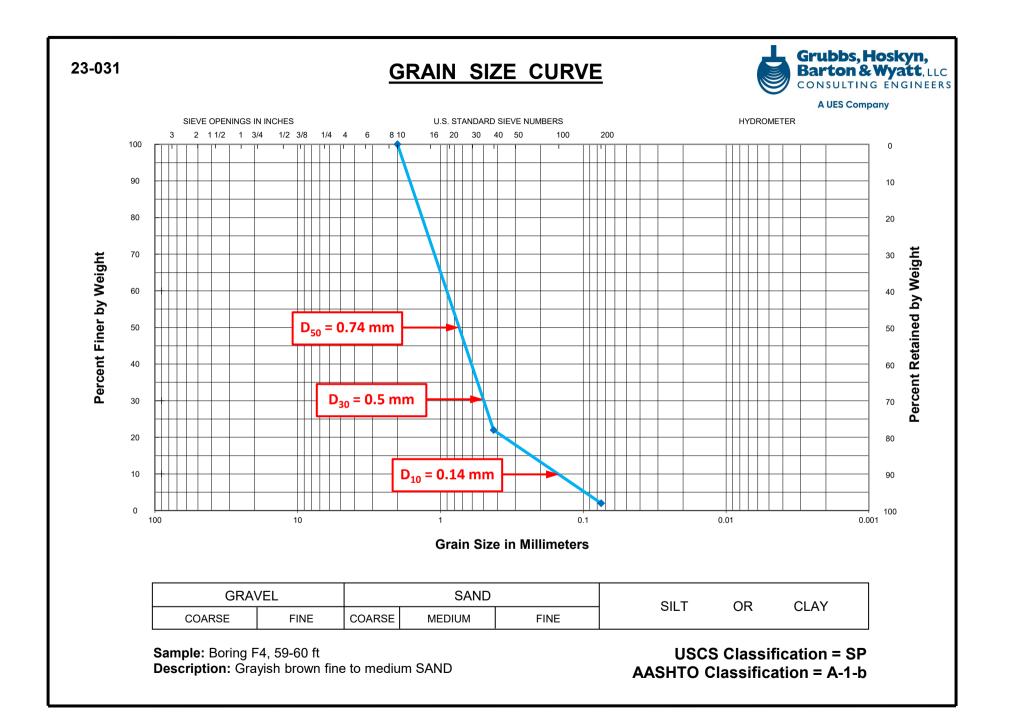


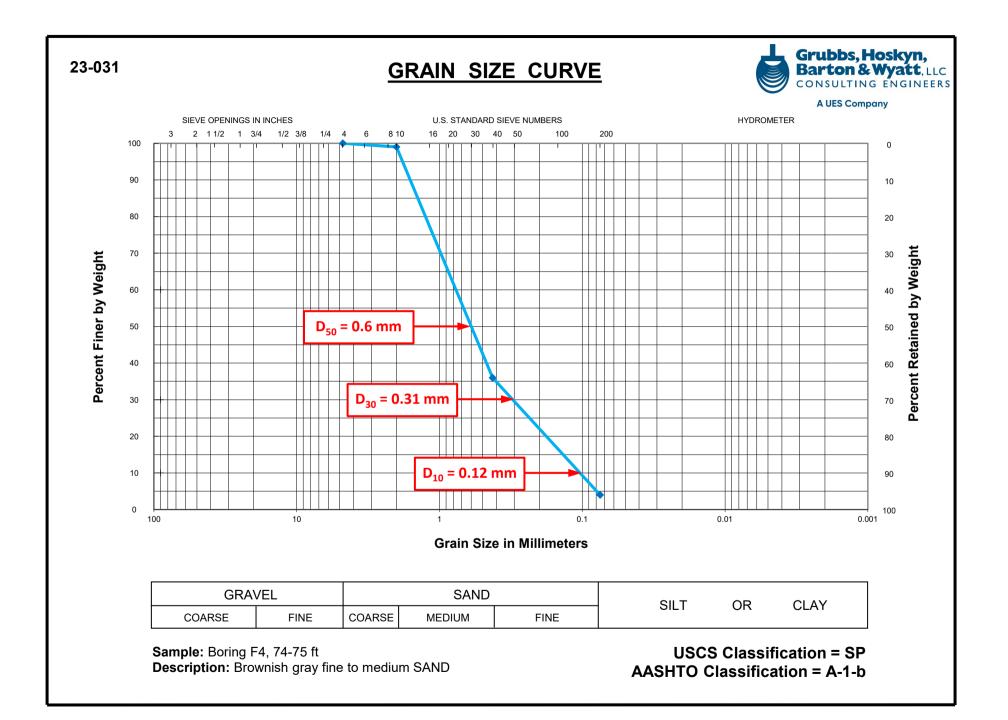


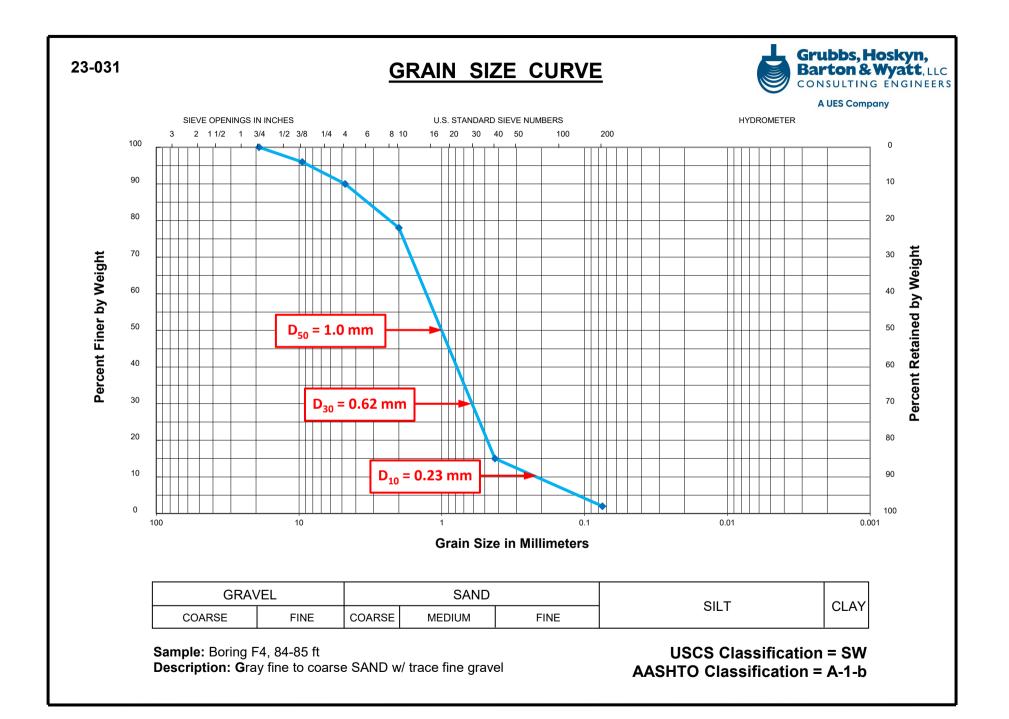


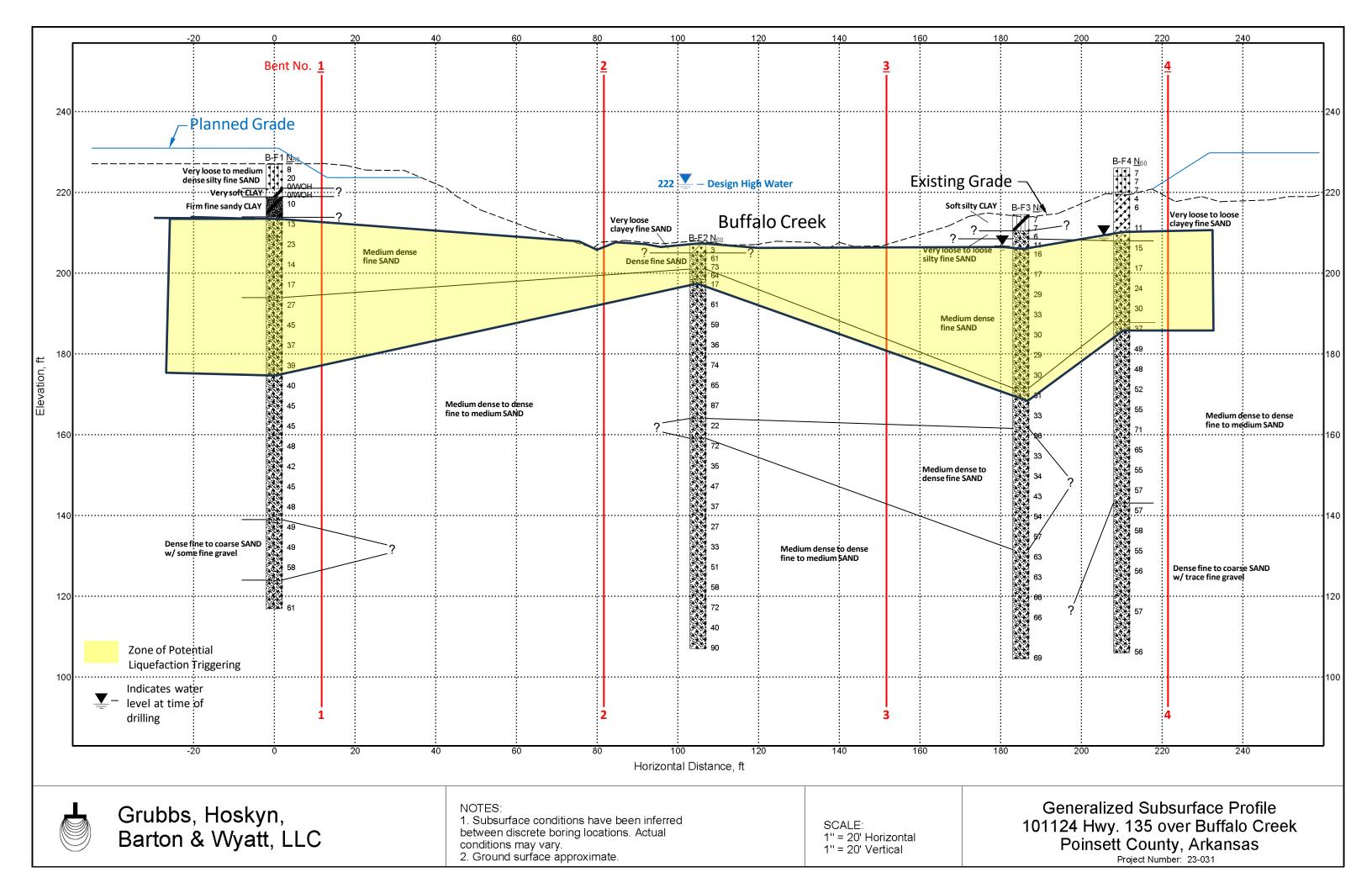


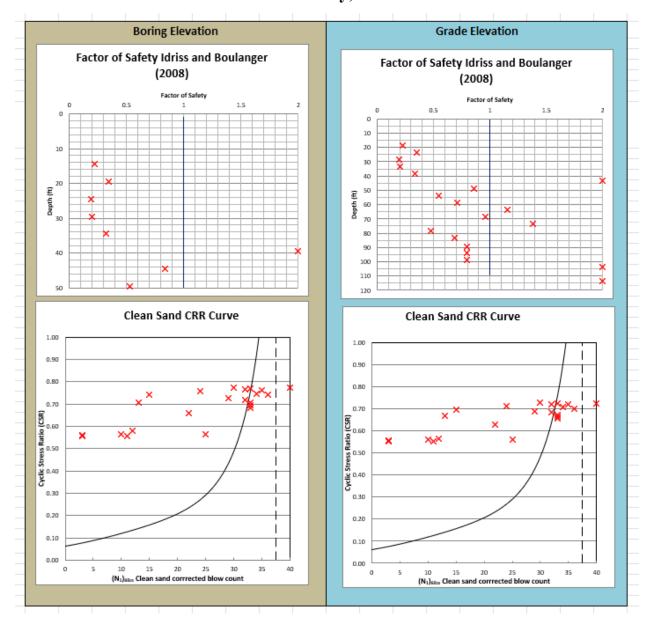




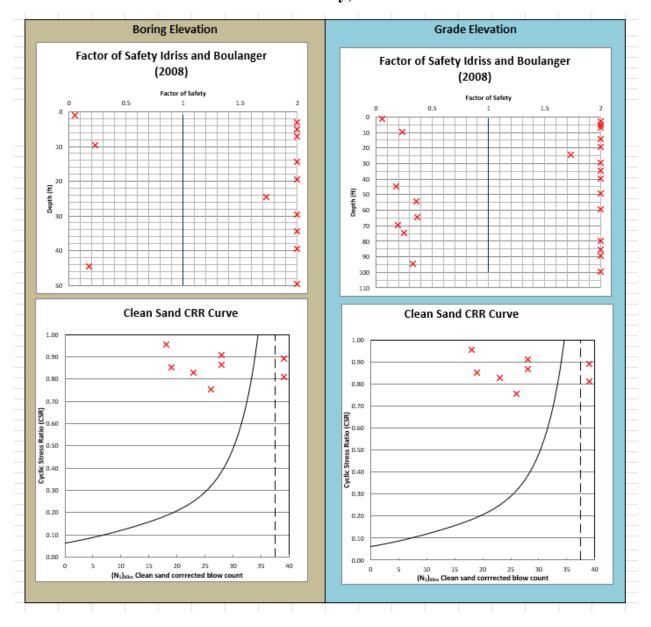


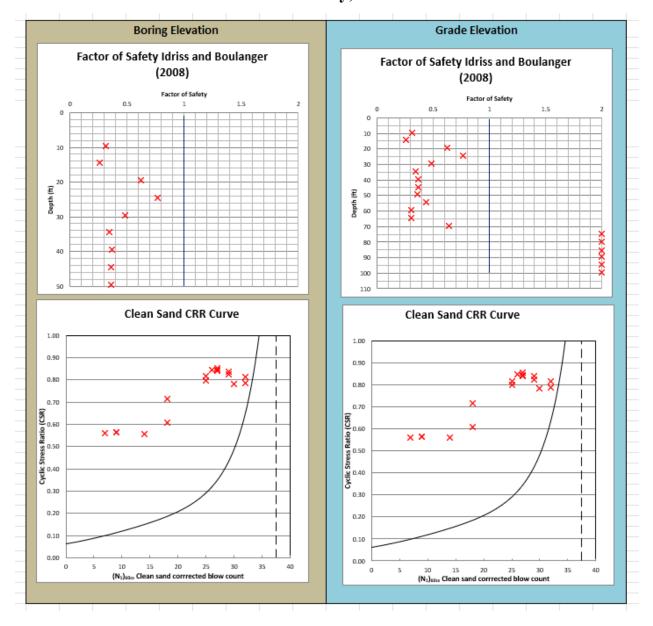




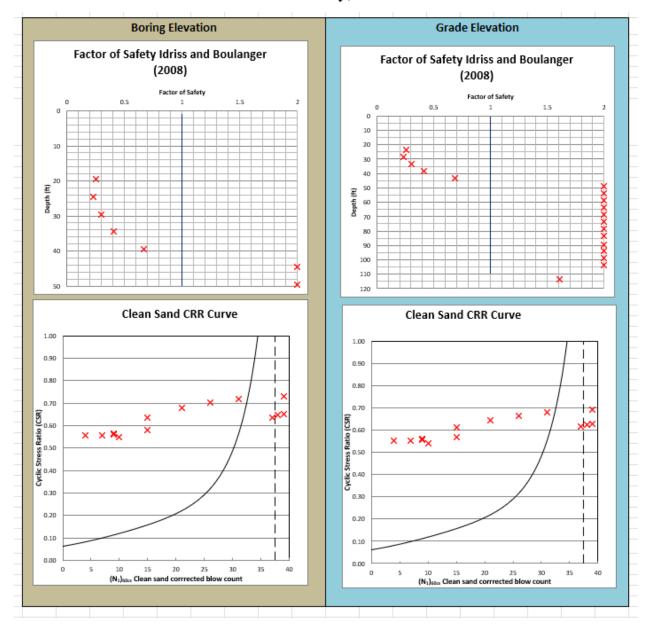


APPENDIX D

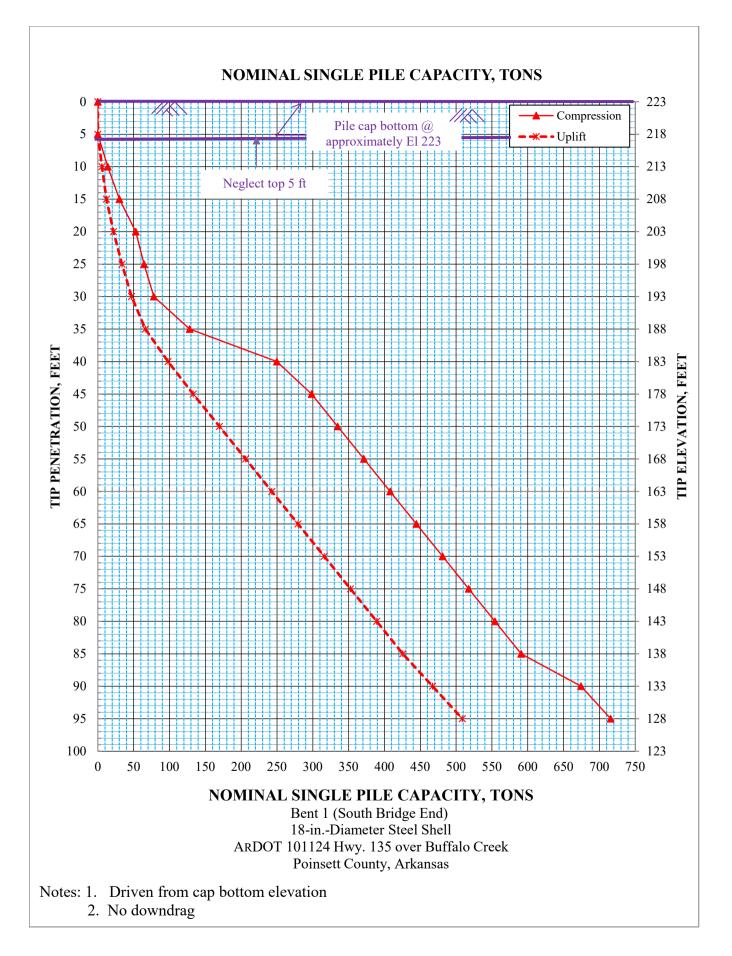

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Buffalo Creek Bent 1 / Boring F1 GHBW Job No. 23-031 Poinsett County, Arkansas

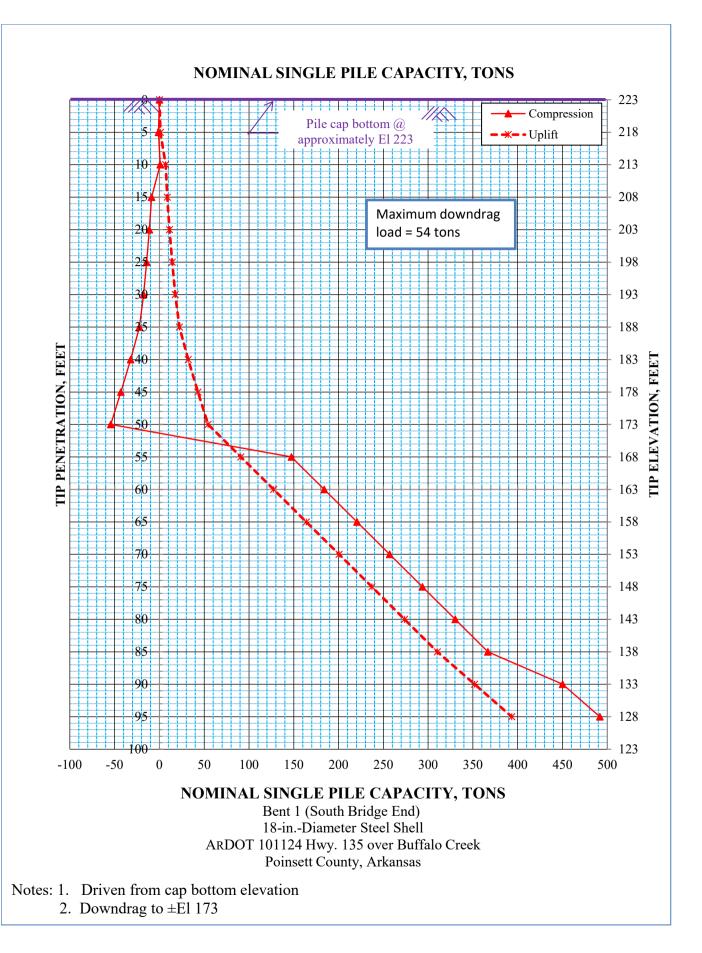

A UES Company

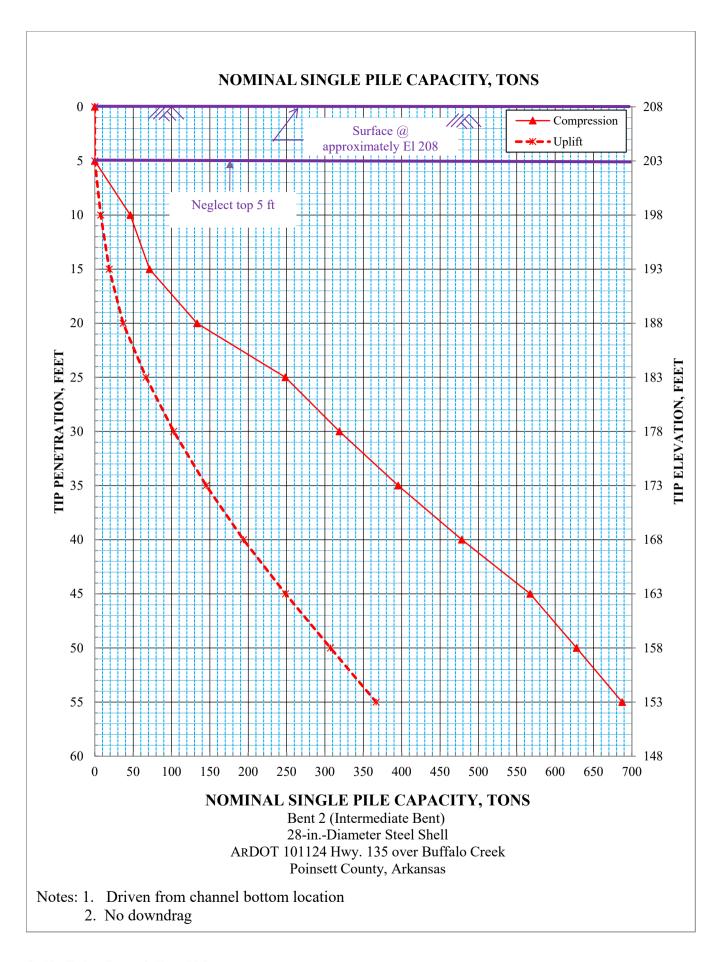
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Buffalo Creek Bent 2 / Boring F2 GHBW Job No. 23-031 Poinsett County, Arkansas

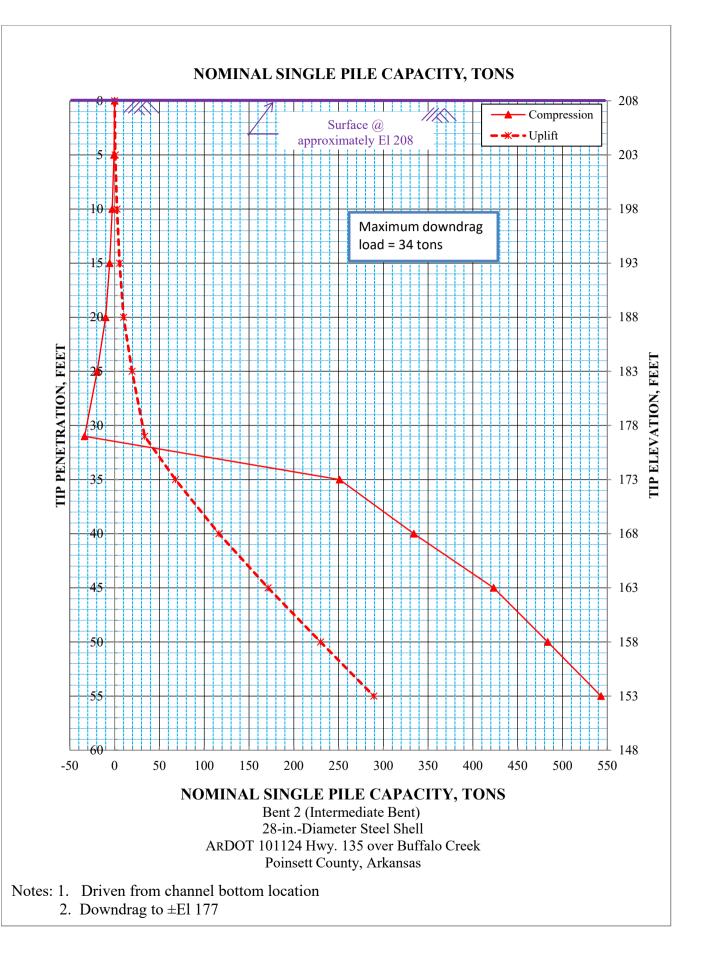

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Buffalo Creek Bent 3 / Boring F3 GHBW Job No. 23-031 Poinsett County, Arkansas

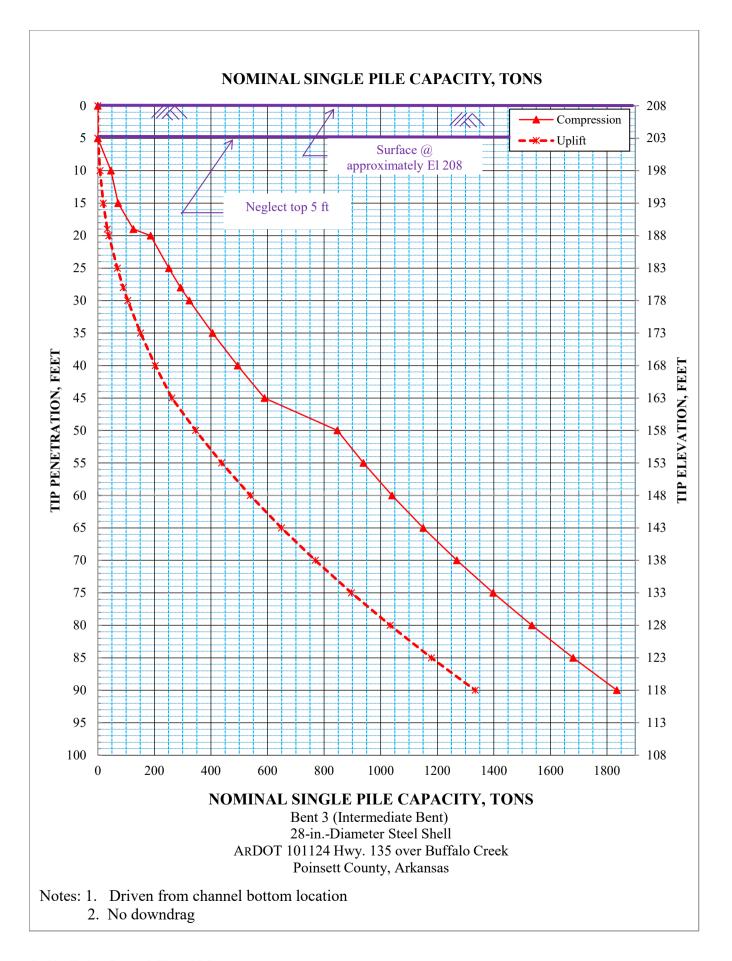
A UES Company

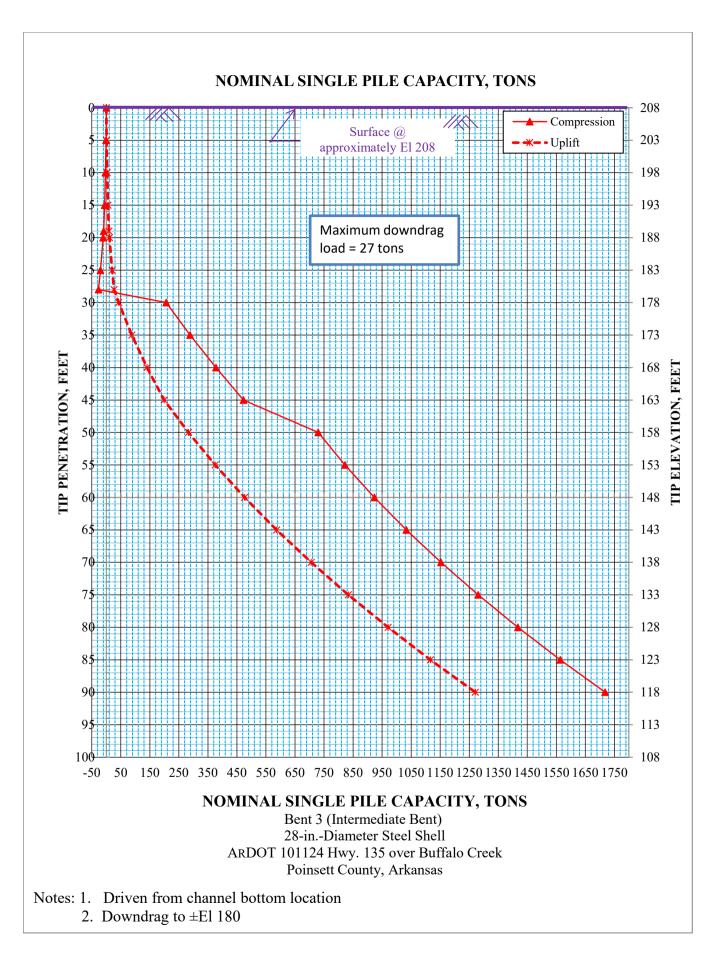

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Buffalo Creek Bent 4 / Boring F4 GHBW Job No. 23-031 Poinsett County, Arkansas

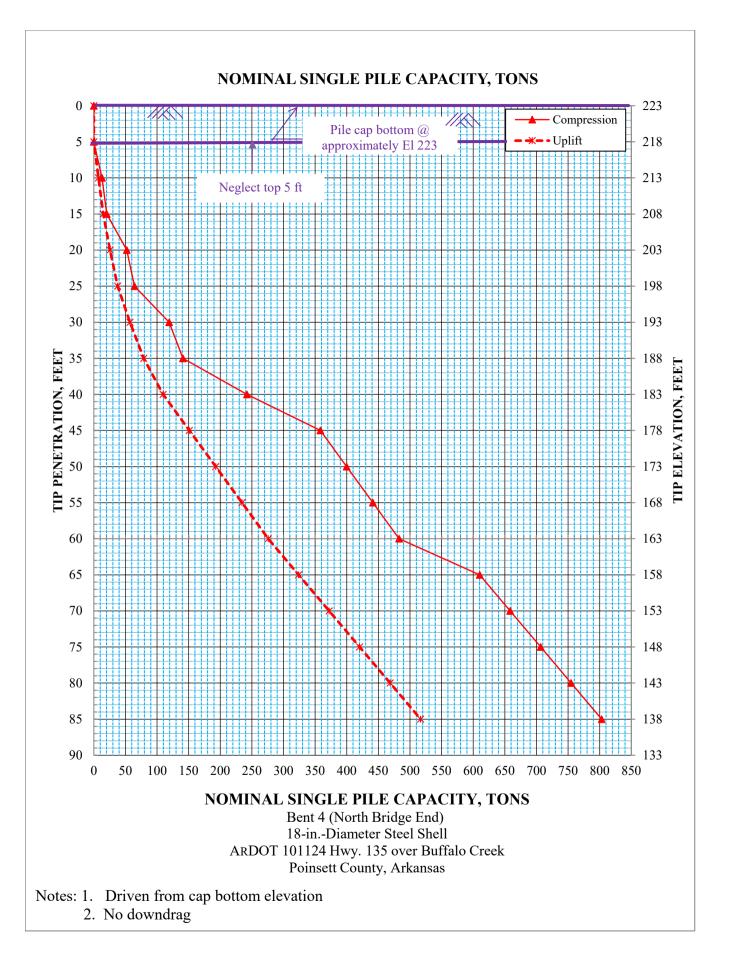


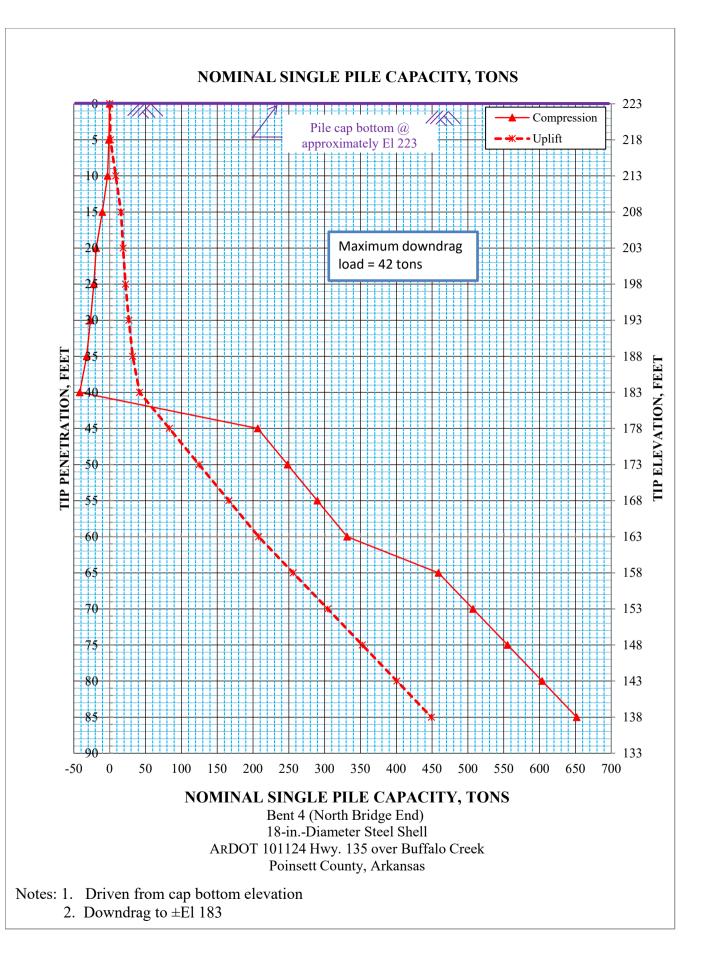



A UES Company


APPENDIX E







APPENDIX F

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©									
Generalized Stratigraphy	Soft to firm sandy CLAY	Loose to medium dense silty fine SAND	Medium dense silty fine SAND	Medium dense fine to medium SAND					
Depth below pile cap	0-10	10-15	15-30	30-35					

Stratigraphy	CLAY	SAND	fine SAND	to medium SAND	medium SAND	SAND
Depth below pile cap bottom, ft	0-10	10-15	15-30	30-35	35-85	85 and deeper
Approximate El, ft	223-213	213-208	108-193	193-188	188-138	below 138
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	53	56	58	63	63
Cohesion (c), lbs per sq ft	500	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	30	32	34	37	38
Subgrade modulus (k), lbs per cu in.	30	35	50	60	115	125
Strain at 50% (EE50)	0.02	NA	NA	NA	NA	NA

Note: Pile cap bottom at ±El 223

Seismic Loading with Liquefaction

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Soft to firm sandy CLAY	Loose to medium dense silty fine SAND (liquefiable)	Medium dense silty fine SAND (liquefiable)	Medium dense to dense fine to medium SAND (liquefiable)	Dense fine to medium SAND	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-10	10-15	15-30	30-50	50-85	85 and deeper
Approximate El, ft	223-213	213-208	108-193	193-173	173-138	below 138
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	53	56	58	63	63
Cohesion (c), lbs per sq ft	500	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	8	8	11	37	38
Subgrade modulus (k), lbs per cu in.	30	20	20	20	115	125
Strain at 50% (EE50)	0.02	NA	NA	NA	NA	NA

Note: Pile cap bottom at ±El 223

Dense to very dense

fine to medium

Dense fine to

medium SAND

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE© Generalized Medium dense silty Dense fine to Dense fine to medium SAND fine SAND medium SAND Stratigraphy Depth below pile cap 0-20 20-55 55 and deeper bottom, ft Approximate El, ft 208-188 188-153 below 153 Recommend soil type Sand (Reese) Sand (Reese) Sand (Reese) Effective unit weight (y), 56 63 68 lbs per cu ft Cohesion (c), lbs per sq ft 0 0 0 Angle of internal friction 32 36 38 (φ), ° Subgrade modulus (k), lbs 50 105 125 per cu in. Strain at 50% (EE50) NA NA NA

Note: Ground surface at ±El 208

Seismic Loading with Liquefaction

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Medium dense silty fine SAND (liquefiable)	Dense fine to medium SAND (liquefiable)	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-20	20-31	31-55	55 and deeper
Approximate El, ft	208-188	188-177	177-153	below 153
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	56	63	63	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	8	11	36	38
Subgrade modulus (k), lbs per cu in.	20	20	105	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 208

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Medium dense silty fine SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-19	19-28	28 and deeper
Approximate El, ft	208-189	189-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	56	63	68
Cohesion (c), lbs per sq ft	0	0	0
Angle of internal friction $(\phi), \circ$	33	36	38
Subgrade modulus (k), lbs per cu in.	55	105	125
Strain at 50% (EE50)	NA	NA	NA

Note: Ground surface at ±El 208

Seismic Loading with Liquefaction

Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Medium dense silty fine SAND (liquefiable)	Dense fine to medium SAND (liquefiable)	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-19	19-28	28 and deeper
Approximate El, ft	208-189	189-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	56	63	68
Cohesion (c), lbs per sq ft	0	0	0
Angle of internal friction $(\phi), \circ$	8	11	38
Subgrade modulus (k), lbs per cu in.	20	20	125
Strain at 50% (EE50)	NA	NA	NA

Note: Ground surface at ±El 208

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

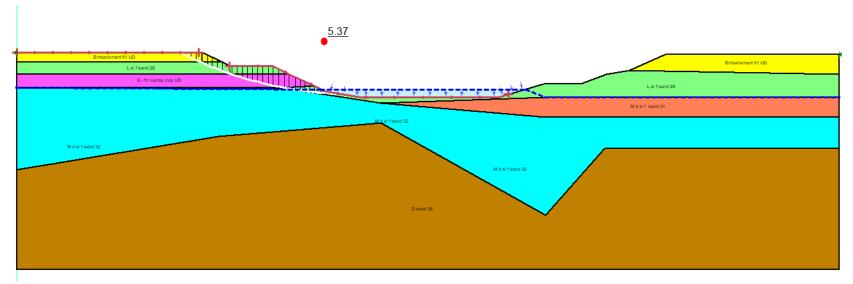
Generalized Stratigraphy	Soft to firm fine sandy CLAY	Medium dense silty fine SAND	Medium dense silty fine SAND	Dense fine to medium SAND	Dense to very dense fine to coarse SAND
Depth below pile cap bottom, ft	0-15	15-25	25-35	35-60	60 and deeper
Approximate El, ft	223-208	208-198	198-188	188-163	below 163
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	55	58	65	68
Cohesion (c), lbs per sq ft	700	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	31	34	38	40
Subgrade modulus (k), lbs per cu in.	100	40	60	125	130
Strain at 50% (EE50)	0.01	NA	NA	NA	NA

Note: Pile cap bottom at ±El 223

Seismic Loading with Liquefaction

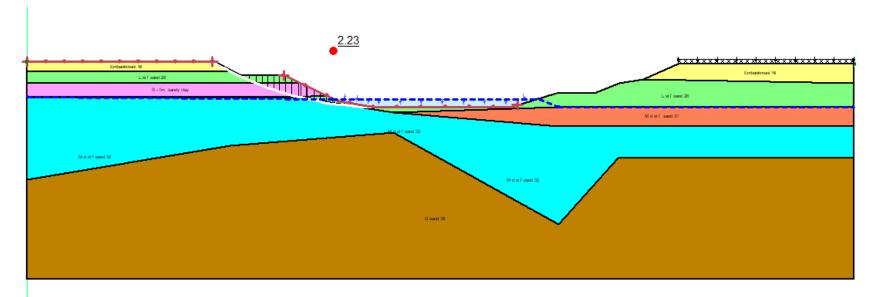
Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

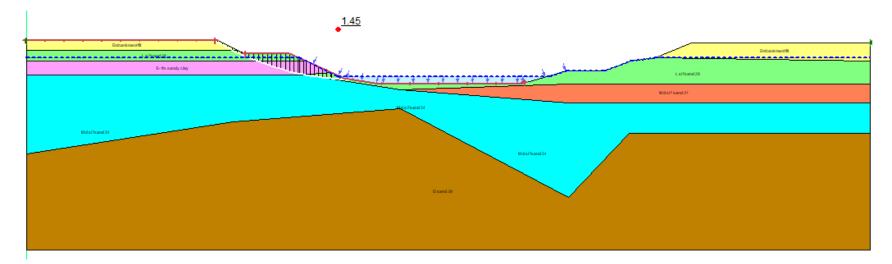
Generalized Stratigraphy	Soft to firm fine sandy CLAY	Medium dense silty fine SAND (liquefiable)	Medium dense to dense silty fine SAND (liquefiable)	Dense fine to medium SAND	Dense to very dense fine to coarse SAND
Depth below pile cap bottom, ft	0-15	15-25	25-40	40-60	60 and deeper
Approximate El, ft	223-208	208-198	198-183	183-163	below 163
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	115	55	58	65	68
Cohesion (c), lbs per sq ft	700	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	8	11	38	40
Subgrade modulus (k), lbs per cu in.	100	20	20	125	130
Strain at 50% (EE50)	0.01	NA	NA	NA	NA

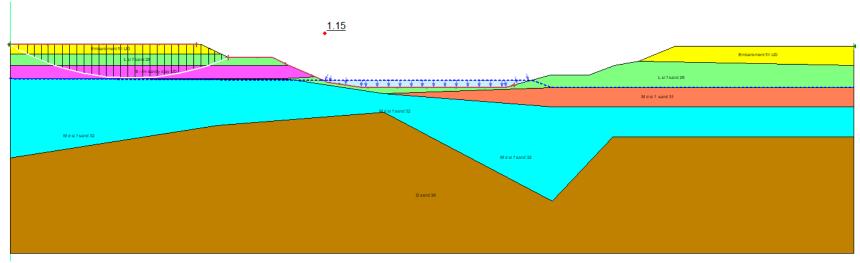

Note: Pile cap bottom at ±El 223

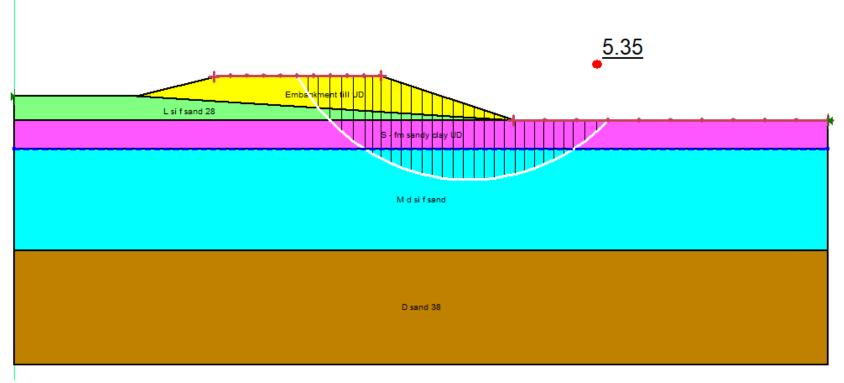
APPENDIX G

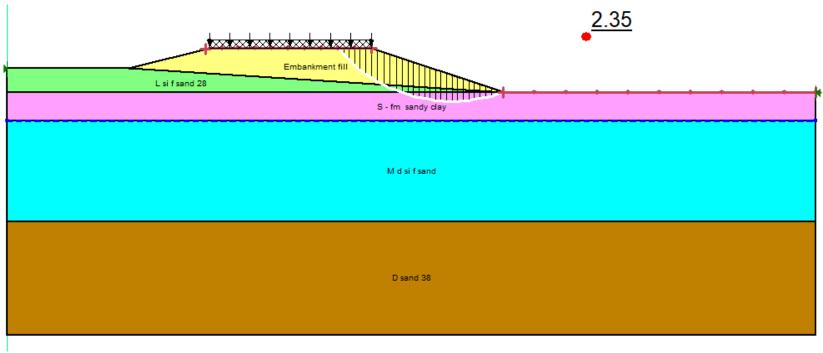
Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Buffalo Creek GHBW Job No. 23-031 Poinsett County, Arkansas

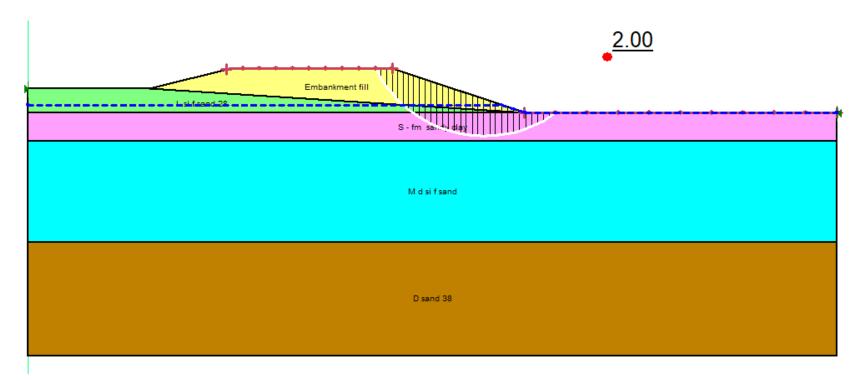

	Design Loading Condition	Calculated Minimum Factor of Safety
	End of Construction	5.37
South End Slope (Bent 1)	Long Term	2.23
(2H:1V)	Rapid Drawdown from El 222 to El 212	1.45
	Seismic ($k_h = A_S/2 = 0.5235$)	1.15
	End of Construction	5.35
South Side Slope (Bent 1)	Long Term	2.35
(3H:1V)	Rapid Drawdown from El 222 to El 212	2.00
	Seismic ($k_h = A_S/2 = 0.5235$)	1.07
	End of Construction	3.27
	Long Term	2.00
North End Slope (Bent 4) (2H:1V)	Rapid Drawdown from El 222 to El 212	1.26
	Seismic ($k_h = A_S/2 = 0.5235$)	0.79
	Lateral Spread	1.12
	End of Construction	5.25
North Side Slope (Bent 4)	Long Term	2.51
(4H:1V)	Rapid Drawdown from El 222 to El 212	1.86
	Seismic ($k_h = A_s/2 = 0.5235$)	1.26

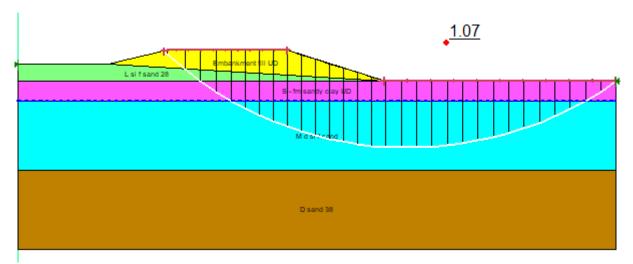

Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

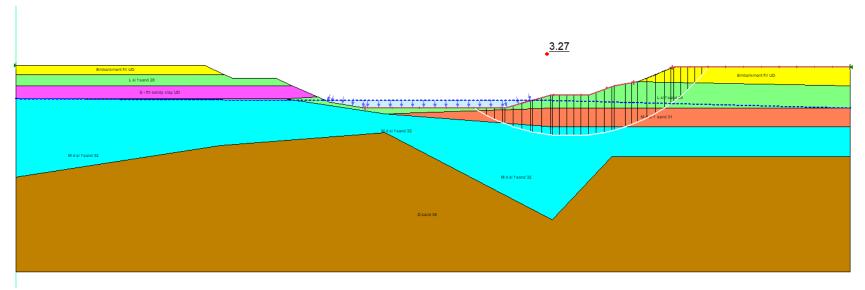

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

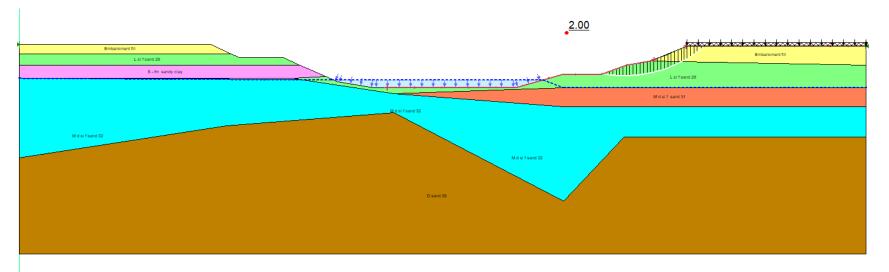

Results of Stability Analyses – Rapid Drawdown Condition from El 222 to El 212 Bent 1 End Slope 2H:1V Slope, H=23 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

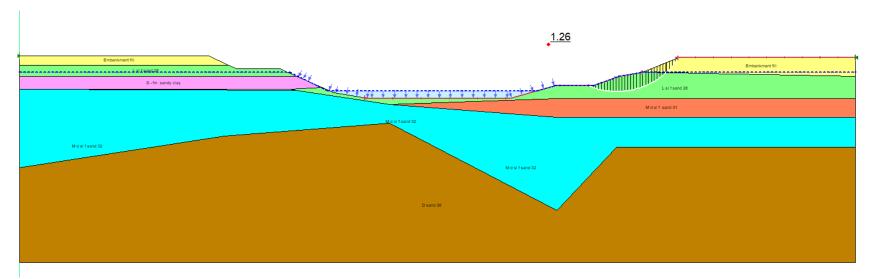

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 1 End Slope} \\ \mbox{2H:1V Slope, H=23 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Buffalo Creek} \end{array}$

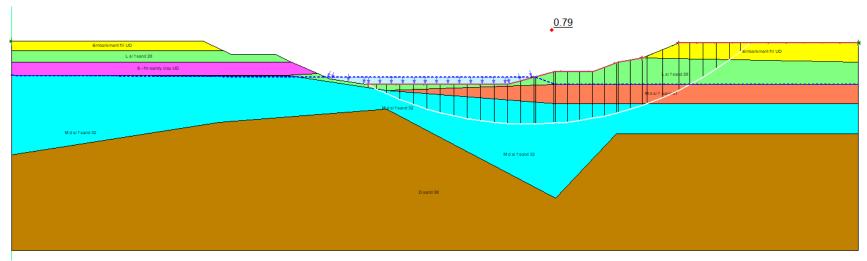

Results of Stability Analyses – End of Construction Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

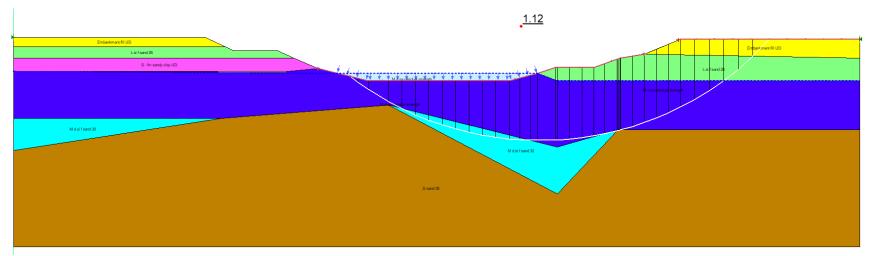

Results of Stability Analyses – Long Term Condition Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

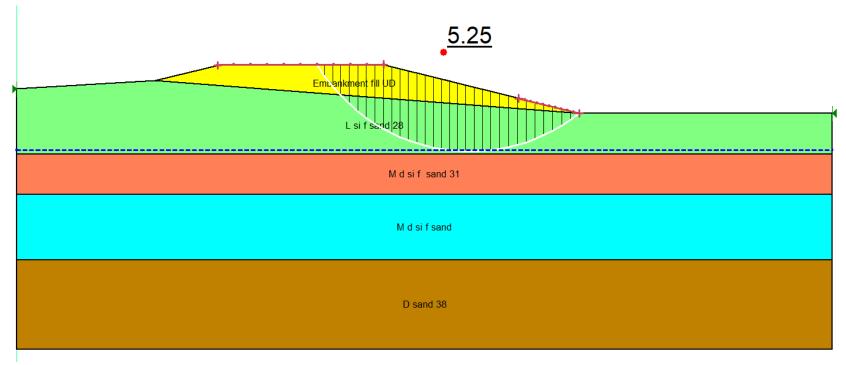

Results of Stability Analyses – Rapid Drawdown Condition from El 222 to Existing Grade Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

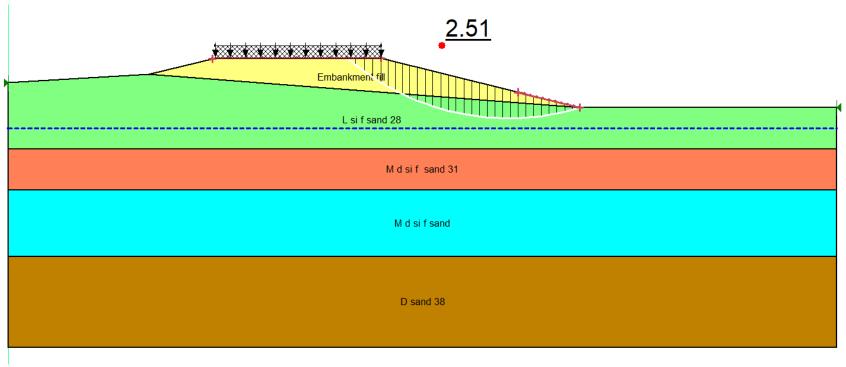

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 1 Side Slope} \\ \mbox{3H:1V Slope, H=11 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Buffalo Creek} \end{array}$

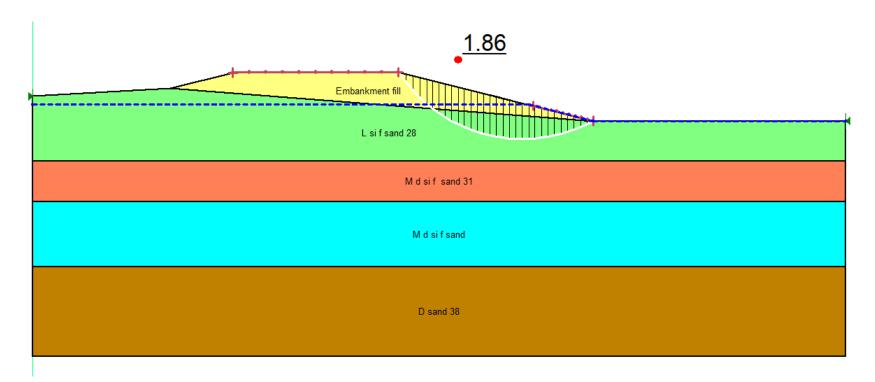

Results of Stability Analyses – End of Construction Bent 4 End Slope 2H:1V Slope, H=22 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

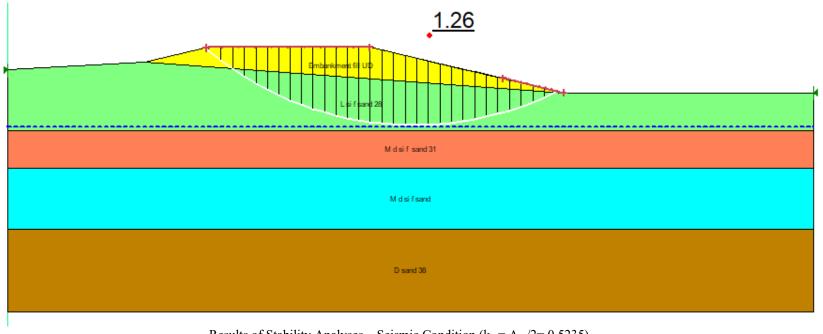

Results of Stability Analyses – Long Term Condition Bent 4 End Slope 2H:1V Slope, H=22 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek


Results of Stability Analyses – Rapid Drawdown Condition, El 222 to El 212 Bent 4 End Slope 2H:1V Slope, H=22 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek


 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 4 End Slope} \\ \mbox{2H:1V Slope, H=22 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Buffalo Creek} \end{array}$


Results of Stability Analyses – Lateral Flow Bent 4 End Slope 2H:1V Slope, H=22 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek


Results of Stability Analyses – End of Construction Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek


Results of Stability Analyses – Long Term Condition Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

Results of Stability Analyses – Rapid Drawdown Condition from El 222 to Existing Grade Bent 4 Side Slope 3H:1V Slope, H=12 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Buffalo Creek

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 4 Side Slope} \\ \mbox{3H:1V Slope, H=12 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Buffalo Creek} \end{array}$

APPENDIX H

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX I

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \le 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

Payment will be made under:

Pay Item

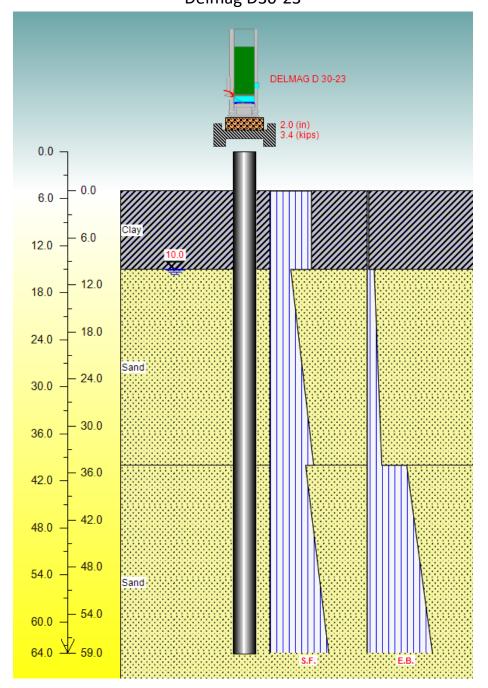
Pay Unit

Compacted Embankment

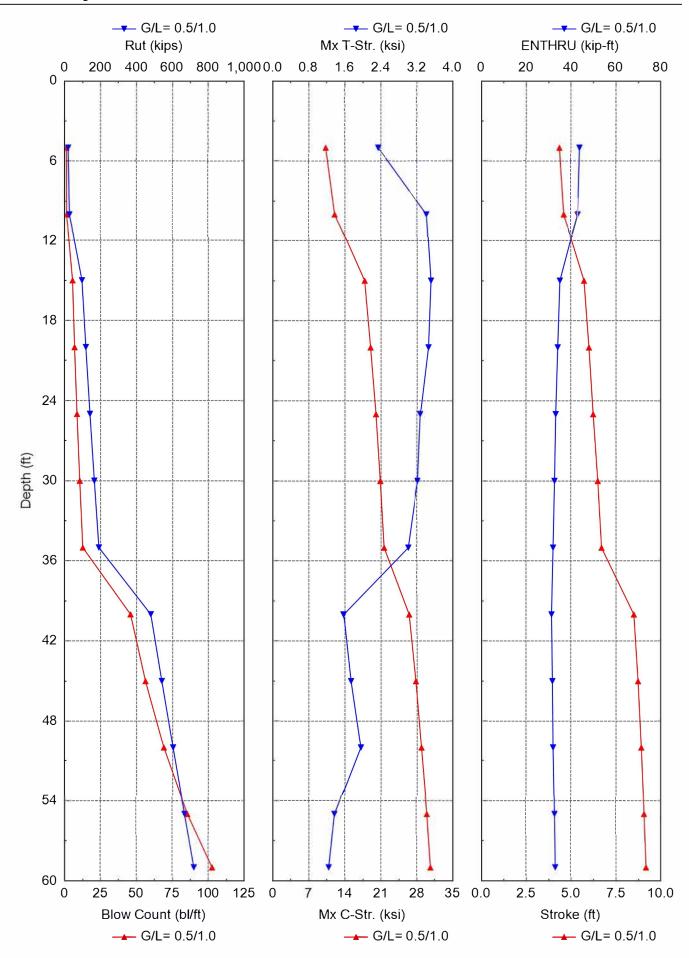
Cubic Yard

APPENDIX J

WEAP ANALYSES - STEEL SHELL PILES

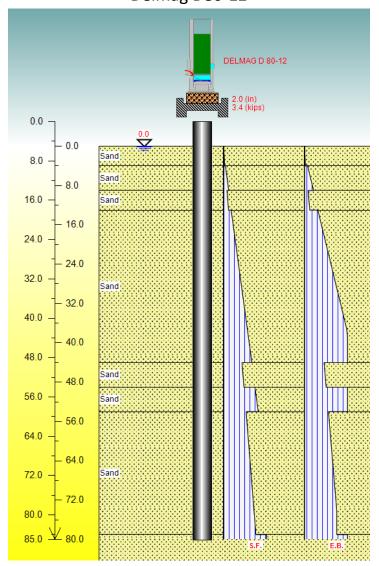

Project: 101124 - Hwy 135 Poinsett County, Arkansas GHBW Project No: 23-031

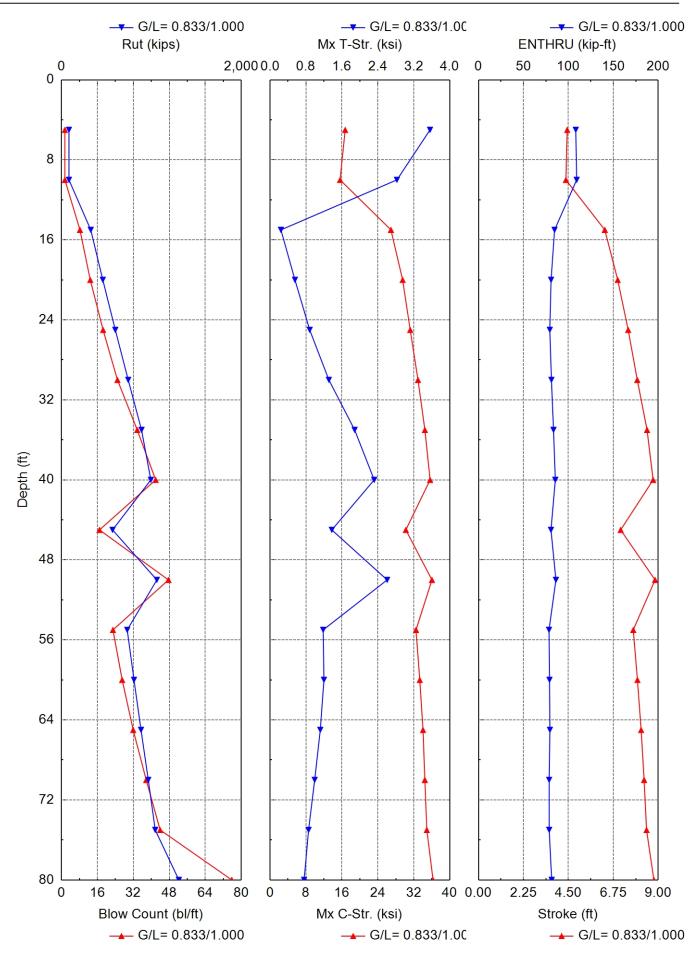
Bridge	Bent	Pile Diameter (in)	Wall Thickness (in)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El.	Min Tip El.	Pile Length (ft)	Min Hammer Energy (ft- kip) 74	Max Comp Stress, ksi	Notes
	1	18	0.75	356	223	164	59	74	30.6	
6 - Buffalo Creek	2	28	0.75	611	208	128	80	186	36.3	Tip at El 128
0 - Dunalo Creek	3	28	0.75	611	208	143	65	186	37.3	Tip at El 143
	4	18	0.75	356	223	173	50	74	34.8	



A UES Company

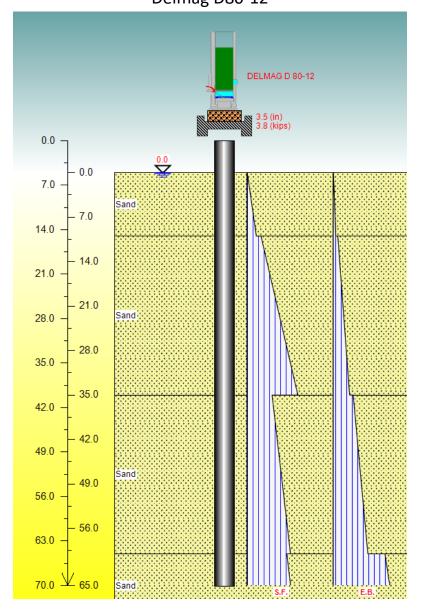
ArDOT 101124 Hwy 135 over Buffalo Creek Bent 1 18-in-diameter Steel Shell Pile Delmag D30-23

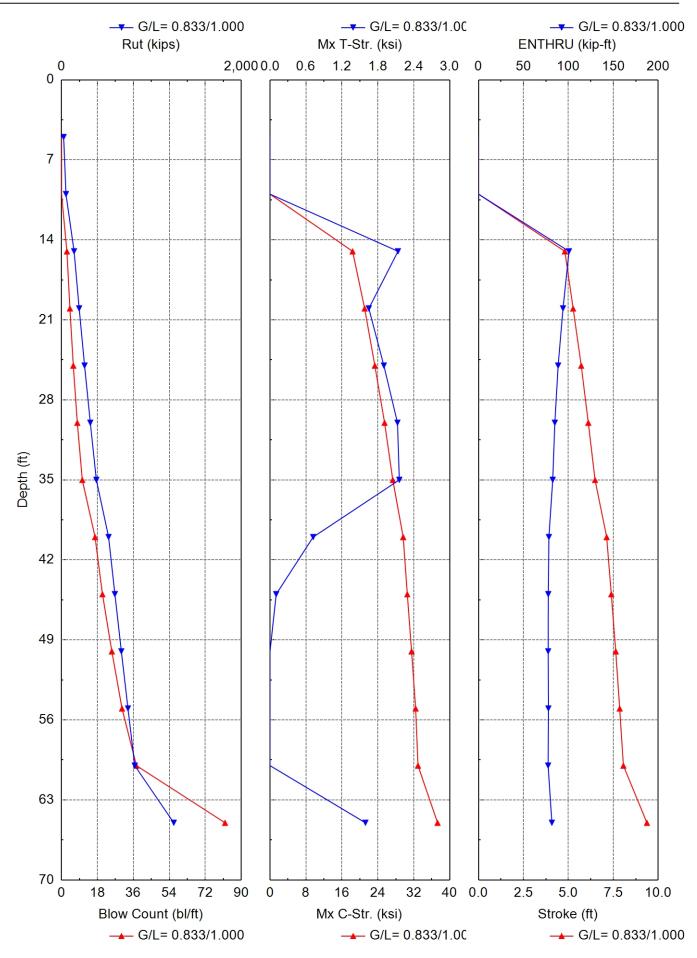



		Gain/	Loss Fa	ctor at Sł	naft/Toe =	0.500/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	18.7	6.8	11.9	1.1	10.302	2.338	4.34	43.7	D 30-23
10.0	25.8	13.8	11.9	1.3	12.040	3.411	4.58	42.9	D 30-23
15.0	96.4	20.2	76.1	5.5	17.787	3.507	5.72	35.1	D 30-23
20.0	118.0	27.9	90.1	6.9	18.935	3.452	6.00	34.1	D 30-23
25.0	140.9	36.9	104.0	8.6	19.988	3.273	6.23	33.2	D 30-23
30.0	165.0	47.1	117.9	10.5	20.827	3.212	6.49	32.7	D 30-23
35.0	190.5	58.6	131.9	12.6	21.567	3.003	6.70	32.0	D 30-23
40.0	479.1	69.2	409.9	45.8	26.443	1.569	8.49	31.3	D 30-23
45.0	540.5	81.1	459.3	56.2	27.755	1.730	8.73	31.7	D 30-23
50.0	603.1	94.4	508.7	69.0	28.839	1.949	8.91	32.0	D 30-23
55.0	667.2	109.0	558.2	85.4	29.930	1.371	9.06	32.5	D 30-23
59.0	719.4	121.7	597.7	102.6	30.630	1.245	9.17	32.9	D 30-23

Total driving time: 41 minutes; Total Number of Blows: 1674 (starting at penetration 5.0 ft)

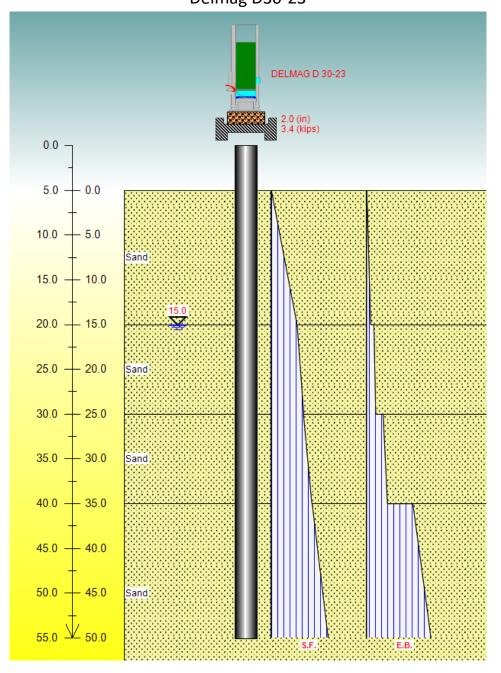
ArDOT 101124 Hwy 135 over Buffalo Creek Bent 2 28-in-diameter Steel Shell Pile Delmag D80-12

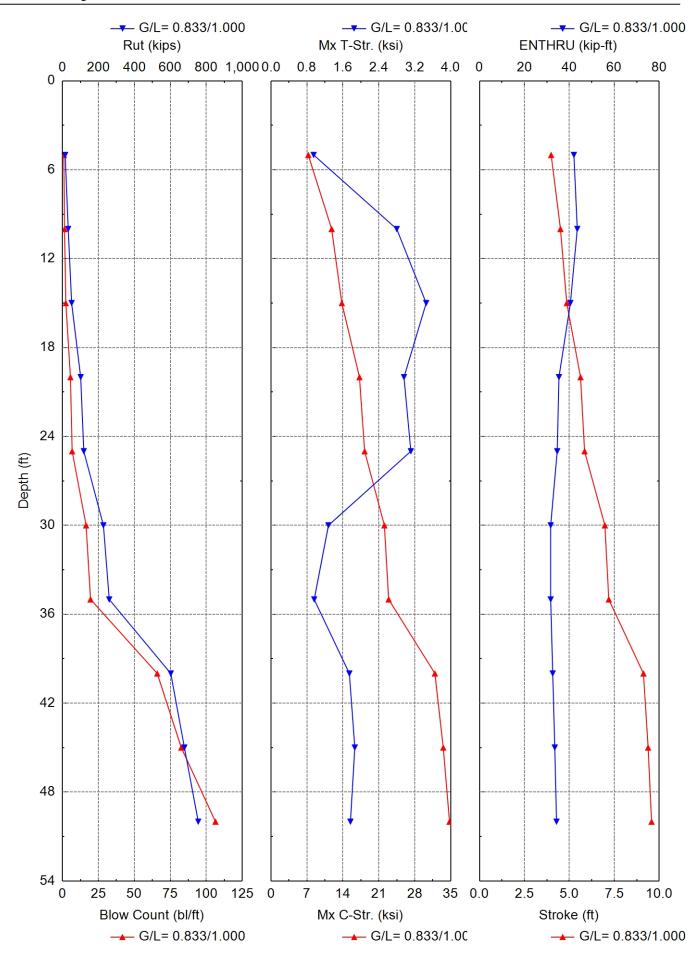



		Gain/	Loss Fa	ctor at Sł	naft/Toe =	0.833/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	82.8	1.0	81.8	1.5	16.735	3.562	4.44	108.2	D 80-12
10.0	82.9	6.2	76.7	1.5	15.592	2.825	4.38	109.2	D 80-12
15.0	325.4	14.4	311.0	8.2	26.918	0.243	6.33	84.7	D 80-12
20.0	459.5	29.2	430.3	12.8	29.517	0.555	6.97	80.8	D 80-12
25.0	598.4	48.9	549.5	18.5	31.205	0.883	7.50	79.4	D 80-12
30.0	742.2	73.3	668.8	24.9	32.936	1.310	7.95	81.1	D 80-12
35.0	890.7	102.6	788.1	33.7	34.472	1.884	8.44	83.5	D 80-12
40.0	993.9	136.6	857.4	41.9	35.637	2.319	8.75	85.5	D 80-12
45.0	567.9	172.5	395.4	16.9	30.229	1.376	7.12	80.7	D 80-12
50.0	1061.0	203.7	857.4	47.6	36.043	2.607	8.84	86.1	D 80-12
55.0	731.1	248.1	483.0	22.9	32.494	1.183	7.75	78.5	D 80-12
60.0	806.5	282.0	524.5	27.0	33.336	1.200	7.96	79.0	D 80-12
65.0	884.8	318.7	566.1	31.9	34.058	1.119	8.14	79.5	D 80-12
70.0	965.8	358.2	607.6	37.7	34.464	0.994	8.29	78.6	D 80-12
75.0	1042.7	400.5	642.1	43.9	34.903	0.859	8.42	78.7	D 80-12
80.0	1306.0	448.6	857.4	75.8	36.290	0.759	8.78	81.5	D 80-12

Total driving time: 49 minutes; Total Number of Blows: 2040 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Buffalo Creek Bent 3 28-in-diameter Steel Shell Pile Delmag D80-12




		Gain	Loss Fa	ctor at Sł	naft/Toe =	0.833/1.	000		
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-
5.0	23.6	1.1	22.5	0.3	0.000	0.000	10.57	0.0	D 80-12
10.0	49.5	4.4	45.1	0.0	0.000	0.000	0.00	0.0	D 80-12
1 <u>5.</u> 0	139.8	13.0	126.8	2.7	18.381	2.136	4.80	100.7	D 80-12
20.0	196.3	25.2	171.1	4.2	21.064	1.650	5.27	94.1	D 80-12
25.0	256.5	41.0	215.5	5.9	23.333	1.901	5.72	88.6	D 80-12
30.0	320.3	60.5	259.8	7.9	25.504	2.128	6.11	84.9	D 80-12
35.0	387.7	83.6	304.2	10.4	27.326	2.159	6.48	82.6	D 80-12
40.0	523.8	96.7	427.2	16.8	29.642	0.721	7.13	78.4	D 80-12
45.0	594.0	111.6	482.3	20.5	30.558	0.103	7.39	77.6	D 80-12
50.0	665.9	128.3	537.5	25.2	31.517	0.000	7.64	77.5	D 80-12
55.0	739.6	146.9	592.7	30.3	32.415	0.000	7.86	77.8	D 80-12
60.0	815.2	167.3	647.9	37.5	32.941	0.000	8.06	77.5	D 80-12
65.0	1249.3	187.6	1061.6	81.9	37.295	1.593	9.37	81.7	D 80-12

Total driving time: 24 minutes; Total Number of Blows: 1013 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Buffalo Creek Bent 4 18-in-diameter Steel Shell Pile Delmag D30-23

	Gain/Loss Factor at Shaft/Toe = 0.833/1.000												
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer				
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-				
5.0	14.7	1.1	13.6	0.9	7.257	0.949	3.99	42.0	D 30-23				
10.0	31.6	4.3	27.3	1.4	11.808	2.799	4.50	43.5	D 30-23				
15.0	50.6	9.8	40.9	2.3	13.798	3.454	4.86	40.5	D 30-23				
20.0	101.1	16.7	84.4	5.5	17.226	2.960	5.62	35.4	D 30-23				
25.0	118.4	24.5	94.0	6.7	18.232	3.112	5.85	34.6	D 30-23				
30.0	227.5	33.1	194.4	16.4	22.082	1.279	6.98	31.7	D 30-23				
35.0	259.9	42.8	217.1	19.5	22.915	0.961	7.19	31.7	D 30-23				
40.0	602.6	53.8	548.7	65.9	31.920	1.744	9.12	32.6	D 30-23				
45.0	678.2	66.2	612.0	82.6	33.548	1.865	9.38	33.5	D 30-23				
50.0	755.3	79.9	675.4	106.4	34.771	1.768	9.57	34.3	D 30-23				

Total driving time: 31 minutes; Total Number of Blows: 1269 (starting at penetration 5.0 ft)

Materials Testing Geotechnical Engineering Environmental Building Sciences & Safety Inspections & Code Compliance Virtual Design Consulting

September 15, 2023 Job No. 23-031

Arkansas Department of Transportation 10324 Interstate 30 Little Rock, Arkansas 72209

Attn: Ms. Jessica Jackson, P.E.

RESULTS of GEOTECHNICAL INVESTIGATION HWY. 135 OVER UNNAMED DITCH (SITE 7) ARDOT 101124 HWY. 135 STR. & APPRS. (S) CRAIGHEAD COUNTY, ARKANSAS

INTRODUCTION

This report provides the final results of the geotechnical investigation performed for the Hwy. 135 over Unnamed Ditch replacement bridge in Craighead County, Arkansas. This bridge is Site 7 of the ARDOT 110124 Hwy. 135 Strs & Apprs (S) project. The ARDOT Job 110124 geotechnical investigation was authorized by the Arkansas Department of Transportation Task Order No. G001 on March 31, 2023. Notice to proceed with the field studies was received on April 1, 2023. Preliminary results and design recommendations have been provided throughout the course of this study. An interim report for this project site was submitted on May 26, 2023. This revised report supersedes the previous submittal of September 10, 2023.

We understand the replacement bridge over Unnamed Ditch will be a prestressed concrete girder unit with four (4) bents, three (3) spans, and a total length of approximately 151 feet. We also understand that a foundation system consisting of steel shell piles is planned at the bridge ends and intermediate bents. Foundation loads of the new bridge are anticipated to be moderate. Simple slopes will be utilized at the bridge ends with end slopes at approximate 2-horizontal to 1-vertical (2H:1V) configurations and side slopes at 3-horizontal to 1-vertical (3H:1V) configurations. The replacement bridge will be constructed west of the existing bridge. Site grading will include about 14 ft of fill. A preliminary bridge layout is provided in Appendix A.

The purposes of this geotechnical study were to explore subsurface conditions in the alignment of the replacement bridge and the approach embankments. The data developed through the field and laboratory studies were utilized to develop recommendations to guide design and construction of foundations, embankments, and earthwork. These purposes have been accomplished by a multi-phased study that included the following.

- Drilling sample borings to evaluate subsurface conditions and to obtain samples for laboratory testing.
- Performing laboratory tests to establish pertinent engineering properties of the foundation and subgrade strata.
- Analyzing field and laboratory data to develop recommendations and conclusions for seismic site class, seismic design category/seismic performance zone, liquefaction potential, ground improvement, foundation design, embankment configurations, and construction considerations.

The relationship of these factors to design and construction of the replacement bridge has been considered in developing the recommendations and considerations discussed in the following report sections.

SUBSURFACE EXPLORATION

Subsurface conditions in the Site 7 replacement bridge alignment were explored by drilling four (4) sample borings to 110- to 120-ft depth (Borings G1 to G4). The boring locations were selected by the Designer (Crafton Tull) and adjusted as required for site access. The site vicinity is shown on Plate 1. The approximate boring locations are shown on the Plan of Borings, Plate 2.

The subsurface exploration program is summarized in the table below.

Boring No.	Approx Sta	Approx Offset, ft		ordinates grees)	Approx Surf El, ft	Completion Depth, ft
		11	Latitude	Longitude	п	
G1	427+90	10 ft Rt	35.700572	-90.341287	225.8	110
G2	428+25	25 ft Lt	35.700673	-90.341405	214.1	110
G3	428+75	CL	35.700815	-90.341327	213.0	120
G4	429+40	25 ft Lt	35.700985	-90.341399	223.2	120

 Table 1: Summary of Exploration Program

The boring logs, presenting descriptions of the soil strata encountered in the borings and the results of field and laboratory tests, are included as Plates 3 through 14. The centerline station and

offset of the boring locations and approximate ground surface elevation, surveyed, are also shown on the logs. A key to the terms and symbols used on the logs is presented as Plate 15.

To aid in visualizing subsurface conditions at the replacement bridge location, a generalized subsurface profile is presented in Appendix B. The stratigraphy illustrated by the profile has been inferred between discrete boring locations. In view of the natural variations in stratigraphy and conditions, variations from the stratigraphy illustrated by the profile should be anticipated.

The borings were drilled with a truck-mounted SIMCO 2800 rotary-drilling rig and a trackmounted Diedrich D-50 rotary-drilling rig. The bridge borings were advanced using a combination of dry-auger and rotary-wash drilling methods. Soil samples were typically obtained using a 2-in.diameter split-barrel sampler driven into the strata by blows of a 140-lb automatic hammer dropped 30 in. in accordance with Standard Penetration Test (SPT) procedures. The number of blows required to drive the standard split-barrel sampler the final 12 in. of an 18-in. total drive, or portion thereof, is defined as the Standard Penetration Number (N). SPT N₆₀-values are shown on the boring logs in the "Blows Per Ft" column. The drilling rig utilized for each particular boring and the appropriate energy conversion factor is shown on each boring log.

All samples were removed from sampling tools in the field, examined, and visually classified by a geotechnical engineer or a geologist. Samples were then placed in appropriate containers to prevent moisture loss and/or change in condition during transfer to our laboratory for further examination and testing.

The borings were advanced using dry-auger drilling procedures to the extent possible to facilitate groundwater observations. Observations regarding groundwater are noted in the lower portion of each log and are discussed in subsequent sections of this report. The boreholes were backfilled after obtaining final water level readings.

LABORATORY TESTING

Laboratory testing was performed to evaluate subgrade and foundation soil plasticity and to confirm visual classification. The testing program included natural water content determinations (AASHTO T 265), liquid and plastic (Atterberg) limit determinations (AASHTO T 89 and T 90), and sieve analyses (AASHTO T 88). Soil shear strength or relative density was estimated in the field using SPT results.

Laboratory test results are shown on the logs at the appropriate depth. A total of 11 natural water content determinations were performed to develop data on in-situ soil water content for each boring. The results of these tests are plotted on the logs as solid circles, in accordance with the scale and symbols shown in the legend located in the upper-right corner.

To verify field classification and to evaluate soil plasticity, 3 liquid and plastic (Atterberg) limit determinations and 31 sieve analyses were performed on selected representative samples. The Atterberg limits are plotted on the logs as small pluses inter-connected with a dashed line using the water content scale. The percent of soil passing the No. 200 Sieve is noted in the "Minus No. 200" column on the log forms.

A summary of classification test results and classification by the Unified Soil Classification System and AASHTO Classification System is presented in Appendix C. Grain-size distribution curves are also included in Appendix C.

GENERAL SITE AND SUBSURFACE CONDITIONS

Site Conditions

The location of 101124 Site 7 is on Hwy. 135 where the Unnamed Ditch channel crosses the highway alignment immediately north of CR 890 in Craighead County. The existing bridge is a two-lane structure with a concrete deck, steel girders, and a concrete pile foundation system. The channel at this location is narrow with well-defined banks. The banks are steep and lined with grass, variable sparse to thick underbrush, and occasional small trees. Drainage features are present in both the southern and northern bents of the proposed bridge. Riprap has been locally placed over the drainage channels, but erosion is apparently still on-going. The project locale is primarily agricultural land consisting of open flat fields. An abandoned barn is located northeast of the existing bridge. The existing two-lane roadway is on embankment and the existing pavements are in poor condition. Surface drainage along the roadway is poor to fair and standing water is common after rain events.

Site Geology

The project alignment is located in the Gulf Coastal Plain Physiographic Province. The geology of this area is typified by Recent Alluvium and variable Tertiary sediments. The <u>Geologic</u> <u>Map of Arkansas¹</u> indicates the alignment extends through exposures of Quaternary Terrace

¹ <u>Geologic Map of Arkansas;</u> US Geological Survey and Arkansas Geological Commission; 1993

GRUBBS, HOSKYN, BARTON & WYATT, LLC JOB NO. 23-031 - ARDOT 101124 - SITE 7 – UNNAMED DITCH

Deposits. The Terrace deposits are comprised of a complex sequence of unconsolidated gravel, sand, silt and clay. Individual Terrace deposits are often lenticular and discontinuous. The depth of bedrock (Paleozoic rocks) in this area is reported to exceed 2200 feet.

Seismic Conditions

In light of the results of the borings and the surface geology, a Seismic Site Class D (stiff soil profile) is considered applicable to the bridge location at Site 7 with respect to the criteria of the <u>AASHTO LRFD Bridge Design Specifications Seventh Edition 2014</u>². Given the location and AASHTO code-based values, preliminarily recommended seismic parameters are summarized below.

- Seismic Site Class D
- 1.0-sec period spectral acceleration coefficient $(S_1) = 0.539$
- Site amplification factor at 1.0 second $(F_v) = 1.5$
- 1.0-sec period spectral acceleration coefficient (S_{D1}) = 0.809
- Acceleration for a short (0.2 sec) period (Ss) = 1.876
- Site amplification factor for short period $(F_a) = 1.0$
- Peak ground acceleration (PGA) = 1.047
- Site amplification factor at PGA (F_{PGA}) = 1.0
- $A_s = 1.047$

Utilizing these parameters, AASHTO LRFD Seismic Bridge Design Specifications indicate that a <u>Seismic Performance Zone 4</u> and a Seismic Design Category (SDC) D are fitting for the Site 7 location of the Hwy. 135 bridge over Unnamed Ditch.

Liquefaction Analyses

Liquefaction analyses were performed to evaluate the liquefaction potential of the subsurface soils. The analyses were performed utilizing the results of the borings and the methodology and procedures proposed by Idriss and Boulanger³ in 2008. A design PGA value of 1.047 and an earthquake Moment Magnitude (M_w) of 7.7 were utilized in the liquefaction analyses.

The results of the liquefaction analyses are provided in Appendix D as plots of calculated factors of safety against liquefaction potential. The potentially liquefiable zones indicated by the analyses results are shown on the generalized subsurface profile also provided in Appendix D. Isolated zones of calculated liquefaction triggering in excess of about 50-ft depth which are separated from shallower zones of liquefaction triggering by relatively thick zones of non-

² <u>AASHTO LRFD Bridge Design Specifications</u>, 7th Edition; AASHTO; 2014.

³ "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute, MNO-12, Idriss and Boulanger, 2008.

triggering soils, are considered to pose a low risk of liquefaction. These deeper zones have not been considered liquefiable in development of the plot shown in Appendix D.

Subsurface Conditions

Based on the results of the borings, the surface soils to 2- to 4-ft are locally comprised of on-site fill consisting of very loose to medium dense tan, brown, and dark brown silty fine sand (SM) with occasional fine to coarse gravel. The results of the borings indicate that the fill compaction is poor to good, with variable compressibility and relative density. These soils typically classify as A-2 to A-4 by the AASHTO classification system (AASHTO M 145), which correlates with fair subgrade support for pavement structures.

Below the fill or at the ground surface to 6- to 22-ft is brown, gray, grayish brown, tan, and reddish tan loose to medium dense silty fine sand and fine sandy silt (SM, SP-SM, and ML) and soft to firm silty clay (CL). The silty fine sand contains silt seams and layers and occasional organic inclusions. The silty sand/sandy silt and silty clay exhibit low to moderate relative density or shear strength and moderate to high compressibility. These typically classify as A-2-4, A-3, A-4, and A-7-6 by the AASHTO classification system (AASHTO M 145), which correlates with poor to fair subgrade support for pavement structures. Relative density is generally medium below about 13 ft depth and compressibility decreases.

The basal unit encountered in the borings is medium dense to dense brown, gray, and brownish gray fine to medium sand strata (SP and SP-SM). Some coarse sand, organic inclusions, and fine gravel are present at depth. These granular units exhibit medium to high relative density and low compressibility. Relative density typically increases with depth.

Groundwater Conditions

Groundwater was encountered in the borings at 4- to 17-ft depth in May and June 2023. Groundwater levels will vary, depending upon seasonal precipitation, surface runoff and infiltration, and stream levels in the ditch and other surface water features.

ANALYSES and RECOMMENDATIONS

Foundation Design

Foundations for the Site 7 replacement bridge must satisfy two (2) basic and independent design criteria: a) foundations must have an acceptable factor of safety against bearing failure under maximum design loads, and b) foundation movement due to consolidation and liquefaction of the underlying strata should not exceed tolerable limits for the structure. Construction factors,

such as installation of foundations, excavation procedures and surface and groundwater conditions, must also be considered.

Based on the results of the borings and the anticipated moderate bridge foundation loads, we recommend a deep foundation system comprised of piling be utilized to support the foundation loads at the abutments and interior bents of the new bridge. Steel shell piles are considered suitable foundations for this site. Given the likelihood of liquefaction triggering in strong seismic events, there is the potential for significant downdrag on piles due to liquefaction settlement. Recommendations for piling are discussed in the following report sections.

Piling

We recommend the bridge foundation loads be supported on a deep foundation system comprised of steel shell piles. We understand that 16-in.-diameter steel shell piles are planned for bridge ends and 24-in.-diameter steel shell piles are planned for the interior bents. All steel shell piles will be filled with concrete after initial driving. Shear rings, shear studs, or other equivalents may be considered on the inside walls of the steel shells to enhance bonding between the concrete and the steel shells.

Nominal single pile capacity curves are provided in Appendix E. Nominal axial pile capacities have been developed using static pile capacity formulae, the results of the borings, and the plan pile cap bottom elevations shown on the preliminary bridge layout drawings.

Pile capacity was evaluated for "static" conditions prior to a seismic event, with no liquefaction, and full soil shear strength is mobilized for the foundation soils. For the case where liquefaction occurs, the "end of earthquake" condition was evaluated as the condition immediately after occurrence of the design earthquake. In this case, the foundation soils are liquefied and full excess pore water pressure is generated. Consequently, residual shear strength of full liquefaction is utilized for the liquefied foundation soils. Downdrag is assumed to be mobilized on the piles by the liquefied soils and soils above the liquefied zone as a result of liquefaction settlement.

Based on AASHTO LRFD geotechnical design procedures, an effective resistance factor (ϕ_{stat}) of 0.45 is recommended for evaluation of factored compression capacity. For evaluation of factored uplift capacities, a resistance factor (ϕ_{up}) of 0.25 is recommended. These resistance factors are based on Strength Limit States. For Extreme Events Limit States such as earthquake loading and collision, resistance factors of 1.0 for compression and 0.8 for uplift.

The recommended nominal axial capacities are based on single, isolated foundations. Piles spaced closer than three (3) pile diameters may develop lower individual capacity due to group effects.

The potential for group capacity reductions should be evaluated for pile spacing closer than three (3) diameters.

Battered piles can be utilized to resist lateral loads. The axial capacity of battered piles may be taken as equivalent to that of a vertical pile with the same tip elevation and embedment. Special driving equipment is typically required where pile batter exceeds about 1-horizontal to 4-vertical.

We understand that a detailed lateral load analysis will be performed by others. Recommended parameters for use in lateral load analyses are summarized in Appendix F. End Slope Stability

The replacement bridge will include new end slope configurations on the south (Bent 1) and north (Bent 4) ends. Plan bridge end embankment configurations are 2-horizontal to 1-vertical (2H:1V) with 3-horizontal to 1-vertical (3H:1V) side slope configurations. The bridge end embankments will have maximum heights of about 23 feet.

To evaluate suitability of the end slope plan configurations, slope stability analyses have been performed. A 250 lbs per sq ft uniform surcharge from vehicles was included for the purposes of stability analyses. Stability analyses were performed using the computer program SLOPE/W 2020^4 and a Morgenstern-Price analysis. For the embankment slopes, four (4) general loading conditions were evaluated, i.e., End of Construction, Long Term, Rapid Drawdown, and Seismic Conditions. For analysis of the seismic condition, a horizontal seismic acceleration coefficient (k_h) of one-half the peak acceleration (A_s) was used, a value of 0.5235. This A_s/2 value was developed as one-half of the peak ground acceleration (PGA) value from the site-specific seismic hazard analysis. For evaluation of the rapid drawdown condition, a water surface elevation drop from El 225 to El 212 was assumed.

Stability analyses results are summarized and presented graphically in Appendix G. As shown in the results, the analyses of the seismic stability of the plan 2H:1V end slopes indicates a calculated minimum factor of safety less than 1.05. However, a simplified Newmark block analysis indicates that the maximum permanent displacement is between 2.5 and 2.7 inches for the north and south embankments, respectively. We understand that a Newmark displacement of less than 6 inches is considered acceptable for bridges designated as "Other."

The results of slope stability analyses utilizing residual strengths in soil zones susceptible to liquefaction triggering indicate a calculated minimum factor of safety against sliding in excess

⁴ <u>Slope/W 2020;</u> GEO-SLOPE International; 2020.

of 1.0. Consequently, the potential for flow slide instability is considered low. Given the results of the stability analyses and Newmark block analysis, the stabilities of the slope configurations are considered acceptable. In addition, a suitable factor of safety against lateral flow was calculated for all cases.

Subgrade Support

It is understood that "standard" pavement sections will be utilized by the Department. Based on the results of the borings and laboratory tests, the on-site subgrade soils are expected to be comprised primarily of embankment fill. The on-site soils are anticipated to predominantly classify by AASHTO M 145 as A-3 and A-4. These classifications correlate with fair to poor subgrade support for pavements. Locally-available borrow, which is likely to be used as unclassified embankment fill, is expected to have similar classification.

Based on the results of the borings and correlation with the AASHTO classification, subgrade support of the native soils is expected to be poor to fair. The following parameters are recommended for use in pavement design for a subgrade of the on-site soils and similar borrow soils.

- Resilient Modulus (M_R): 2400 lbs per sq inch
- R value: 4

The approach road pavement subgrade should be evaluated by the Engineer or Department at the time of construction. Areas of unstable or otherwise unsuitable subgrade should be improved by undercut and replacement or treatment with additives as approved by the Engineer. Depending on seasonal site conditions and final grading plans, localized undercuts or improvement depths on the order of 2 to 3 ft below existing grades, more or less, could be warranted to develop a stable subgrade.

We recommend that any soils classifying as AASHTO A-7-5 or A-7-6 and soils and with a plasticity index (PI) in excess of 18 be excluded from use as subgrade within 18 in. of the plan subgrade elevation. The top 18 in. of subgrade soils should have a maximum plasticity index (PI) of 18.

Site Grading and Subgrade Preparation

Site grading and site preparation in the bridge alignment should include necessary clearing and grubbing of trees and underbrush and stripping the organic-containing surface soils in work areas. The depth of stripping will be variable, with deeper stripping depths in wooded areas, and less stripping required in open areas. In general, the stripping depth is estimated to be about 6 to 9 in. in cleared areas but may be 18 to 24 in. or more in areas with thick underbrush and/or trees. The zone of organic surface soils should be completely stripped in the embankment footprint areas and at least 5 ft beyond the projected embankment toe.

Where existing pavements are to be demolished, consideration may be given to utilizing the processed asphalt concrete and aggregate base for embankment fill. In this case, the demolished materials should be thoroughly blended and processed to a reasonably well-graded mixture with a maximum particle size of 2 in. as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. If abandoned pavements are within 3 ft of the plan subgrade elevation, the existing pavement surface should be scarified to a minimum depth of 6 inches. The scarified material should be recompacted to a stable condition. Any abandoned piling should be cut off at least 3 ft below final grade.

Following required pavement demolition, clearing and grubbing, and stripping, and prior to fill placement or otherwise continuing with subgrade preparation, the extent of weak and/or unsuitable soils should be determined. Thorough proof-rolling should be performed to verify subgrade stability. Proof-rolling should be performed with a loaded tandem-wheel dump truck or similar equipment. Unstable soils exhibiting a tendency to rut and/or pump should be undercut and replaced with suitable fill. Care should be taken that undercuts, stump holes, or other excavations or low areas resulting from subgrade preparation are properly backfilled with compacted fill.

Based on the results of the borings, localized undercutting could be required to develop subgrade stability. The zone of weak soils which could potentially be unstable subgrade typically extends to depths of 4 to 13 ft below existing grades. Consequently, the maximum undercut depth for subgrade improvement has been estimated to be about 3 ft based on the anticipated use of stone backfill (ARDOT Standard Specifications Section 207). Where embankment heights exceed 4 ft after light stripping, the stone backfill may be placed on the subgrade and grades raised above the stone. Where grades are raised over soft subgrade by placing stone backfill, we recommend that the stone backfill be placed on a heavy subgrade support geotextile. An example special provision for this geotextile is provided in Appendix H. Where embankment heights are less than about 4 ft, undercutting will be required to keep the stone backfill below the embankment face. The undercut depth should be sufficient to provide at least 1 ft of earthen embankment fill over the top of the stone backfill.

Stone backfill should not be utilized in areas where structural piles will be driven. Where there will be potential conflicts with driven piles, subgrade improvement should be achieved by use of sand fill over heavy subgrade support geotextile. Depending on sand properties, a lift thickness of 2 to 3 ft or more could be required to achieve a stable working platform for additional fill compaction. Where the heavy subgrade support geotextile is used, at least 2 ft of fill over the geotextile will be required to contain the geotextile during pile driving. Use of stabilization additives can be considered as an alternate to stone backfill to stabilize the subgrade in areas where piles will be driven.

In lieu of undercutting and replacing unsuitable or unstable soils, consideration may be given to using additives to improve soil workability and stabilize weak areas. Hydrated lime, quick lime, Portland cement, fly ash, or suitable alternate materials may be used as verified by appropriate testing and approved by the Engineer or Department. Additives can be effective where the depth of unstable soils is relatively shallow. Treatment will be less effective in areas where the zone of unstable soils is deep. The optimum application rate of stabilization additive must be determined by specific laboratory tests performed on the alignment subgrade soils. The specific stabilization method for each site should be approved by the Engineer.

In the event that the subgrade is stable at the time of construction and required undercut depths are less than about 3 ft, undercut backfill may consist of embankment fill as approved by the Engineer. Subgrade conditions should be field verified by the Engineer based on specific observations during subgrade preparation.

Subgrade preparation and mass undercuts should extend at least 5 ft beyond the embankment toes to the extent possible. Subgrade preparation in roadway areas should extend at least 3 ft outside pavement shoulder edges to the extent possible. Existing drainage features should be completely mucked out and all loose and/or organic soils removed prior to fill placement.

General fill and backfill may consist of unclassified borrow free of organics and other deleterious materials as per ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 210.06. Given the high seismic zone, we recommend that <u>new</u> embankment fill consist of cohesive borrow within about 100 ft of the bridge ends. An example special provision for cohesive embankment fill is provided in Appendix I.

Subgrade preparation should comply with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 212. Embankments should be constructed in accordance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 210. Fill and backfill should be placed in nominal 6- to 10-in.-thick loose lifts. All fill and backfill must be placed in horizontal lifts. Where fill is placed against existing slopes, short vertical cuts should be

"notched" in the existing slope face to facilitate bonding of horizontal fill lifts. The in-place density and water content should be determined for each fill lift and should be tested to verify compliance with the specified density and water content prior to placement of subsequent lifts.

CONSTRUCTION CONSIDERATIONS

Groundwater and Seepage Control

Positive surface drainage should be established at the start of the work, be maintained during construction and following completion of the work to prevent surface water ponding and subsequent saturation of subgrade soils. Density and water content of all earthwork should be maintained until embankments and bridge work are completed.

Subgrade soils that become saturated by ponding water or runoff should be excavated to undisturbed soil. The embankment subgrade should be evaluated by the Engineer during subgrade preparation.

Groundwater was encountered between 4- to 17-ft in May and June 2023. Shallow perched groundwater could be encountered in the near-surface soils. The volume of groundwater produced can be highly variable depending on the condition of the soil in the immediate vicinity of the excavation. In addition, seasonal surface seeps or springs could develop.

Seepage into excavations and cuts can typically be controlled by ditching or sump-andpump methods. If seepage into excavations becomes a problem, backfill should consist of select granular backfill (AASHTO M 43, No. 57 stone), stone backfill (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 207), or clean aggregate (ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsections 403.01 and 403.02 Class 3 mineral aggregate) up to an elevation above the inflow of seepage. In areas of seepage infiltration, the granular fill should be encapsulated with a filter fabric complying with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Subsection 625.02, Type 2 and vented to positive discharge. Where surface seeps or springs are encountered during site grading, we recommend the seepage be directed via French drains or blanket drains to positive discharge at daylight or to storm drainage lines.

Piling

Piles should be installed in compliance with ARDOT Standard Specifications for Highway Construction, 2014 Edition, Section 805. Pre-boring or pre-excavation for pile installation is not generally anticipated but could be warranted where obstructions, riprap, or debris are encountered.

Any abandoned piling from the prior bridge should be cut off at least 3 ft below final or the grade of pile cap bottoms.

To evaluate required hammer energy for driving equipment, driveability analyses were performed. For these analyses, wave equation analysis of piles (WEAP) and the computer program GRLWEAP 2014⁵. In the driveability analyses, the steel shell piles were assumed to be driven from the plan cap bottom elevation or existing grade. Graphical and tabulated results of these analyses are provided in Appendix J.

Based on the results of the driveability analyses, we recommend a hammer system capable of delivering at least 74 ft-kips per blow for driving the steel shell piles at the end bents and at interior Bent 2. For intermediate Bent 3, we recommend a hammer system capable of delivering at least 91 ft-kips per blow for driving the steel shell piles. A specific review and analysis of the pile-hammer system proposed by the Contractor should be performed by the Engineer or Department prior to hammer acceptance and start of pile installation.

The density of the granular foundation soils increases with depth. As a result, difficult driving could be experienced at depth. Use of a higher energy hammer could be warranted.

Safe bearing capacity of production piles should be determined by Standard Specifications for Highway Construction, 2014 Edition, Section 805.09, Method B. Driving records should be available for review by the Engineer during pile installation. Piles should be carefully examined prior to driving and piles with structural defects should be rejected. Any splices in steel shell piles should develop the full cross-sectional capacity of un-spliced piles.

Pile installation should be monitored by qualified personnel to maintain specific and complete driving records and to observe pile installation procedures. Blow counts on steel shell piles should be limited to about 20 blows per inch. We recommend that practical pile refusal be defined as a penetration of 0.5 in. or less for the final 10 blows.

CLOSURE

The Engineer or a designated representative thereof should monitor site preparation, grading work, ground improvements, and all foundation and embankment construction. Subsurface conditions significantly at variance with those encountered in the borings should be brought to the attention of the Geotechnical Engineer. The conclusions and recommendations of this report should then be reviewed in light of the new information.

⁵ <u>GRLWEAP 2014;</u> Pile Dynamics, Inc.

The following illustrations are attached and complete this submittal.

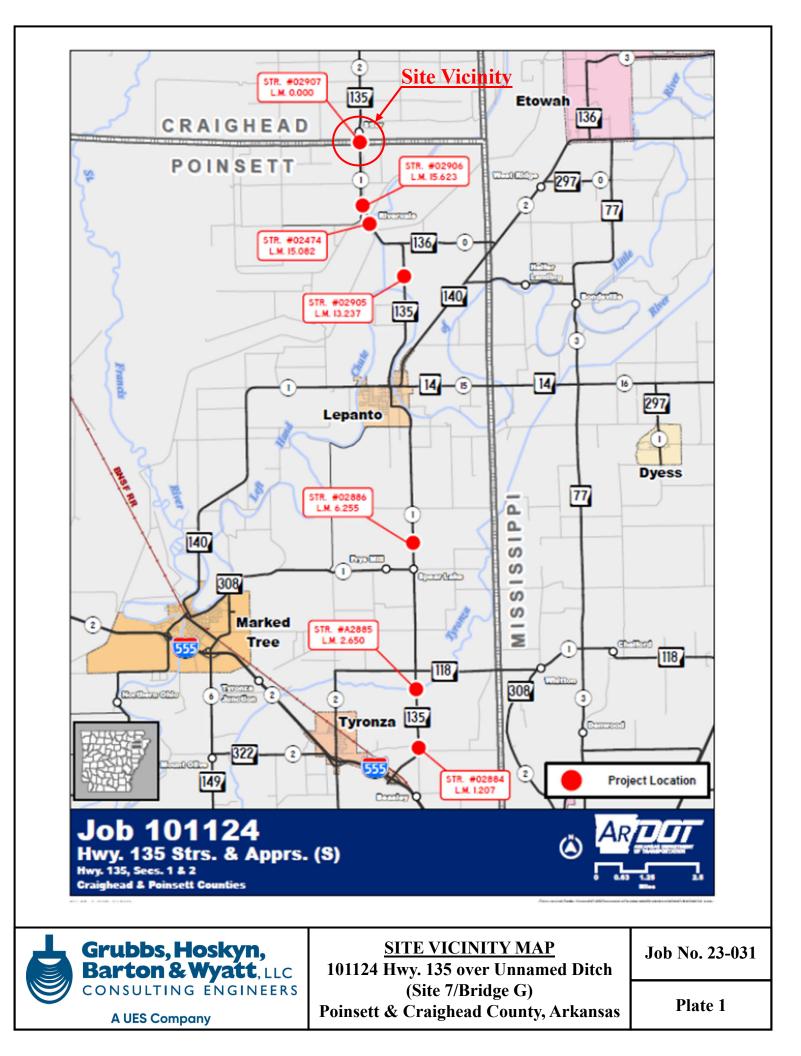
Plate 1	Site Vicinity Map
Plate 2	Plan of Borings
Plates 3 through 14	Boring Logs
Plate 15	Key to Terms and Symbols
Appendix A	Preliminary Bridge Layout
Appendix B	Generalized Subsurface Profile
Appendix C	Laboratory Test Results
Appendix D	Liquefaction Analysis Results
Appendix E	Nominal Pile Capacity Curves
Appendix F	Lateral Load Parameters
Appendix G	Results of Stability Analyses
Appendix H	Example SP – Woven Geotextile
Appendix I	Example SP - Cohesive Embankment Fill Special
	Provision
Appendix J	Driveability Analysis Results
* *	* * *

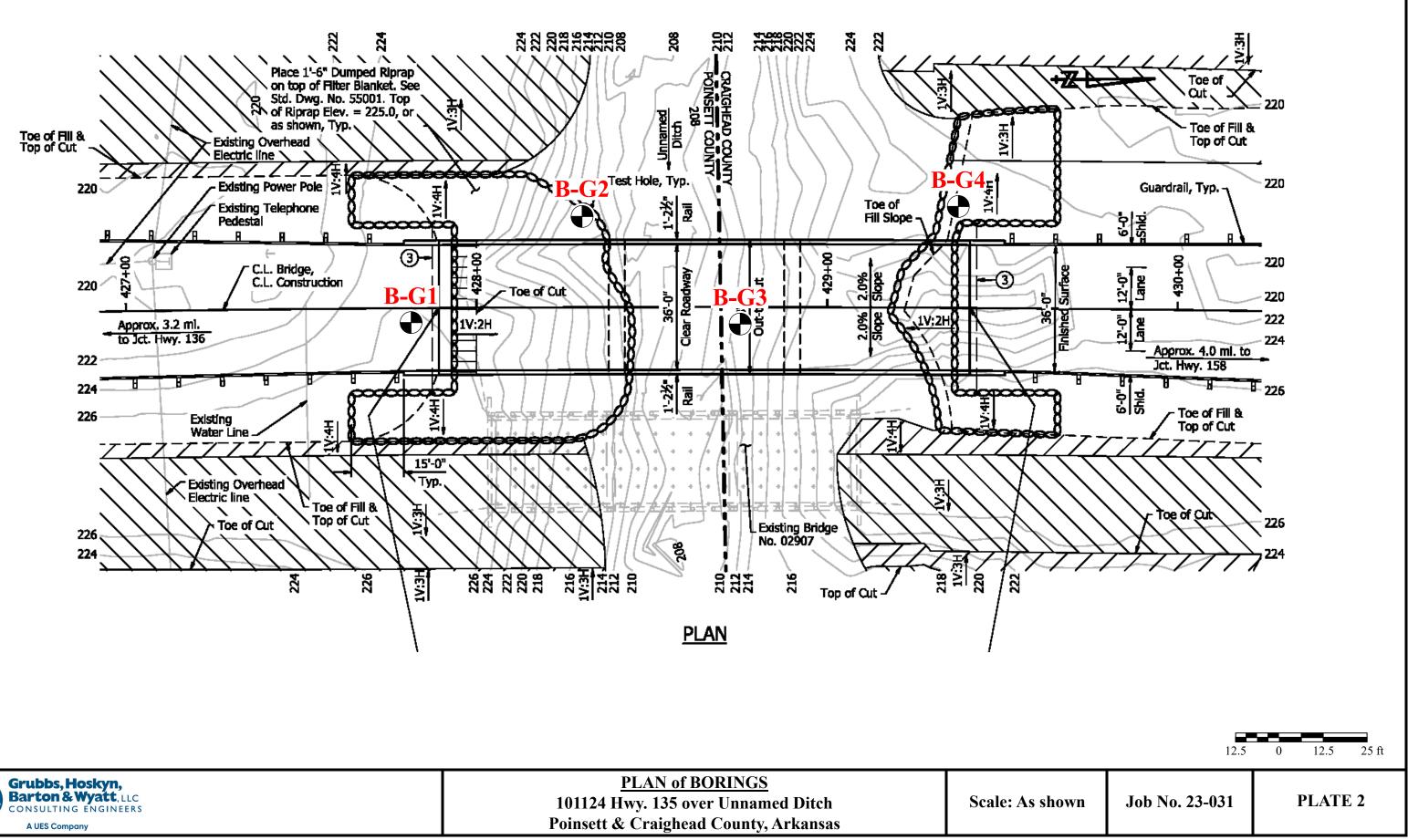
We appreciate the opportunity to be of service to you on this project. Should you have any questions regarding this report, or if we may be of additional assistance during final design or construction, please call on us.

Sincerely,

GRUBBS, HOSKYN, BARTON &WYATT, LLC

Vellet M. Sutt


Velleta M. Scott, P.E Sr. Project Engineer Mark E. Wyatt, P. President


VMS/MEW:jw

Copies

s submitted:	Arkan	sas Department of Transportation	
	Attn:	Ms. Jessica Jackson, P.E.	(1-email)
	Attn:	Mr. Paul Tierney	(1-email)
	Attn:	Mr. Yongsheng Zhao, Ph.D., P.E.	(1-email)
	Confra	Tull Q Assaults Inc	

Crafton Tull & Associates, Inc.Attn:Mr. Mike Burns, P.E.Attn:Mr. Chuck Wipf, P.E.(1-email)

Grubbs, Hoskyn,	PLAN of BORINGS	
Barton & Wyatt, LLC CONSULTING ENGINEERS	101124 Hwy. 135 over Unnamed Ditch	Scale: As s
A UES Company	Poinsett & Craighead County, Arkansas	

	Bart	bbs, Hoskyn, on & Wyatt, Inc. ting Engineers Dbs, Hoskyn, I O G O F B 101124 Hwy. 13 Poinsett & Craigh	5 ove	r Unn	amed D	Ditch						
	TYPE	Auger to 20 ft /Wash	LC	CATIC	DN: Ap	prox S	ta 427	+90, 1	0 ft Ri	t		
∣⊢				₽.		CO	HESIO	N, TO	N/SQ	FT		%
H, FT	BOL		N ₆₀ , BPF	NY V FT V	0.2	0.4	0.6	0.8	1.0	1.2	1.4	200 %
DEPTH,	SYMBOL		N ₆₀ ,	UNIT DRY WT LB/CU FT	PLAST LIMI	TIC	V CC	ATER	т	LIQI		No.
		SURF. EL: 225.8		5	10	 20	 30	- ● 40	 50		- 70	•
		Medium dense tan and dark brown silty fine sand (SM) w/a little fine to	21									
		silty fine sand (SM) w/a little fine to coarse gravel (fill)	19									
<u> </u>		Medium dense gravish brown silty										-
- 5 -		Medium dense gravish brown silty fine sand (SM) w/clay pockets	19									-
		Soft gray, tan, and brown silty clay, slightly sandy (CL)	9			+•		<u></u> G	60			90
		Modium donce grav and brown silty	9									_
- 10 -		Medium dense gray and brown silty fine sand (SM) w/silt seams and layers, wet	14									-
		layers, wet										
								G.= 2	61			10
- 15 -			20				•	G _s - 2	.01			42
		_										
20			26									-
												_
		Dense brown fine to medium sand (SP)										
- 25 -			54									-
	-	- medium dense from 28 to 43 ft										
- 30 -			34			•						3
	-											
- 35 -			26					_				-
6-23												
23-031 BRIDGE G.GPJ 7-26-23			32									
		dence below 42 ft										
23-031		- dense below 43 ft	66									
N				TO WA NG: 17						DATE: 4	5/18/20	123
ē	DATE.	0-10-20 IN	DOIN	NO. 11	11						0/10/20	520

23-031

LOG OF BORING NO. G1

101124 Hwy. 135 over Unnamed Ditch Poinsett & Craighead County, Arkansas

	T	YPE	:	Auger to 20 ft /Wash	LC	CATIO	ON:								
		_	ŝ		ш	мт					-0	N/SQ I			%
DEPTH		SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT		ASTIC	1			1.0	1.2 Lli		- No. 200 %
				(continued)				10 2	20	30	40	50	60	70	
- 50)		X	Dense grayish brown fine to medium sand (SP)	43										4
- 5!	 5 - * • ••		X		69										
- 6(D		X		50										
- 6	5-**		X		54										
- 7(D		X	- gray and gravish brown slightly	, 75										
- 7	5-		X	- gray and grayish brown, slightly silty (SP-SM) below 73 ft	72			•							5
7-26-23) 		X		54										
23-031 BRIDGE G.GPJ 7-26	5		X		85										
			$\overline{\langle}$		54										
GBNEW				TION DEPTH: 110.0 ft -19-23	DEPTH IN BORII							П		5/18/	2023
LG	27														TE 4

LOG OF BORING NO. G1

101124 Hwy. 135 over Unnamed Ditch Poinsett & Craighead County, Arkansas

		TYP	E:	Auger to 20 ft /Wash	LC	CATIO	SN:	Appro	x Sta	427+9	90, 10	ft Rt			
	⊢		0			⊥ ∧.									
	H, FT	SYMBOL	ЫЦ	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	RY/ UFI	C	.2 0	.4 ().6 (0.8	1.0 1	.2 1	.4	200
	DEPTH ,	SYM	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ ,	UNIT DRY WT LB/CU FT	PL.	ASTIC					LIQU LIM	JID IT	- No. 200 %
				(continued)		5		+	 20;				+		
_GBNEW 23-031 BRIDGE G.GPJ 7-26-23	-100- -100- -105- -105- -110- -110- -110- -115- -120- -120- -120- -120- -120- -120- -120- -120- -120- -120- -120- -120-			- with trace coarse sand and fine gravel below 98 ft Note: Drilled with Diedrich D-50 ECF=1.43	56 46 123								-		5
N 23-03													L		
-GBNEV					DEPTH							DA	TE: 5	5/18/20	23
_	_													PLAT	F 5

Grubbs, Hoskyn, Barton & Wyatt, Inc. Consulting Engineers

101124 Hwy. 135 over Unnamed Ditch Poinsett & Craighead County, Arkansas

	TYPE	<u>:</u>	Auger to 15 ft /Wash	L	CATI	ON:	Appro	ox Sta	428+2	5, 25	ft Lt			
ET .		SAMPLES			۲ ۲									%
	SYMBOL			N ₆₀ , BPF	NR N F	0.2 0.4 0.6				0.8 1.0 1.2			.4	- No. 200 %
DEPTH ,	SYN			N ₆₀ ,	UNIT DRY WT LB/CU FT	PLASTIC LIMIT						LIQUID LIMIT		
		┢	SURF. EL: 214.1				10	20	30 4	40 ÷	50 6	60 7	70	
			Very loose to loose brown silty fir sand (SM)	6										
		Α	- very loose below 2 ft	4				•	-NON	PLAS	этіс-			46
- 5			Firm gray and reddish tan silty cla (CL) w/ferrous stains					•						
		X	Loose tan and gray silty fine sand (SM) w/ferrous stains	13										
			- brown, moist below 8 ft	9										23
- 10		Ϊ												23
	-	M	Loose to medium dense gravish brown fine to medium sand (SP)	14										
15	- • • •			14										
			- medium dense from 18 to 33 ft											
20	-	А		32										-
25	_	А		42				•						3
30	-	X		39										-
			- dense from 33 to 53 ft											
35	-	X		49										-
- 40		X		49										
-v														
				.										
		X	- slightly silty (SP-SM) below 43 f	t 57										7
			TION DEPTH: 110.0 ft -20-23	DEPTH IN BOR			-				D 4	TE: 6	200101	าวว
	DATE	. 0	-20-23		ing. I	1.Z IL					DP		PI AT	

LOG OF BORING NO. G2

	TYP	E:	Auger to 15 ft /Wash	LC	CATIO	ON:	Аррі		ta 428 HESIO						
Ē	Ы	ES		ЪF	Y WT FT	C).2	0.4	0,6	0.8	1.0			.4	% 00
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT		ASTI						LIQU LIM		- No. 200 %
		$\left \right $,	10	20	30	40	50	60) 7	'0 	
- 50 -		X	- with dark gray nodules below 48 ft	53											-
- 55 -		X	- medium dense from 53 to 63 ft	40											-
- 60 -		X		42											_
- 65 -		X	- dense below 63 ft	54											-
- 70 -		X		57											-
- 75 -		X		66				•							6
- 80 -		X		66											_
- 85 -		X		69											_
		X		59											
				EPTH ⁻ BORII									F. 6	; ;/20/20	123
		0		DOM	10. 1	∠ II								PLAT	

	Gru Bar _{Const}	tor Iting	s, Hoskyn, & Wyatt, Inc. Engineers LOGOFB 101124 Hwy. 13 Poinsett & Craig	5 ove head	r Unn Count	ame y, Ai	d Dit kans	ch sas	100	05.0				
			Auger to 15 ft /Wash			JN:			ESION					
, FT	Ы	ES		НЦ	ΓΥ	C).4	0.6	0.8	1.0	1.2	1.4	%
DEPTH,	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL. L	ASTIC		W CO		R IT	LI		- No 200 %
			(continued)			1	10	20	30	40	50	60	- 70	_
95 -		X	- less silty (SP) with trace coarse sand and fine gravel below 93 ft	47			•							
				70										
00-				70	-									_
10-		X		60										
15- 20-			NOTE: Drilled with Diedrich D-50 ECF= 1.43.											
25- 30-														
	СОМІ		TION DEPTH: 110.0 ft D	EPTH	TO WA	TER								
					NG: 11							DATE	: 6/20/2	2023

	Bar	bb tor	bs, Hoskyn, a & Wyatt, Inc. J Engineers Foinsett & Craight	ove	r Unn	ame	d Dit	ch						
	TYPE	:	HSA to 10 ft /Wash	LC	CATIO	DN:	Appro	ox Sta	428+7	'5, CL				
гн, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	0			ESION)			.4	No. 200 %
DEPTH,	SYN	SAM	SURF. EL: 213.0	N ₆₀ ,	UNIT D LB/C	L	ASTIC IMIT + -			TER TENT		Liqu Limi 	IT	- No.
			Very loose brown silty fine sand (SM) w/fine gravel and organics	4		1	0 2	20	30 4	40 :	50 (60 7	0	
			(fill) Loose brown fine sand, slightly silty (SP-SM)	7				•						7
- 5 -			Medium dense gray fine sand (SP) w/decaved organics. wet	19					•					3
		X	Medium dense brownish gray fine to medium sand (SP)	24										
- 10 -		X		26										-
- 15 -		X		24										-
- 20 -		X		23										3
- 25 -		X	Medium dense gray fine sand, slightly silty (SP-SM)	23										-
- 30 -		X	Medium dense grayish brown fine to medium sand, slightly silty (SP-SM)	37										-
- 35 -		X	- dense below 33 ft	51				•						5
- 40 -		X		53										-
		X	- gray with trace fine gravel from 44	59										
		٢LE	TION DEPTH: 120.0 ft DE	PTH .	TO WA NG: 4.						DA	ATE: 6	/14/20)23

LOG OF BORING NO. G3

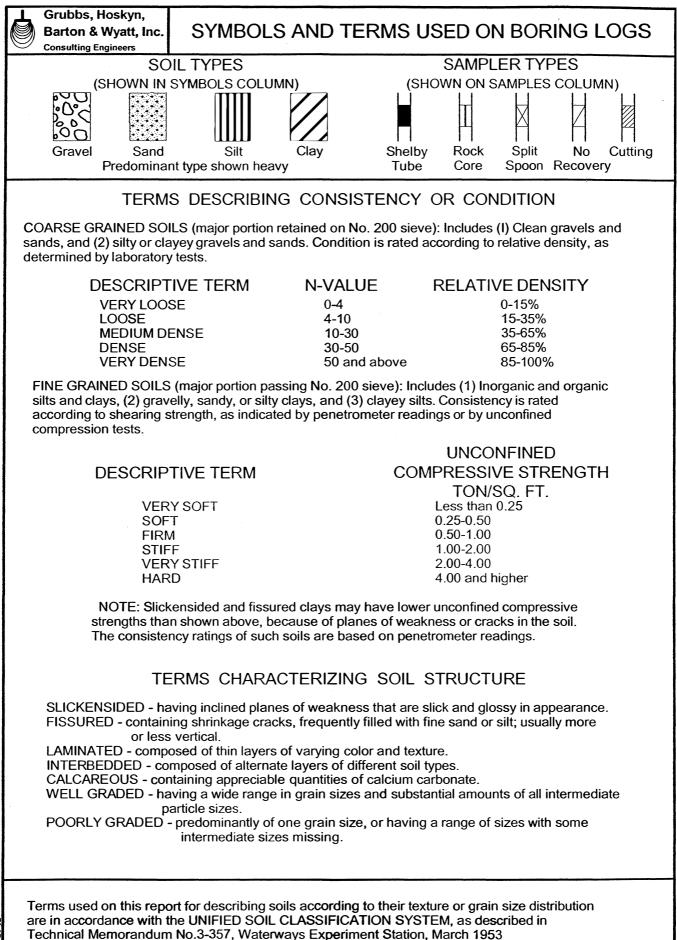
		TYPE	:	HSA to 10 ft /Wash	LO	CATIO	ON:	A	ppro	x Sta	428+	75, CL				
	⊢│		0			۲,			(SION	I, TON	/SQ F1	Г		%
	H, FT	SYMBOL	Ы ГШ	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	U FT		0.2	0	4	0.6 I	0.8	1.0 1.	.2 1	.4	200 9
	DEPTH,	SYM	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ ,	UNIT DRY WT LB/CU FT	F		STIC					LIQU LIM	JID	- No. 200 %
				(continued)		5		10	 2	 0		•	_ <u></u>	·+	• 70	'
				to 49 ft												
-			V	- with trace coarse sand from 49 to	53											
	50 -			54 ft												-
-																
					51											5
-	55 -				51											
⊢																
					60											
-	60 -				00											-
┢																
					61											
E	65 -				01											-
-																
					50							I-PLA				
Ŀ	70 -		Δ		59					•						9
_																
þ				with some scars and balaw 74	50											
-	75-		Å	- with some coarse sand below 74 ft	53			-								-
-																
F				with trace fine grouplet 70 to 0.4 ft	60											
ŀ	80 -		Å	- with trace fine gravel at 79 to 84 ft	60											-
7-26-23					50											
3.GPJ	85 -		Å		56											-
RIDGE (
23-031 BRIDGE G.GPJ 7-26-23				Dense brownish gray fine sand, slightly silty (SP-SM) w/decayed	40											
EW 23			PLE	TION DEPTH: 120.0 ft DE		ГО W <i>I</i>				•					<u> </u>	11
LGBNEW		DATE	: 6	-15-23 IN	BORI	NG: 4	.3 ft						DA		6/14/20 LATE	

23-031	
Grubbs, Hoskyn, Barton & Wyatt, In Consulting Engineers	C.

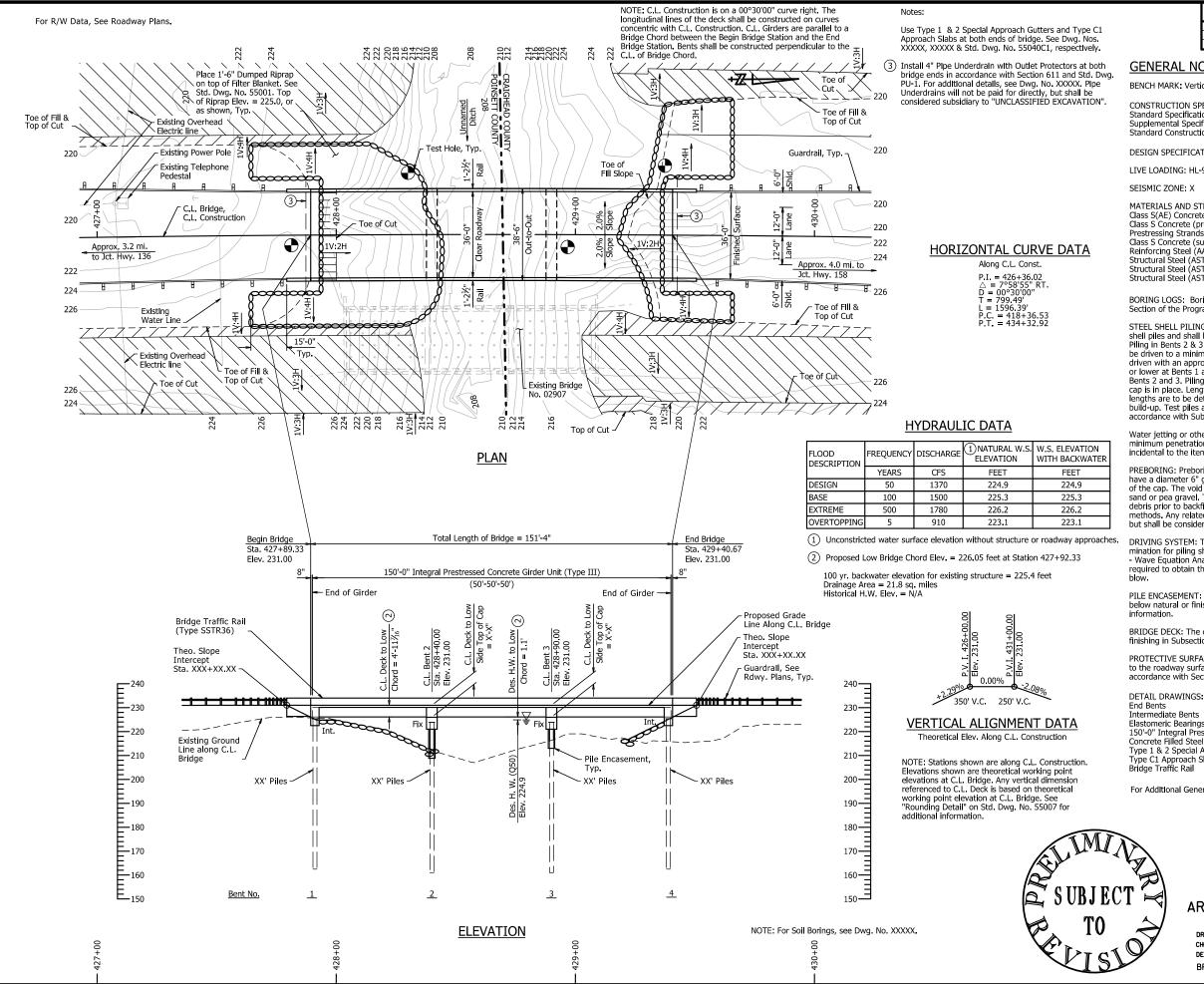
LOG OF BORING NO. G3 101124 Hwy. 135 over Unnamed Ditch Poinsett & Craighead County, Arkansas

		TYPE	Ξ:	HSA to 10 ft /Wash	LC	CATIO	ON:	Appr	ox St	ta 428	8+75, 9	CL				
						F			COH	HESIC	DN, TO	ON/S	Q FT			_
	I, FT	0L	SШ		ЪР	× F⊤	C).2	0.4	0.6	() 0.8	1.0	- 1.2	2 1.	4	200 %
	ОЕРТН, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PL.	ASTIC	2	, C	WATE ONTE	R NT	1	LIQU	ID T	- No. 20
				(continued)				- - ∎ 10	20	 30	 40	 50	- <u> </u>		0	•
	- 95 -			organics Dense grayish brown fine to medium sand (SP) w/trace coarse sand and trace fine gravel	50											
			X	sand and trace line graver	64											
	-100-															
	-105-			Dense grayish brown fine to coarse sand (SP) w/a little fine gravel												
	-110-		X	sand (SP) w/a little fine gravel	47			•								4
	-120-		X		61											
	-125-			NOTE: Drilled with Diedrich D-50 ECF= 1.43.												
LGBNEW 23-031 BRIDGE G.GPJ 7-26-23	-130-															
LGBNEW :						TO W <i>I</i> NG: 4							DAT	ΓE: 6	/14/20	23

Г		23-03														
		Bart	toi	bs, Hoskyn, h & Wyatt, Inc. g Engineers L O G O F B (101124 Hwy. 135 Poinsett & Craigh	i ove	r Unn	am	ied D	Ditch							
		TYPE	:	Auger to 15 ft /Wash	LC	OCATIO	ON:	Ар	orox S	ta 42	9+4(), 25 f	't Lt			
	L					ΥT.			СО	HESI	ON,	TON/	SQ F	Г		%
	TH, FT	SYMBOL	SAMPLES	DESCRIPTION OF MATERIAL	N ₆₀ , BPF	NY V U FT		0.2	0.4	0.6	0.8	8 1	.0 1	.2 1	.4	200 %
	DEPTH,	SYN	SAM		N ₆₀ ,	UNIT DRY WT LB/CU FT	F	PLAST LIMI	TC F	С	WAT	ER ENT		LIQU		- No.
				SURF. EL: 223.2				10	20	30) 5	0 6		• 70	
			X	Soft light brownish gray and tan silty clay, slightly sandy (CL)	5											
ļ			Χ		5							o				
ŀ	5		X		5				-		G	= 2.77	<u> </u>			82
ŀ			Χ		7											
-	4.0		X	Loose brown and brownish gray fine sandy silt (ML)	7						G	= 2.63	8			77
	10 -															
F				Medium dense brown fine sand				_		_					<u> </u>	-
F	15		X	(SP) w/occasional organic inclusions	32				•		G	= 2.6′	1			3
ŀ																
ŀ																
F	20 -		X		30										<u> </u>	-
ŀ																
ŀ				Medium dense brown fine to medium sand, slightly silty (SP-SM)												
ŀ	25		X	medium sanu, siignity siity (SF-Sivi)	31				-						<u> </u>	5
╞																
F			∇		30											
þ	30				00											-
ŀ																
╞	0.5		X	- dense below 33 ft	37											
ŀ	35															
-23																
J 7-26-23	40 -		X		42											8
GE G.GI	JU															
23-031 BRIDGE G.GPJ				- gravish brown with occasional												
			/ \	- grayish brown with occasional organic inclusion below 43 ft	70											
LGBNEW						TO WA NG: 1							DA	TE: 5	5/16/20)23
ЦĽ																


LOG OF BORING NO. G4

Line 100 100 10 12 14 10 12 14 14 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 14 10 10 11			≣: 	Auger to 15 ft /Wash			ON:	Appr				25 ft Lt DN/SQ			
10 20 30 40 50 60 70 Dense gravish brown and brown fine sand, slightly silty (SP-SM) 43 44		gL	LES		НЦ	K WT	0	.2	-		-0-			1.4	% 00
10 20 30 40 50 60 70 Dense gravish brown and brown fine sand, slightly silty (SP-SM) 43 44	DEPTH	SYME	SAMP		N ₆₀ , B	UNIT DF LB/CL		+ -						- + -	- No. 2(
50 50 55 2 - medium dense from 58 to 63 ft 60 - dense below 63 ft 42 57 65 70 75 80 2			$\left \right $				1	10	20	30	40	50	60	70	
50 50 55 2 - medium dense from 58 to 63 ft 60 - dense below 63 ft 42 57 65 70 75 80 2															
55 - medium dense from 58 to 63 ft 33 60 - dense below 63 ft 42 - dense below 63 ft 42 70 - dense below 63 ft 70 - dense below 63 ft 42 - dense below 63 ft 42 - dense below 63 ft 48 - dense below 63 ft 48 - dense below 63 ft	- 50 -		X	Dense grayish brown and brown fine sand, slightly silty (SP-SM)	43										
60 33 33 42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 44 <td< td=""><td>- 55 -</td><td></td><td>X</td><td></td><td>51</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- 55 -		X		51										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 60 -		X	- medium dense from 58 to 63 ft											
70 48 6 75 48 6 80 44 6 80 44 6 80 44 6 85 42 6 6 42 6 6 6 6 75 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 80 75 6 6 75 6 75 75 75 80 75 75 80 75 75 80 75 75 80 75 75 80 75 75 <	- 65 -		X	- dense below 63 ft	42										
	- 70 -		X		57					•					9
	- 75 -		X		48				•						6
85 42 42 42 85 32 6 COMPLETION DEPTH: 120.0 ft DEPTH TO WATER			X		44										
Image: Second state Image: Second st	- 85 -		X		42										
COMPLETION DEPTH: 120.0 ft DEPTH TO WATER			\mathbf{M}	- medium dense below 88 ft	32										6
DATE: 5-18-23 IN BORING: 10.8 ft DATE: 5/16/2023					DEPTH			1			1	I		5/16	


LOG OF BORING NO. G4

	TYP	E:	Auger to 15 ft /Wash	LC	CATI	DN:	Approx	Sta 42	29+40, 2	25 ft Lt			
Γ.					Ц		С	OHES		DN/SQ F	Т		
		ES I		3PF	Z Z F T N F T	0.	.2 0.4	0.6	0.8	1.0	1.2 1	.4	% 00
DEPTH.	SYMBOL	SAMPLES		N ₆₀ , BPF	UNIT DRY WT LB/CU FT	PLA LI	ASTIC MIT +	(R NT 	LIQU LIM	JID IT	- No. 200 %
			(continued)			1	0 20	30	40	50	60 7	70	
- 9{	 5 - 	X	Medium dense brown fine to medium sand (SP) w/trace fine gravel	31			•						4
-10	0	X	Dense gray and tan fine to coars sand (SW) w/trace fine gravel	e 43			•						4
-10	5		- medium dense with more fine gravel and trace coarse gravel below 105 ft										
-11		X		26			•						3
-11		V	Medium dense gray fine sand, slightly silty (SP-SM)	35									
-12	0	•:/\	NOTE: Drilled with SIMCO 2800 ECF= 1.19										
-12	5-												
23-031 BRIDGE G.GPJ 7-2	0-												
23-031													
GBNEW			ETION DEPTH: 120.0 ft 5-18-23	DEPTH IN BORI						DA	ATE: 5	5/16/20)23
											D		11

(EY 9-26-02

APPENDIX A

DATE REVISED	DATE REVISED	FED.RD. DIST.NO.	STATE	JOB NO.	SHEET NO.	TOTAL SHEETS
		6	ARK.	101124	112	183
		XXXXX		LAYOUT		XXXXX

GENERAL NOTES

BENCH MARK: Vertical Control Data are shown on Survey Control Sheets.

CONSTRUCTION SPECIFICATIONS: Arkansas State Highway and Transportation Department Standard Specifications for Highway Construction (2014 edition) with applicable Supplemental Specifications and Special Provisions. Section and Subsection refer to the Standard Construction Specifications unless otherwise noted in the Plans.

DESIGN SPECIFICATIONS: AASHTO LRFD Bridge Design Specifications, 9th Edition (2020).

LIVE LOADING: HL-93

SEISMIC ZONE: X S_{D1}:X.XXX SITE CLASS: X SEISMIC OPERATIONAL CLASS: OTHER MATERIALS AND STRENGTHS: Class S(AE) Concrete (superstructure) Class S Concrete (prestressed concrete girders) f'c = 4,000 psl f'c = 6.000 psiPrestressing Strands (AASHTO M 203, Gr. 270) fpu = 270,000 psl $f'_{c} = 3.500 \text{ psi}$ Class S Concrete (substructure) Reinforcing Steel (AASHTO M 31 or M 322, Type A) fy = 60,000 pslStructural Steel (ASTM A709, Gr. 50) Fv = 50.000 nsiStructural Steel (ASTM A709, Gr. 50W) Fy = 50,000 psl Structural Steel (ASTM A709, Gr. 36) Fv = 36,000 psi

BORING LOGS: Boring logs may be obtained from the Construction Contract Development Section of the Program Management Division.

STEEL SHELL PILING: Piling in Bents 1 and 4 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. Piling in Bents 2 & 3 shall be XX" diameter concrete filled steel shell piles and shall be driven to a minimum ultimate bearing capacity of XX tons per pile. All piling shall be driven with an approved air, steam, or diesel hammer to a minimum tip elevation of _____ or lower at Bents 1 and 4 and to a minimum tip elevation of ______ or lower at Bents 2 and 3. Piling in end bents shall be driven after embankment to bottom of cap is in place. Lengths of piling shown are assumed for estimating quantities only. Actual lengths are to be determined in the field. No additional payment will be made for cut-off or build-up. Test piles are not required but may be driven for the Contractor's information in accordance with Subsection 805.08(g).

Water jetting or other methods as approved by the Engineer may be required to achieve minimum penetration. This work shall not be paid for directly, but shall be considered incidental to the item "Steel Shell Piling (___ " Dia.)".

PREBORING: Preboring is required for all piling at Bents 1 and 4. Prebored holes shall have a diameter 6" greater than the diameter of the pile for a depth of 10 below the bottom of the cap. The void space around the pile after completion of driving shall be backfilled with sand or pea gravel. The Contractor shall be responsible for keeping prebored holes free of debris prior to backfilling which may require the use of temporary casings or other approved methods. Any related cost for backfilling and temporary casing will not be paid for directly, but shall be considered subsidiary to the item "Preboring".

DRIVING SYSTEM: The driving system approval and the ultimate bearing capacity determination for piling shall be based on the requirements of Subsection 805.09(b). "Method B - Wave Equation Analysis (WEAP)". It is estimated that the minimum rated hammer energy required to obtain the ultimate bearing capacity for all piles will be foot pounds per

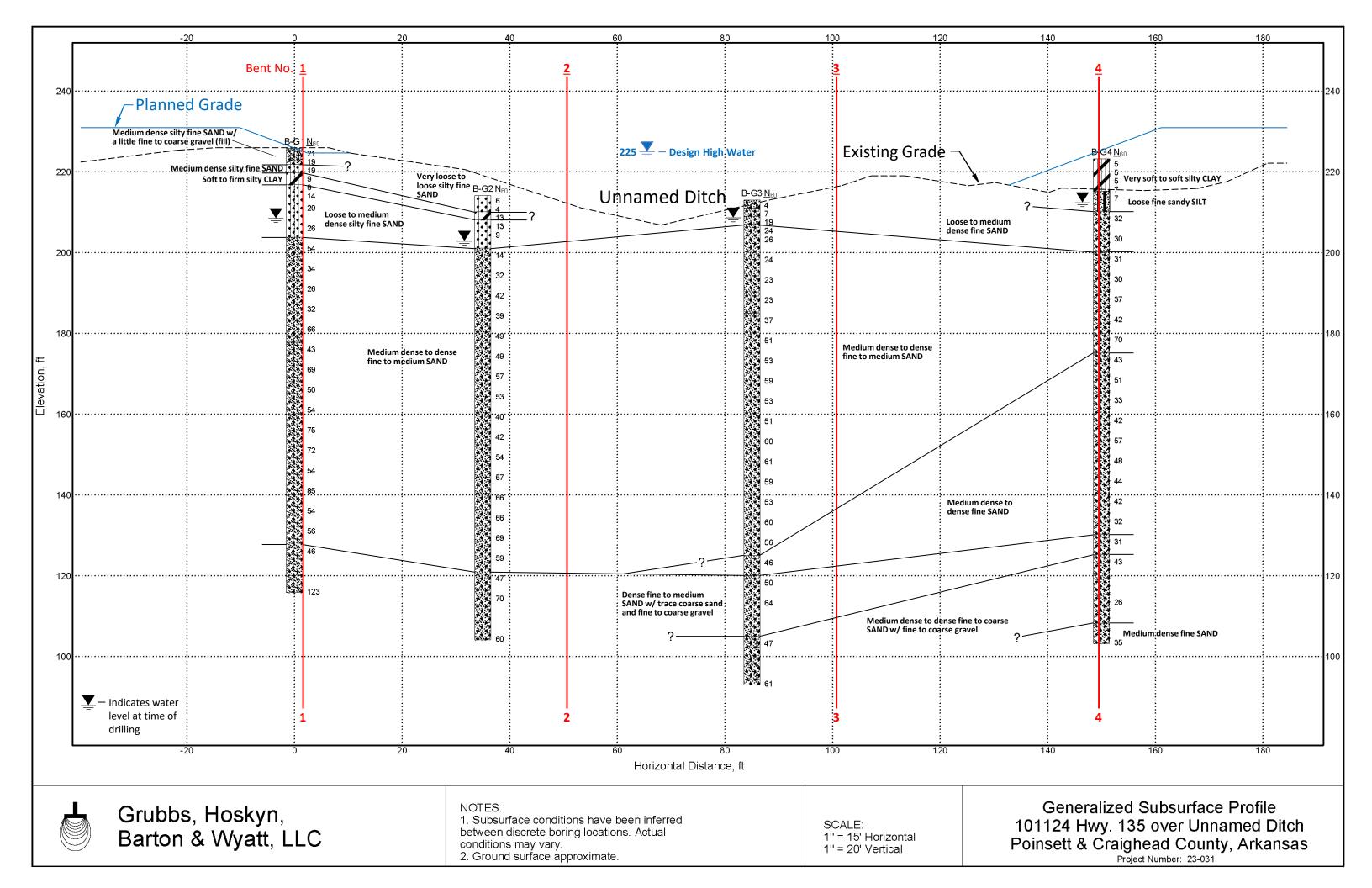
PILE ENCASEMENT: Pile encasement for Bents 2 & 3 shall extend from bottom of cap to 3' below natural or finished ground. See Standard Drawing Number 55021 for additional

BRIDGE DECK: The concrete bridge deck shall be given a tine finish as specified for final finishing in Subsection 802.19 for Class 5 Tined Bridge Roadway Surface Finish.

PROTECTIVE SURFACE TREATMENT: Class 2 Protective Surface Treatment shall be applied to the roadway surface and to the roadway face and top of the Bridge Traffic Rail in accordance with Section 803.

DRAWING NO(S).

Intermediate Bents Elastomeric Bearings 150'-0" Integral Prestressed Concrete Girder Unit Concrete Filled Steel Shell Piling Type 1 & 2 Special Approach Gutters Type C1 Approach Slabs Bridge Traffic Rail


55021 XXXXX & XXXXX 55040C1 55070

For Additional General Notes, see Dwg. No. XXXXX.

LAYOUT OF BRIDGE
HWY. 135 OVER UNNAMED CREEK
HWY. 135 STRS. & APPRS. (S)
CRAIGHEAD & POINSETT COUNTIES
ROUTE 135 SECTIONS 1 & 2
ARKANSAS STATE HIGHWAY COMMISSION
LITTLE ROCK, ARK.
DRAWN BY:BWCDATE:10-07-22FILENAME:b101124x7_l1.dgn
CHECKED BY: DATE: SCALE: 1" = 20'
DESIGNED BY: KRM DATE: 9-30-22
BRIDGE NO. XXXXX DRAWING NO. XXXXX

CHEET 1 OF 2

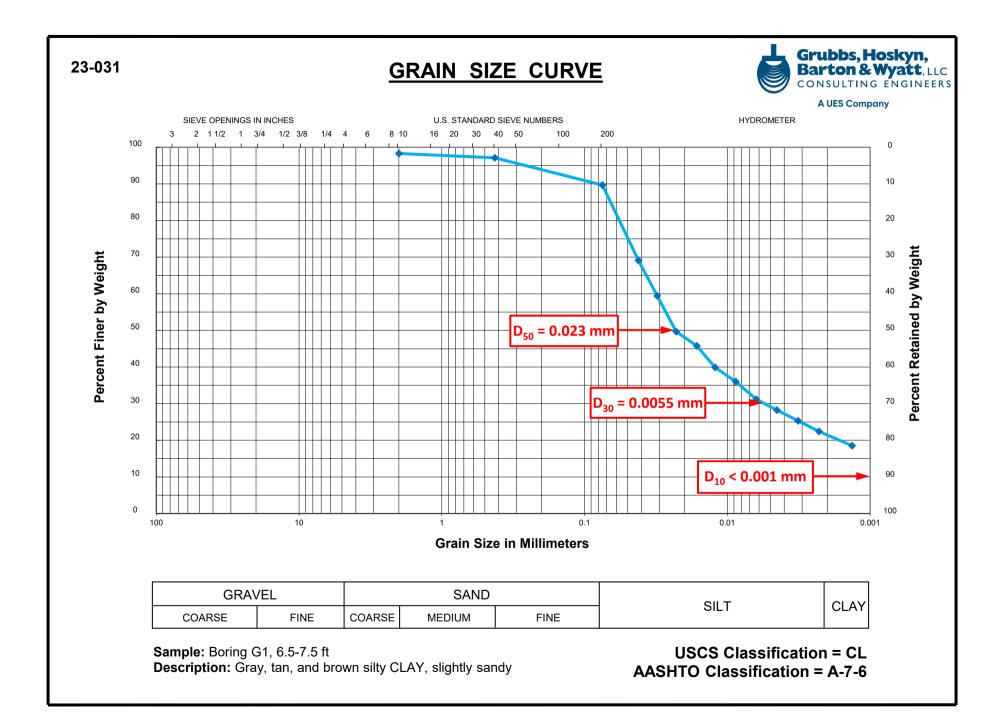
APPENDIX B

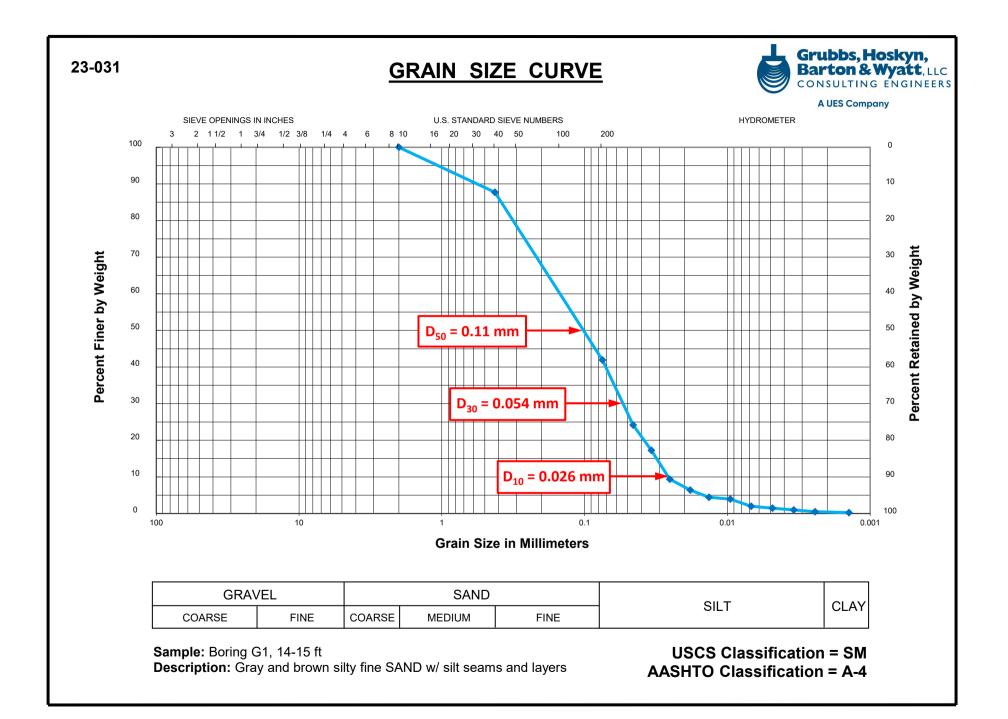
APPENDIX C

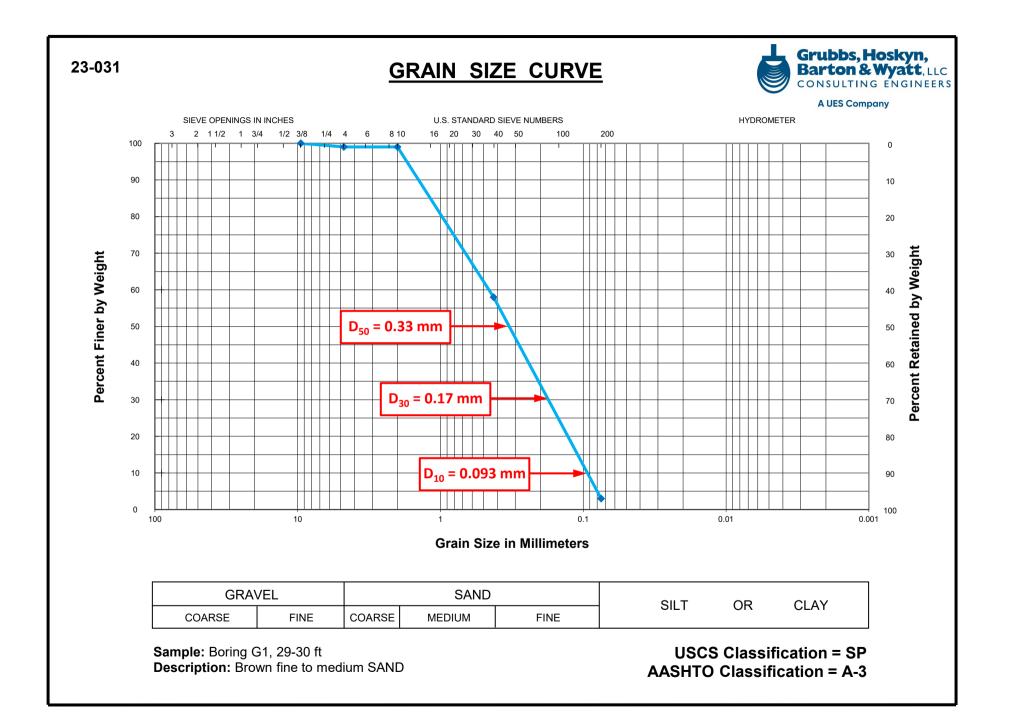
SUMMARY of CLASSIFICATION TEST RESULTS

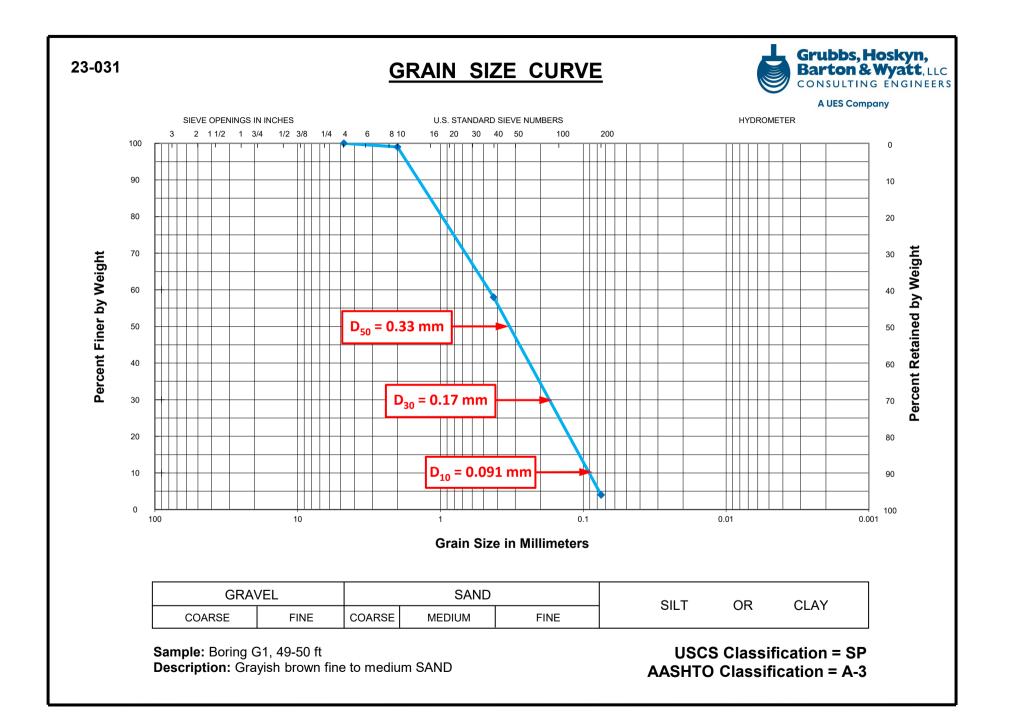
PROJECT: 101124 Hwy. 135 over Unnamed Ditch (Site 7) LOCATION: Poinsett County, Arkansas

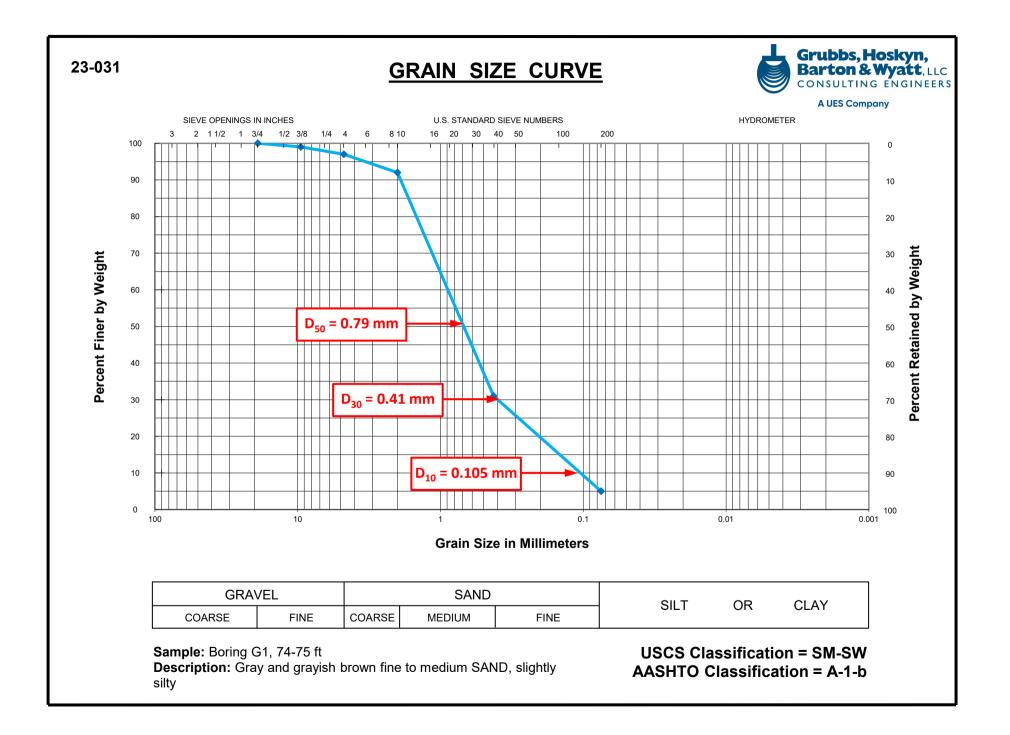
GHBW JOB NUMBER: 23-031

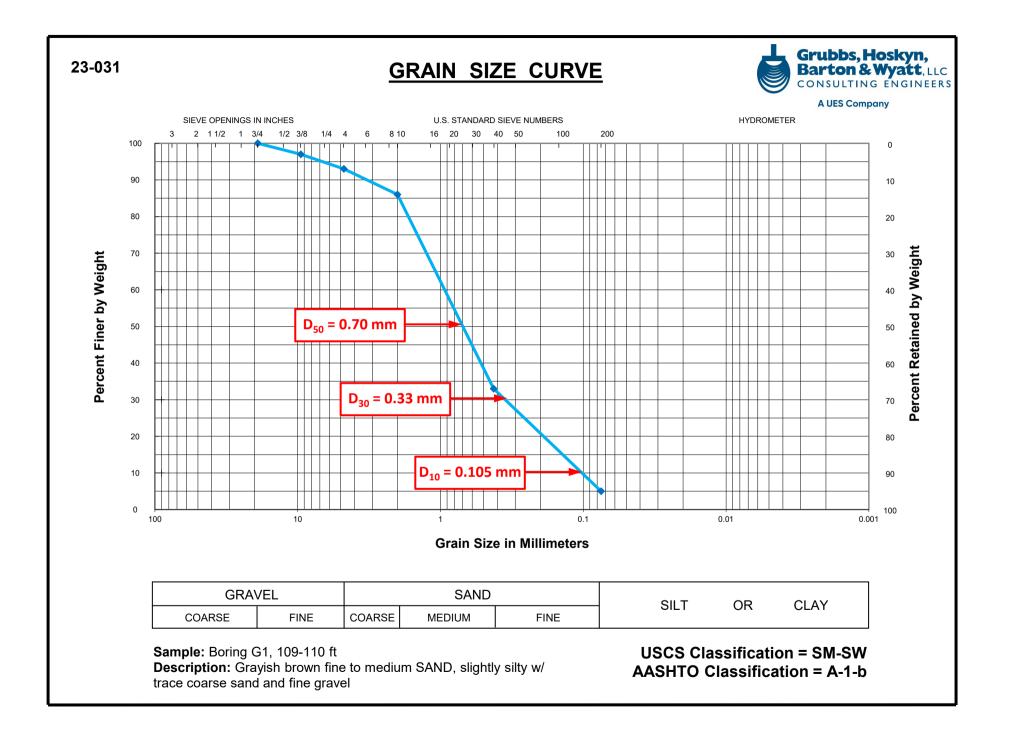

BORING	SAMPLE	WATER	AT	FERBERG LI	MITS			SII	EVE A	NALY	SIS			USCS	AASHTO
No.	DEPTH (ft)	CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	2 in.	1 in.	PEF 3/4 in.	RCENT		ING #10	#40	#200	CLASS.	CLASS.
G1	6.5-7.5	22	41	19	22	100	100	100	100	99	98	97	90	CL	A-7-6
G1	14-15	25				100	100	100	100	100	100	88	42	SM	A-4
G1	29-30	19				100	100	100	100	99	99	58	3	SP	A-3
G1	49-50	19				100	100	100	100	100	99	58	4	SP	A-3
G1	74-75	17				100	100	100	99	97	92	31	5	SM-SW	A-1-b
G1	109-110	19				100	100	100	97	93	86	33	5	SM-SW	A-1-b
G2	2.5-3.5	21	Ν	NON-PLAST	IC					99			46	SM	A-4
G2	9-10	21								100			23	SM	A-2-4
G2	24-25	23				100	100	100	100	100	100	69	3	SP	A-3
G2	44-45	18				100	100	100	100	100	99	51	7	SM-SP	A-3
G2	74-75	20				100	100	100	97	94	91	40	6	SM-SP	A-1-b
G2	94-95	17				100	100	100	98	96	94	45	4	SP	A-1-b
G3	2.5-3.5	21								100			7	SM-SP	A-3
G3	4.5-5.5	31								100			3	SP	A-3
G3	19-20	19				100	100	100	100	100	100	84	3	SP	A-3
G3	34-35	22				100	100	100	100	100	100	83	5	SM-SP	A-3
G3	54-55	20				100	100	100	100	100	100	70	5	SM-SP	A-3
G3	69-70	25	Ν	NON-PLAST	IC	100	100	100	100	100	100	79	9	SM-SP	A-3
G3	89-90	23								100			11	SM-SP	A-2-4
G3	109-110	13				100	100	100	89	81	72	39	4	SP	A-1-b
G4	4.5-5.5	21				100	100	100	100	100	100	98	82	CL	A-6

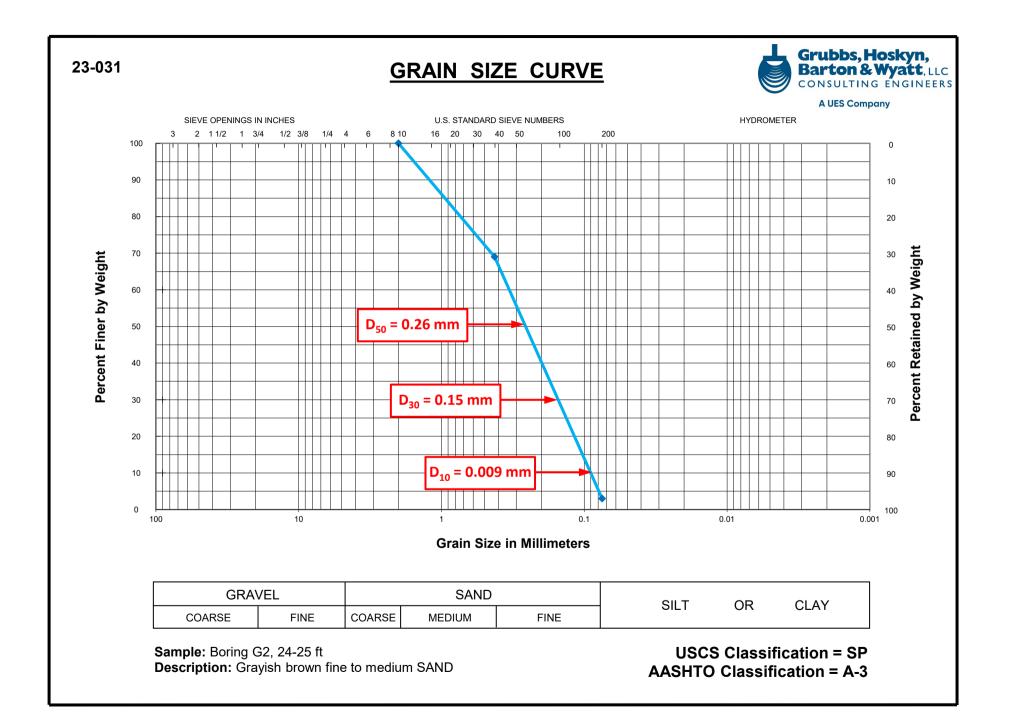

Grubbs, Hoskyn, Barton & Wyatt, LLC CONSULTING ENGINEERS

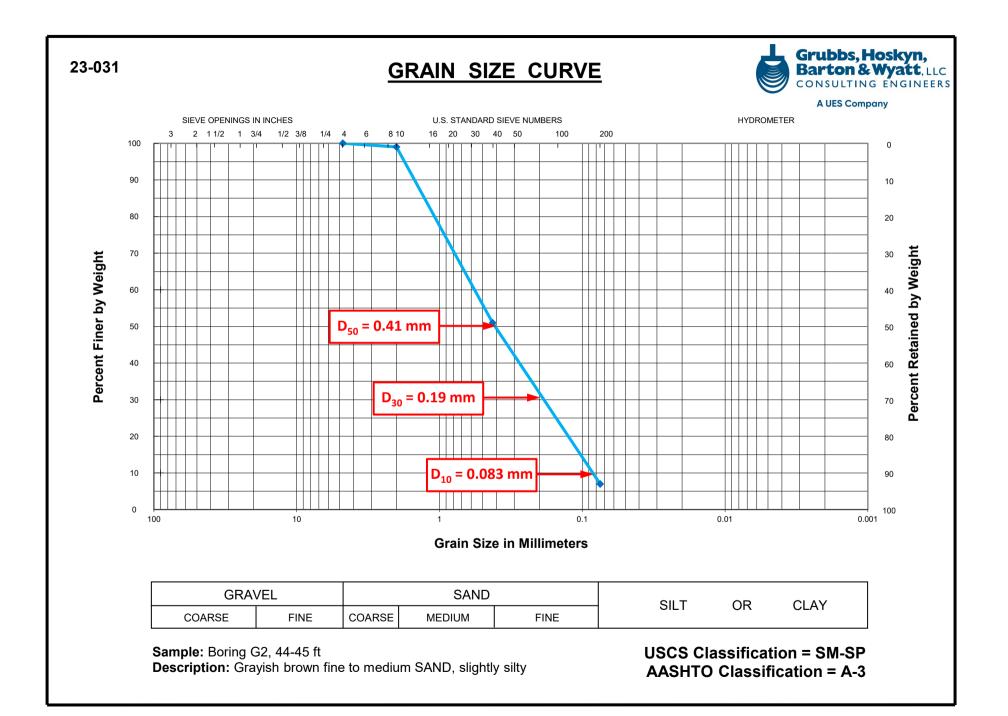

SUMMARY of CLASSIFICATION TEST RESULTS

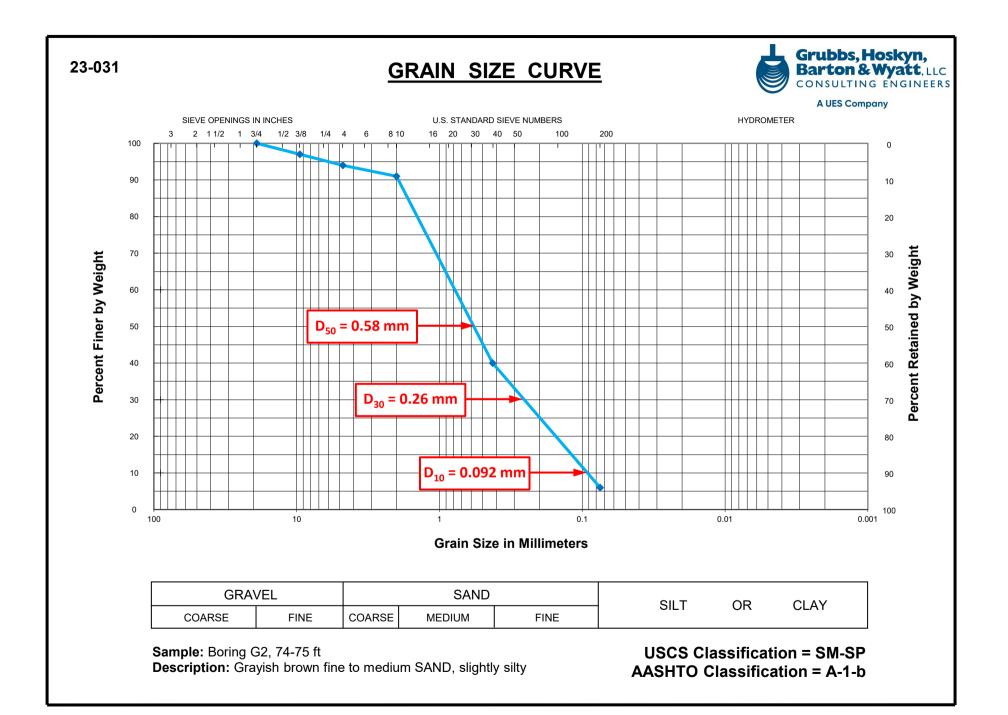

PROJECT: 101124 Hwy. 135 over Unnamed Ditch (Site 7) LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

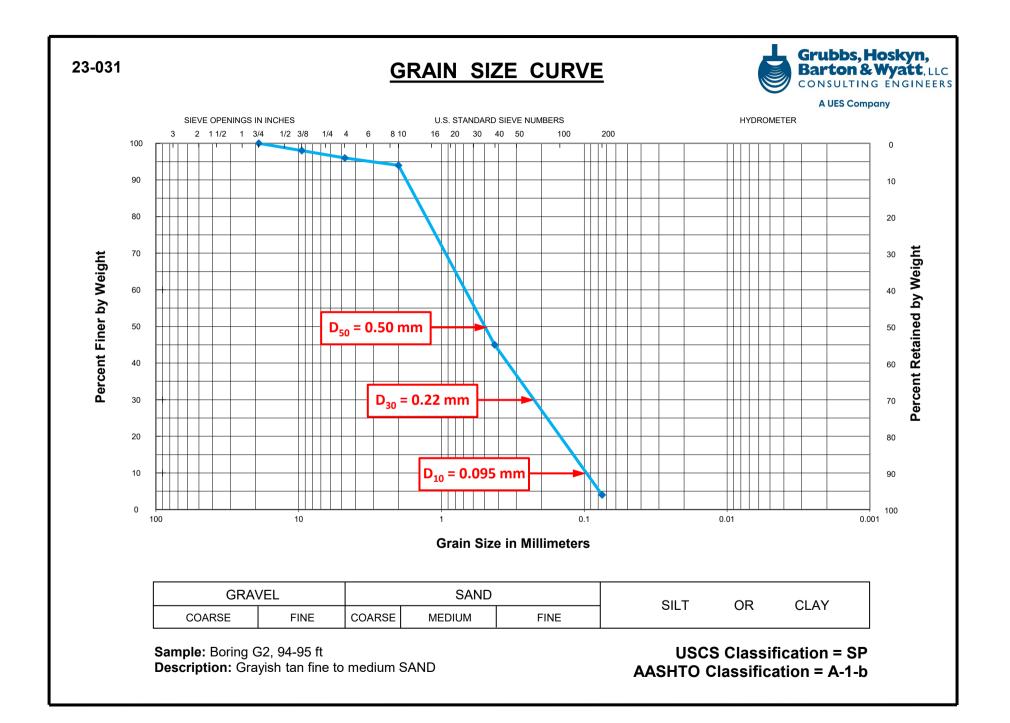

BORING No.	SAMPLE DEPTH (ft)	WATER CONTENT (%)	ATTERBERG LIMITS			SIEVE ANALYSIS								USCS	
			LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	PERCENT PASSING							USCS CLASS.	AASHTO CLASS.	
						2 in.	1 in.	3/4 in.	3/8 in.	#4	#10	#40	#200		
G4	9-10	29				100	100	100	100	100	100	99	77	ML	A-4
G4	14-15	22				100	100	100	100	100	100	84	3	SP	A-3
G4	24-25	20				100	100	100	100	100	100	73	5	SM-SP	A-3
G4	39-40	21				100	100	100	100	99	99	75	8	SM-SP	A-3
G4	69-70	25				100	100	100	100	100	100	96	9	SM-SP	A-3
G4	74-75	20				100	100	100	100	100	100	82	6	SM-SP	A-3
G4	89-90	24				100	100	100	100	100	100	96	6	SM-SP	A-3
G4	94-95	16				100	100	100	93	90	88	36	4	SP	A-1-b
G4	99-100	15				100	100	100	97	89	79	32	4	SW	A-1-b
G4	109-110	12				100	100	95	88	63	41	14	3	SW	A-1-a

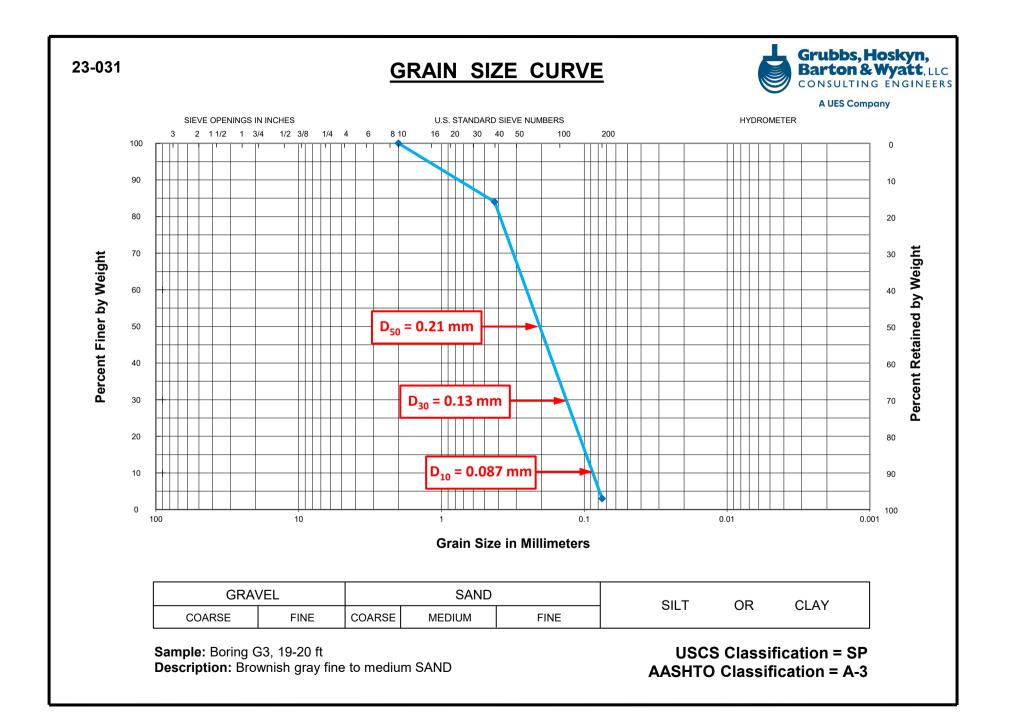


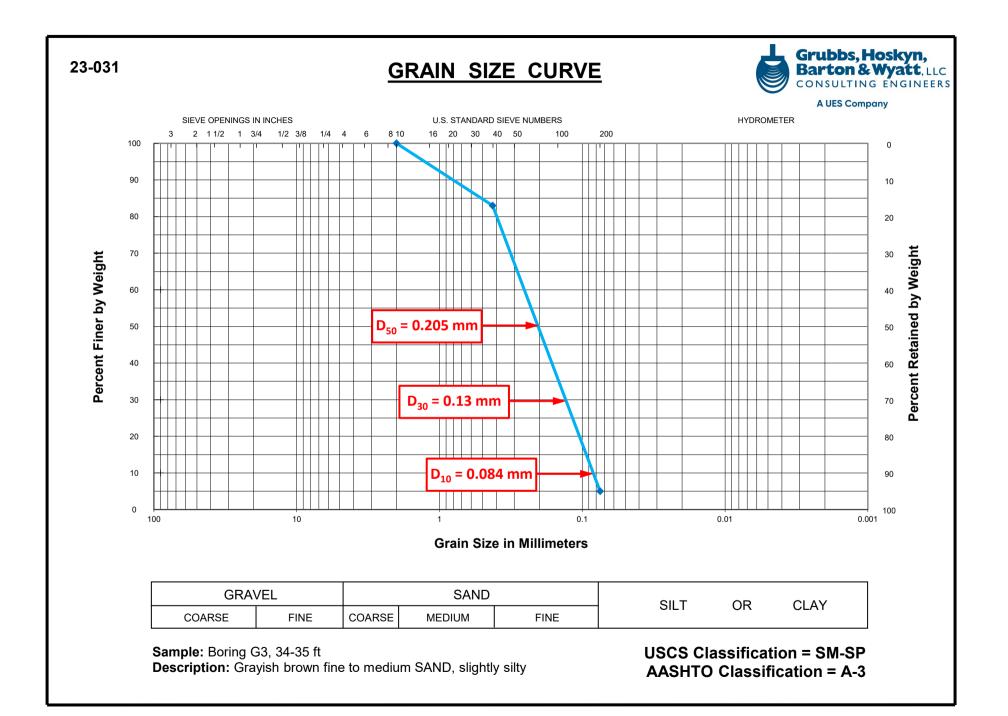


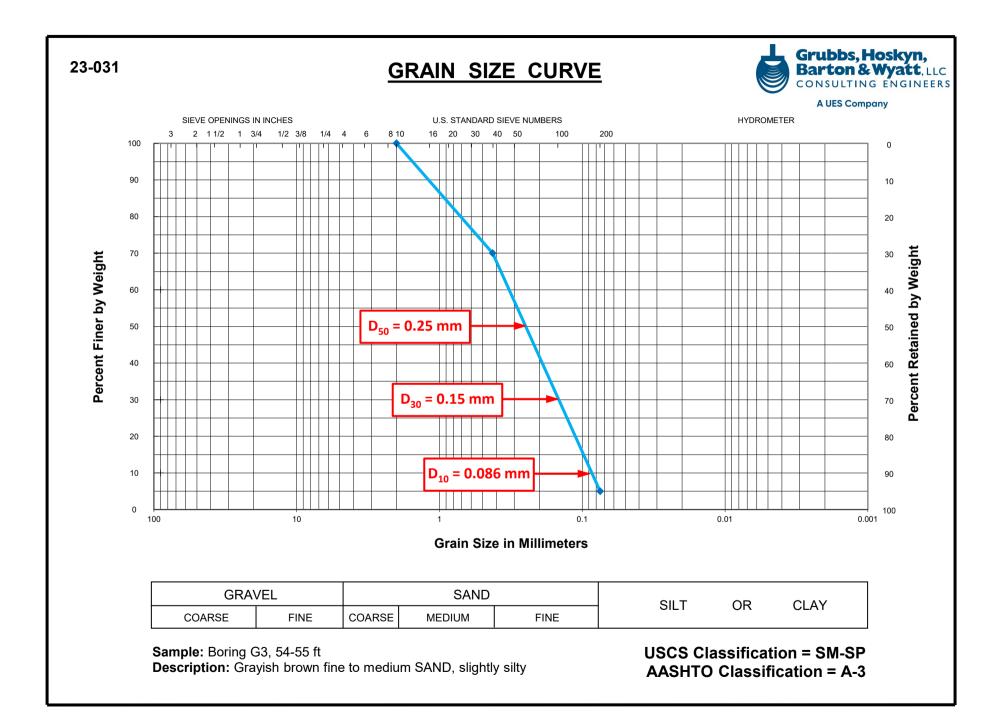


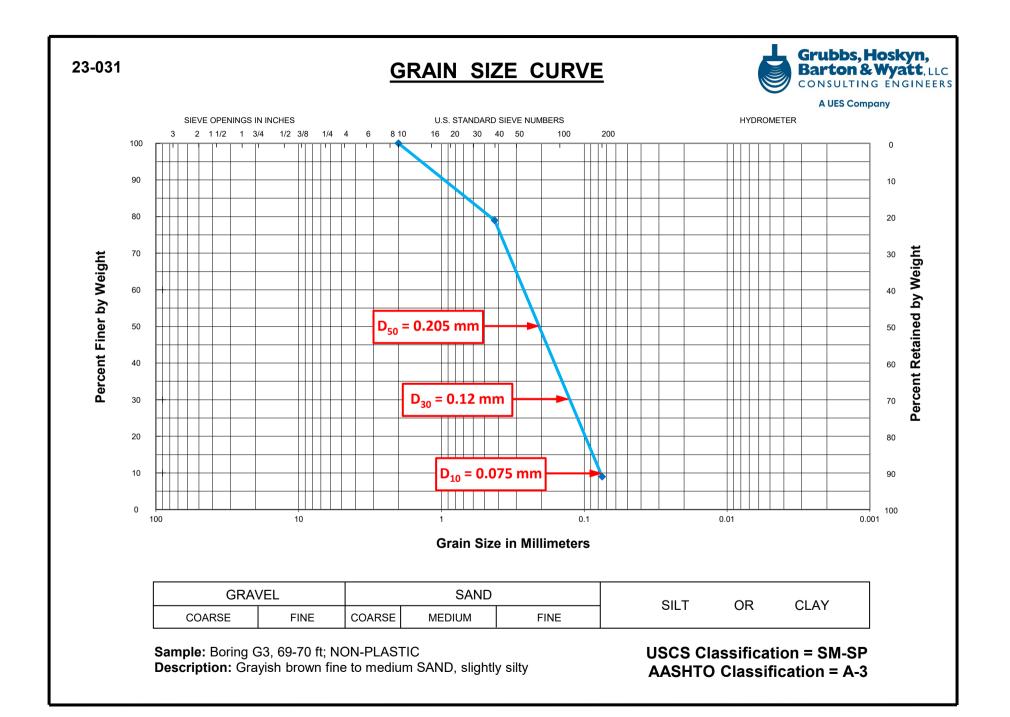


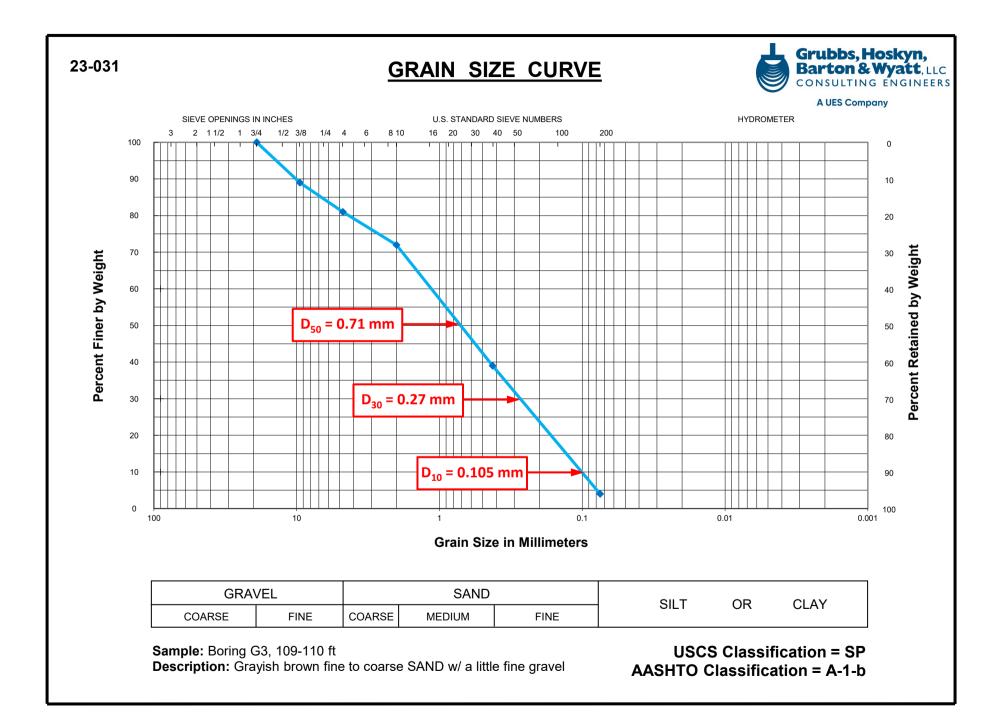


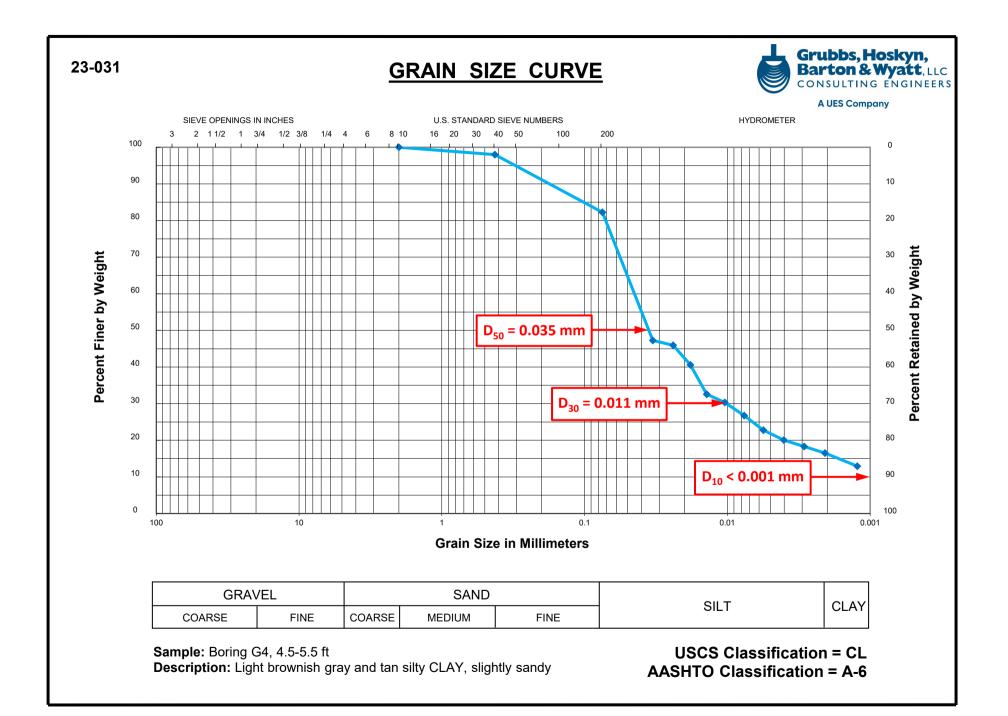


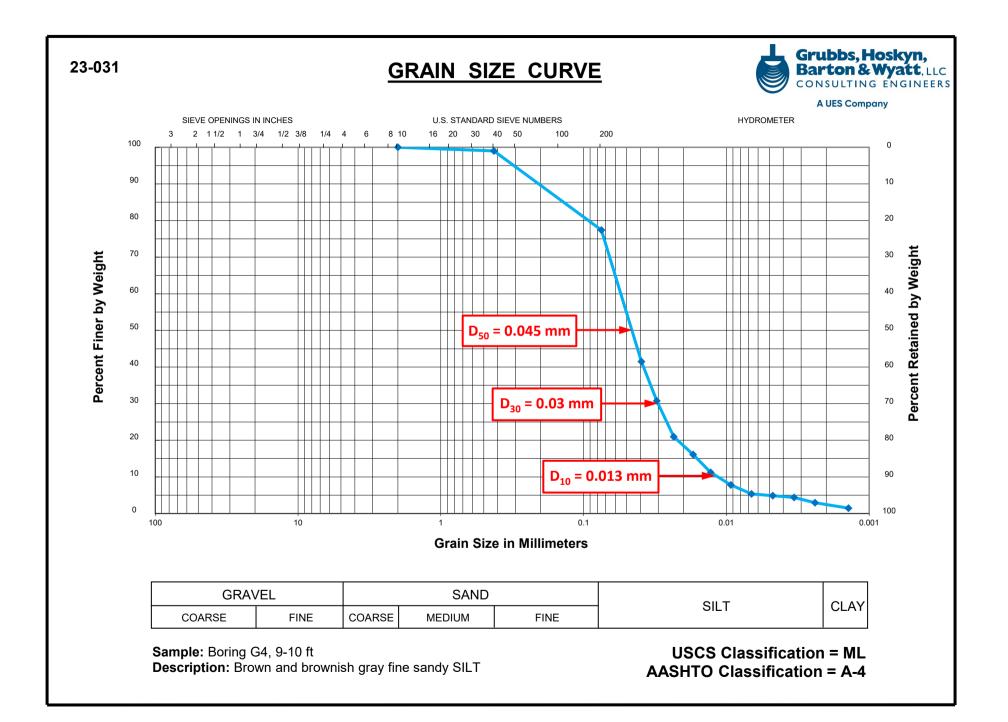


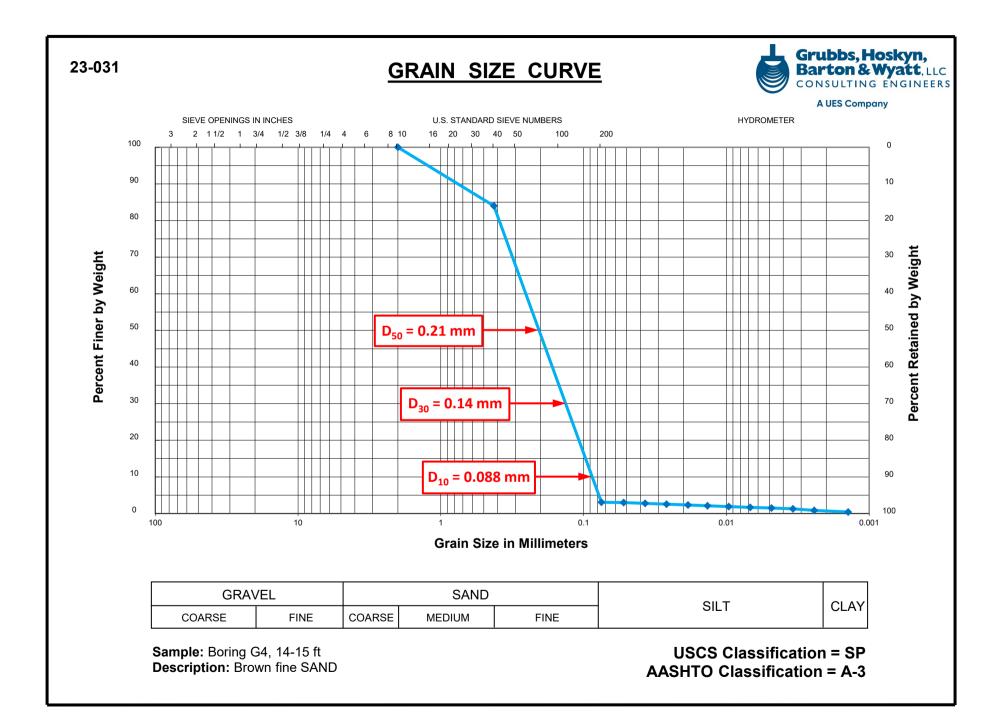


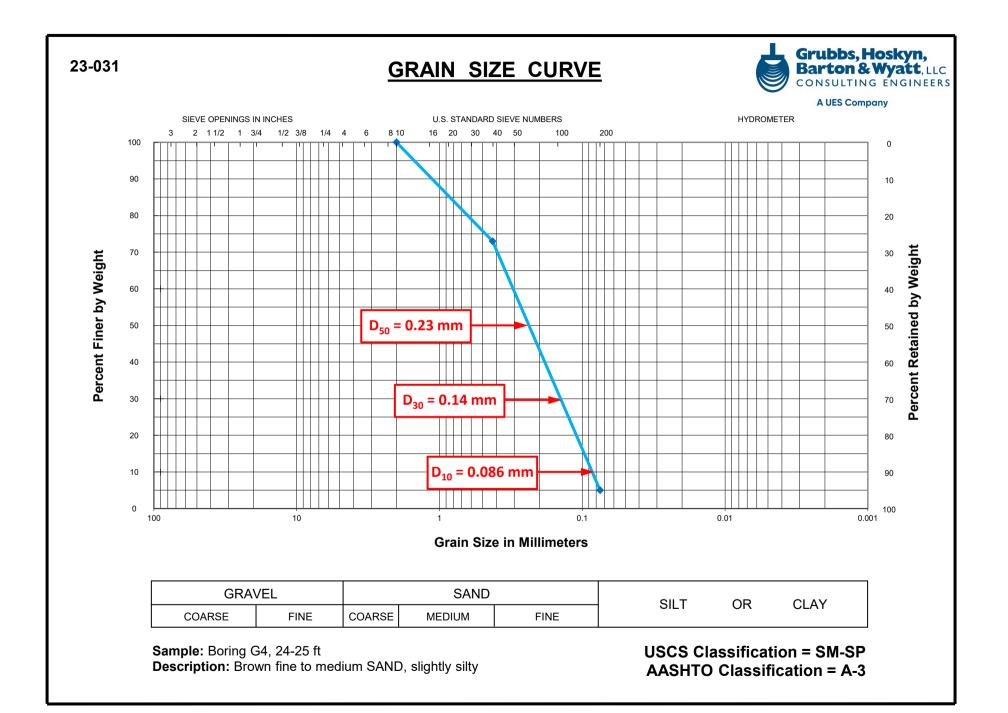


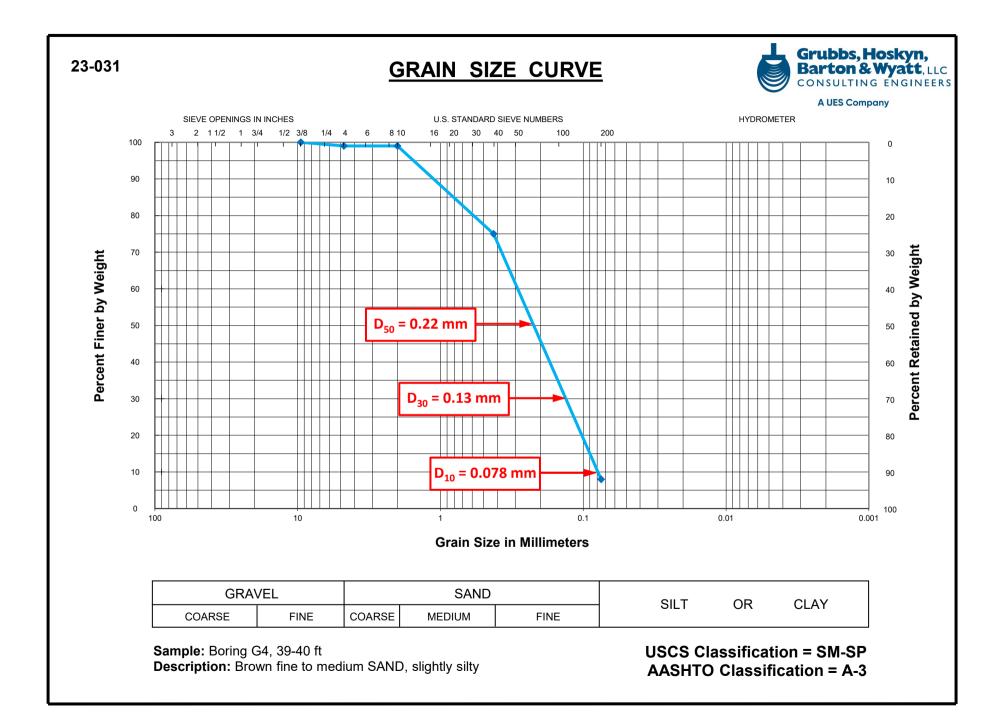


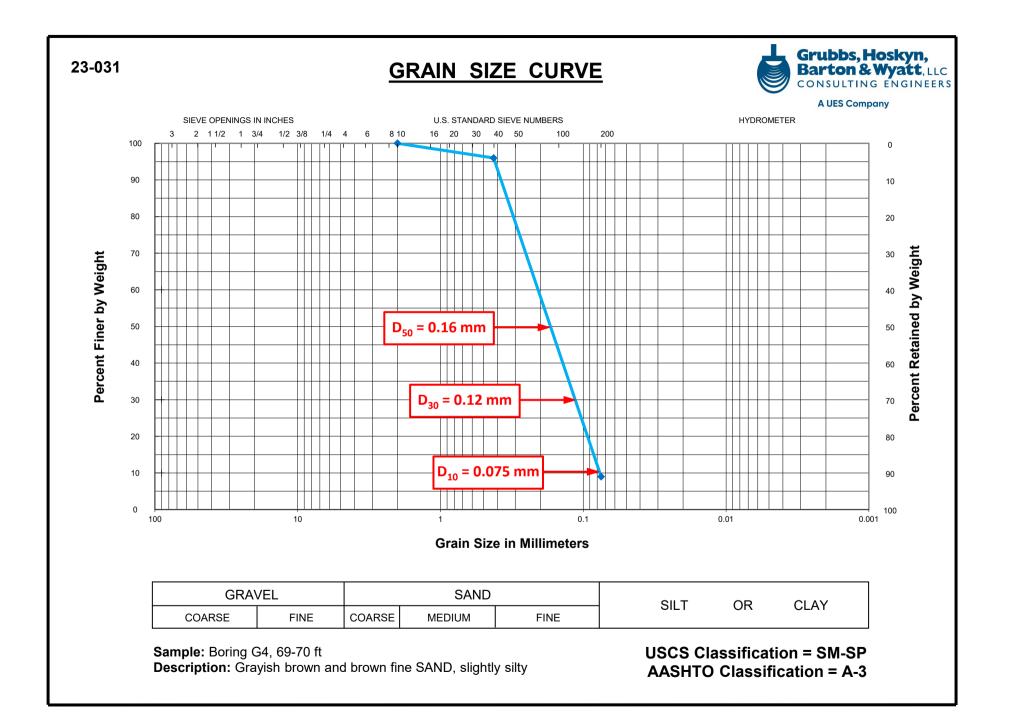


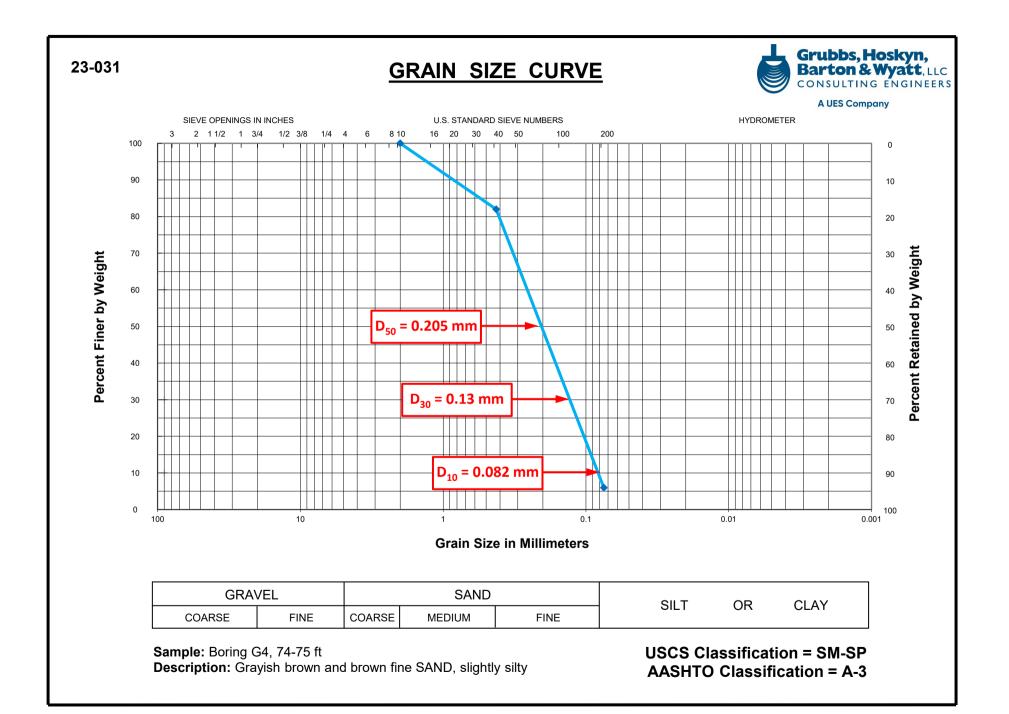


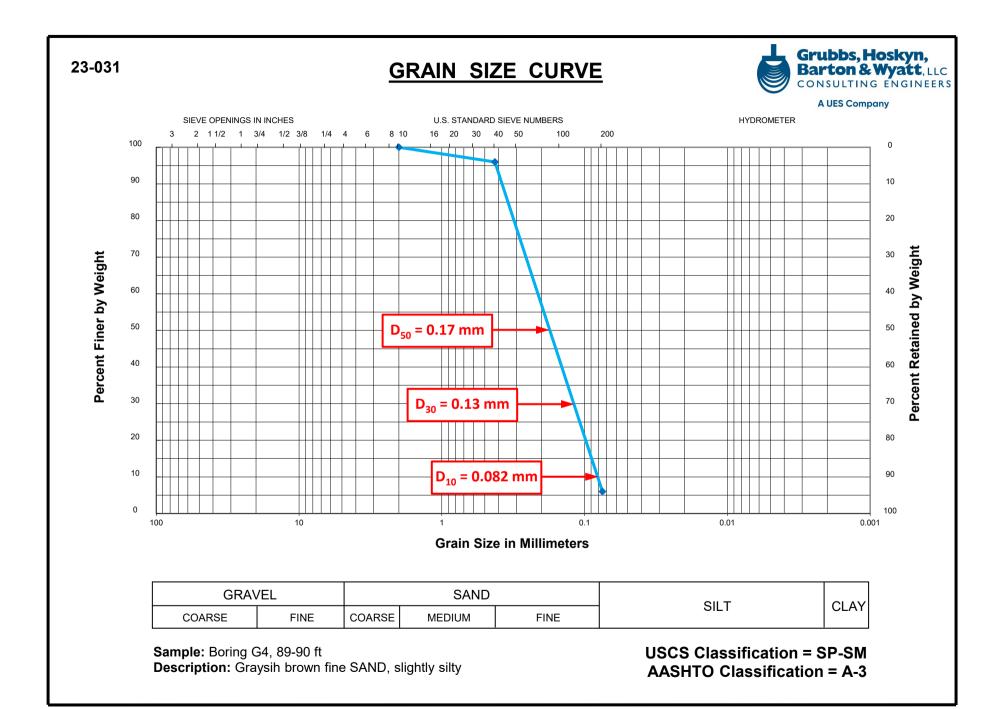


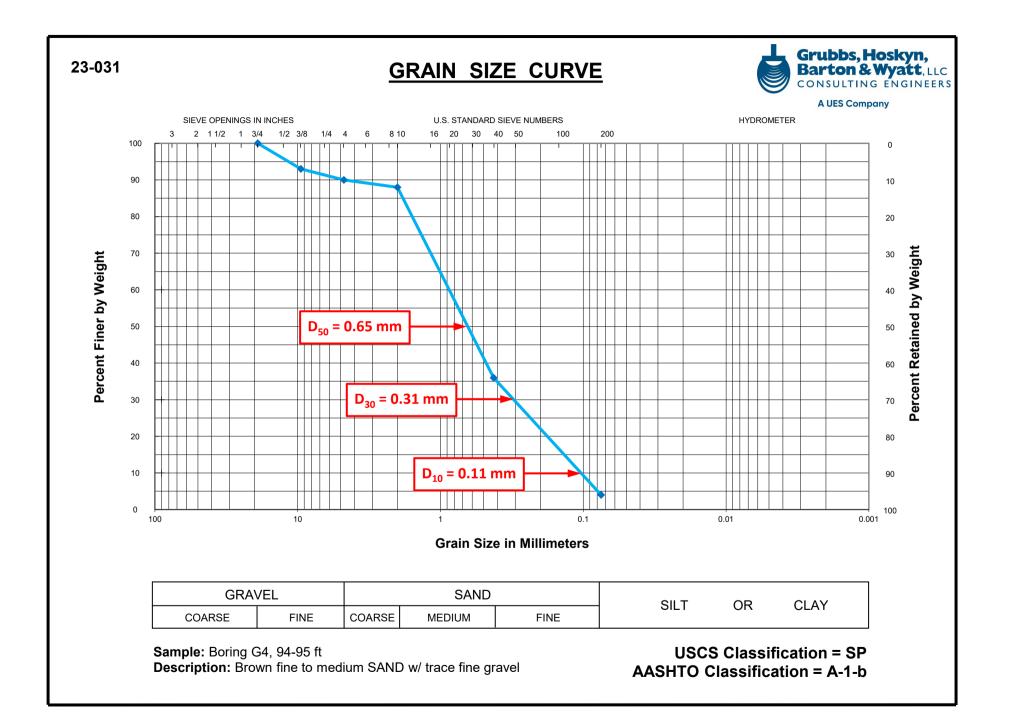


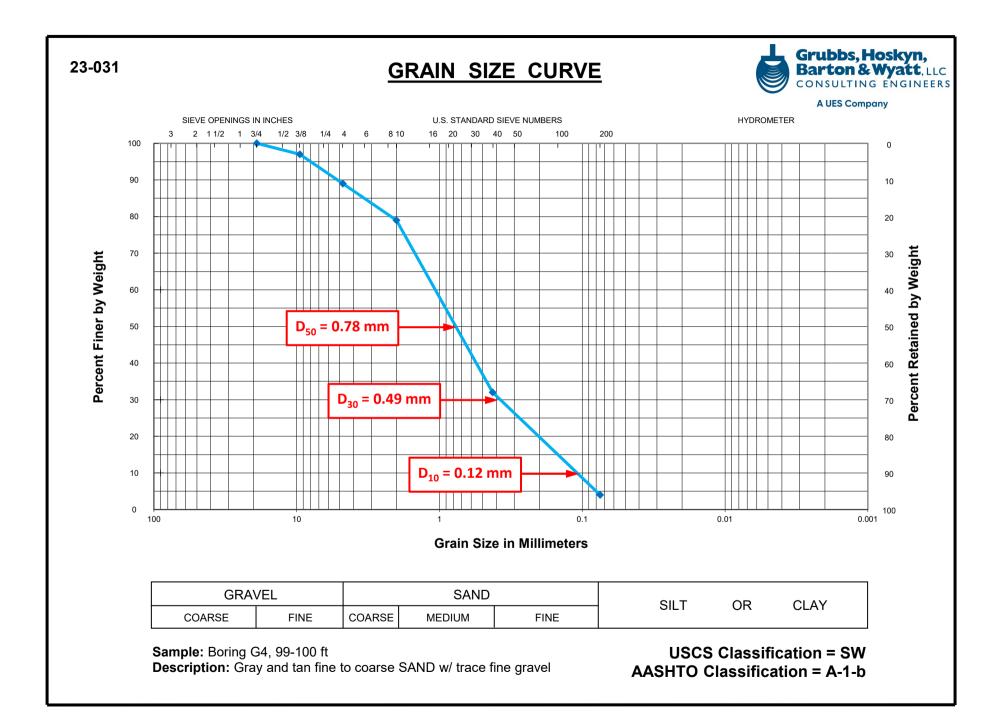


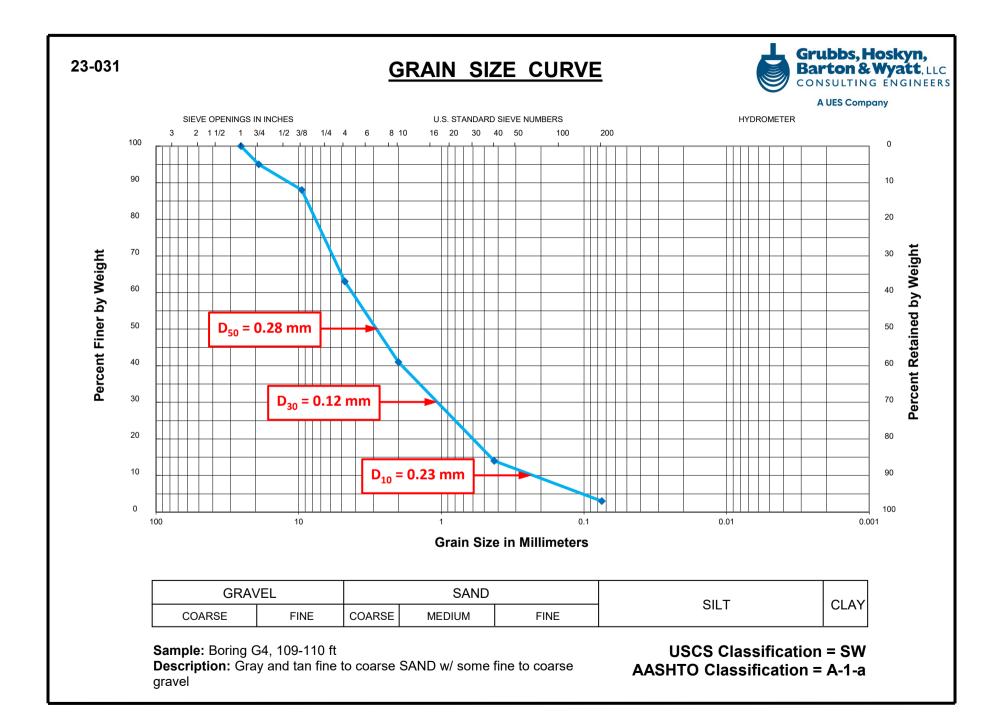


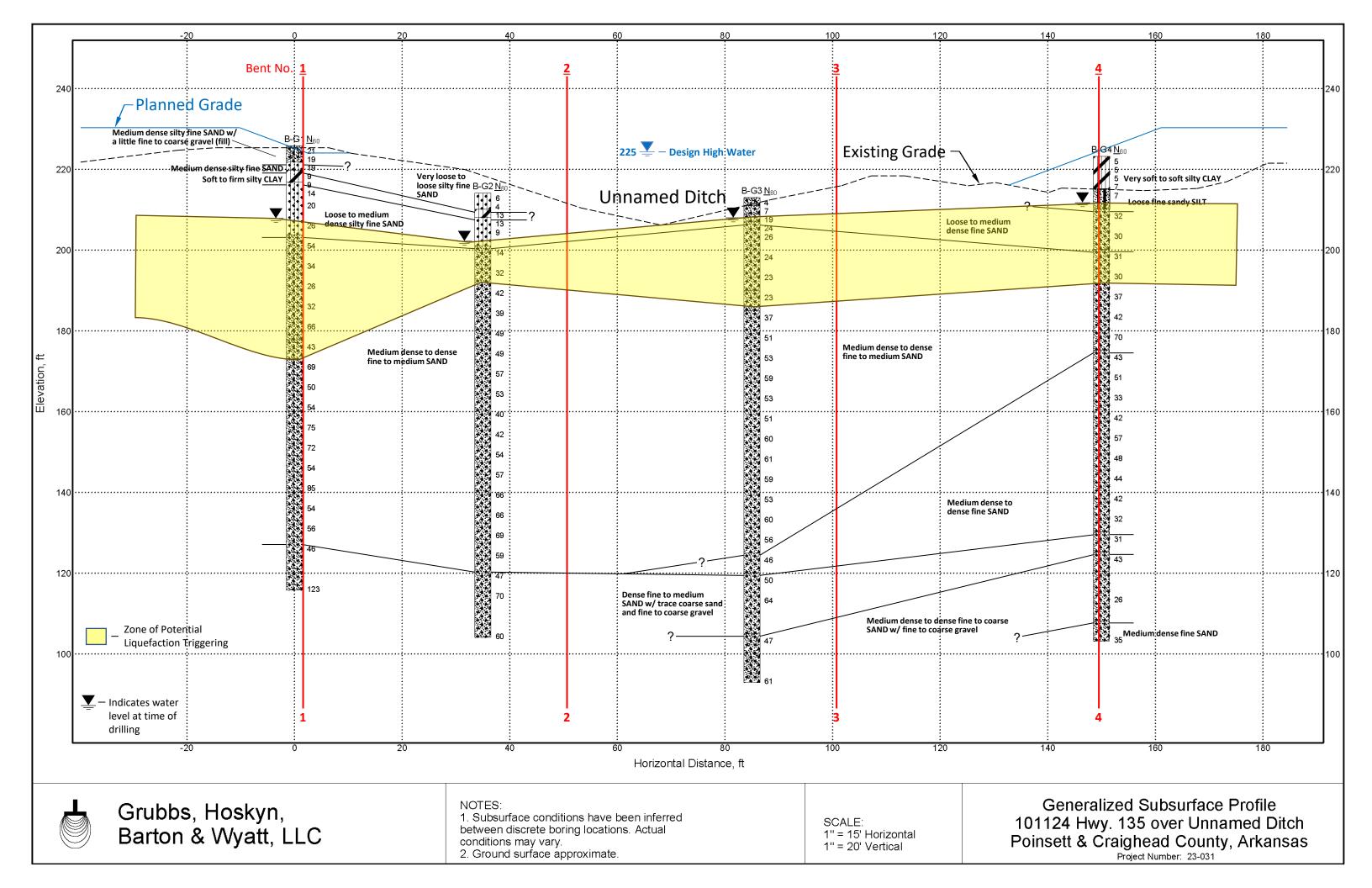




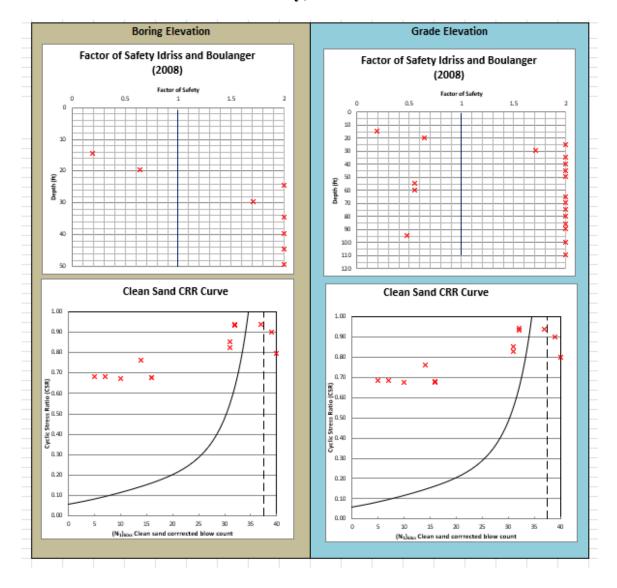




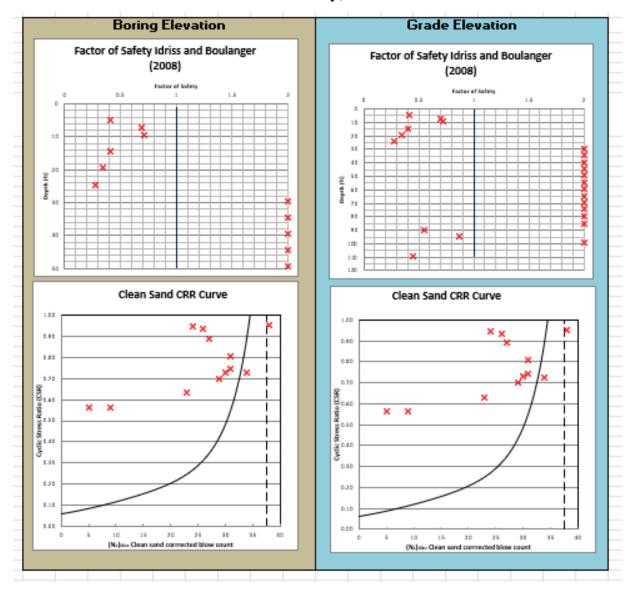




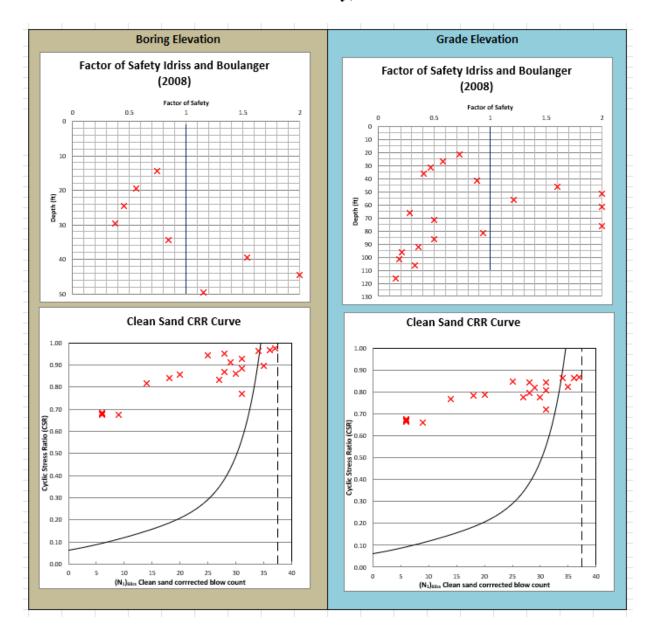
APPENDIX D



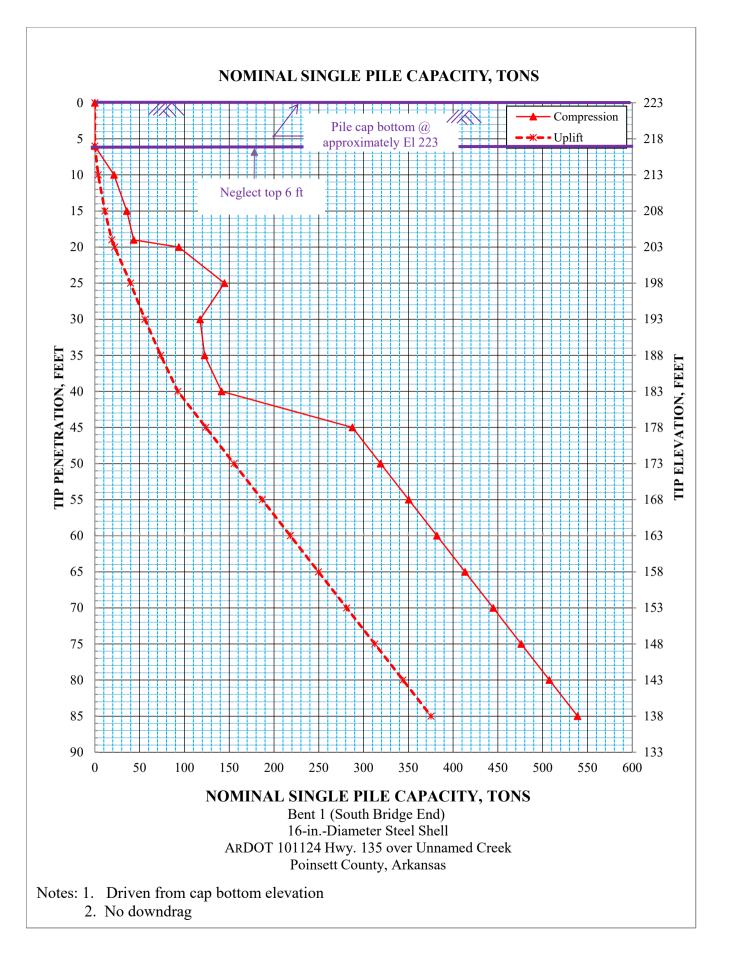
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Unnamed Ditch Bent 1 / Boring G1 GHBW Job No. 23-031 Poinsett County, Arkansas

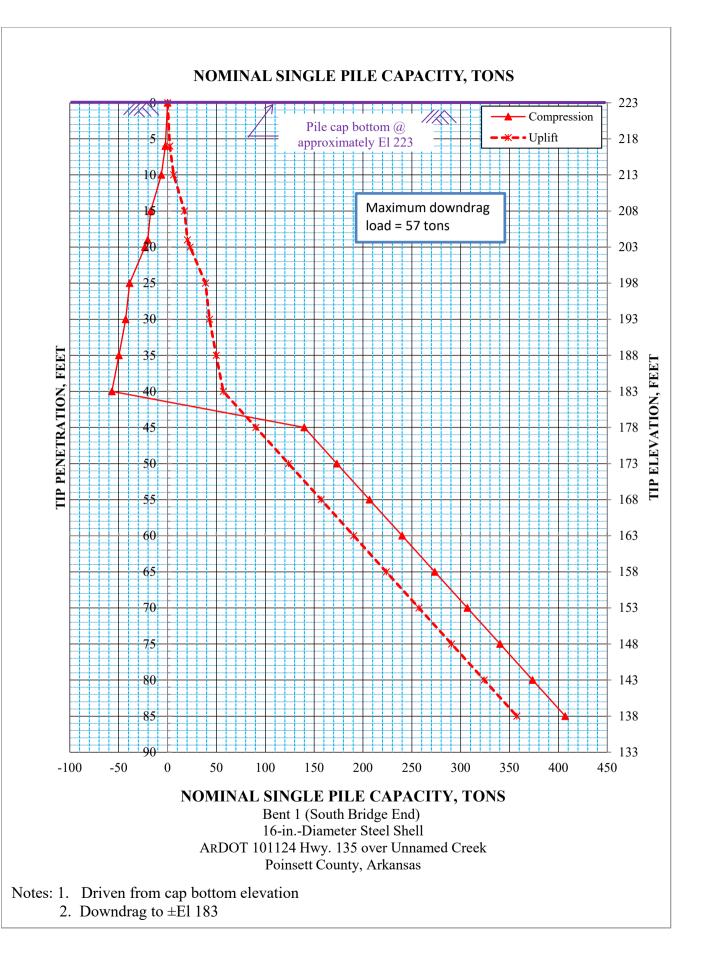


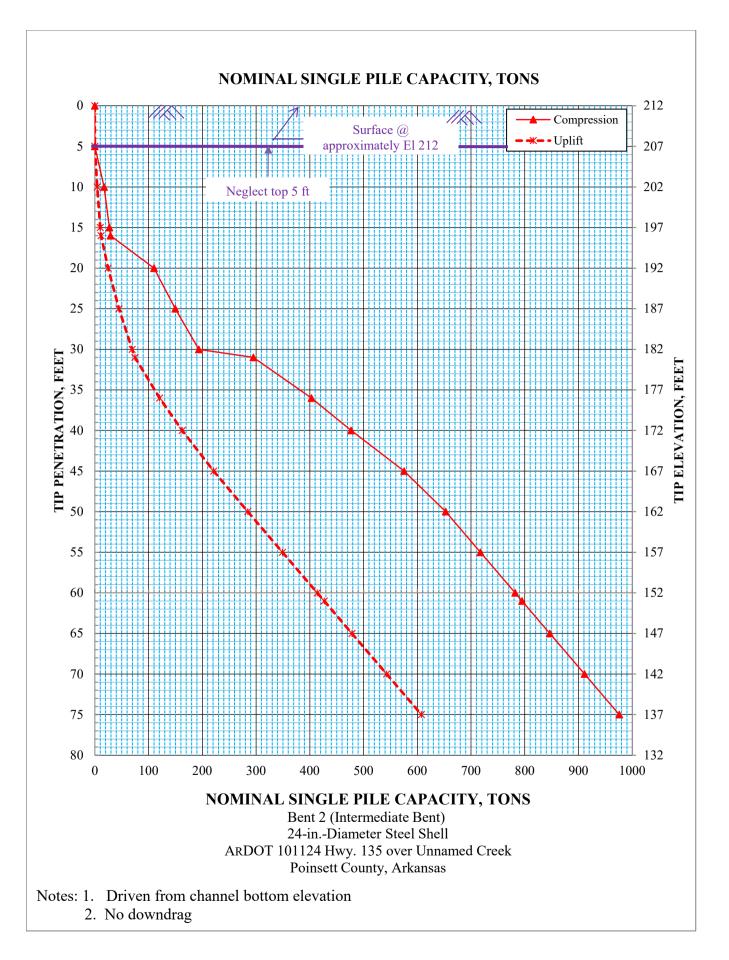
Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Unnamed Ditch Bent 2 / Boring G2 GHBW Job No. 23-031 Poinsett County, Arkansas

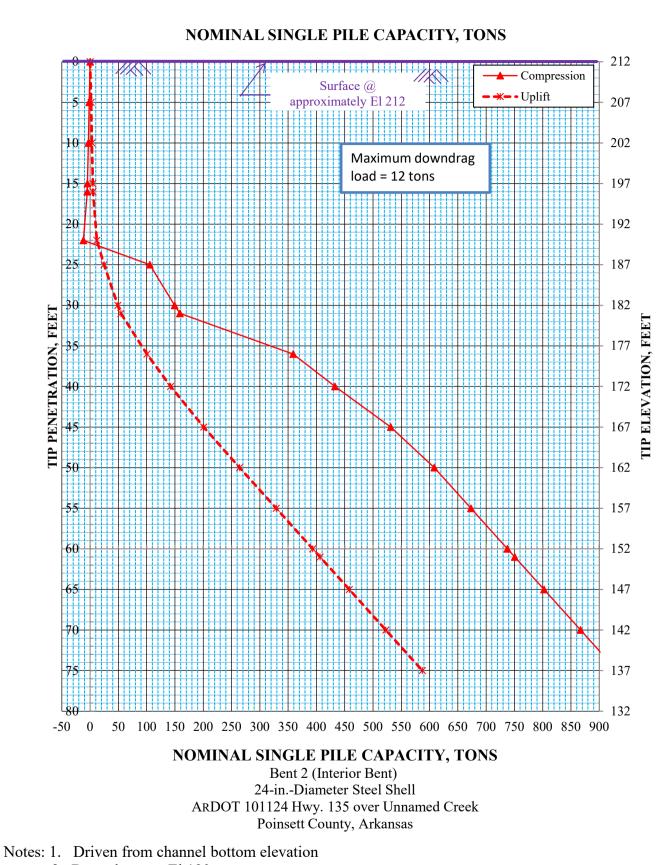


Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Unnamed Ditch Bent 3 / Boring G3 GHBW Job No. 23-031 Poinsett County, Arkansas

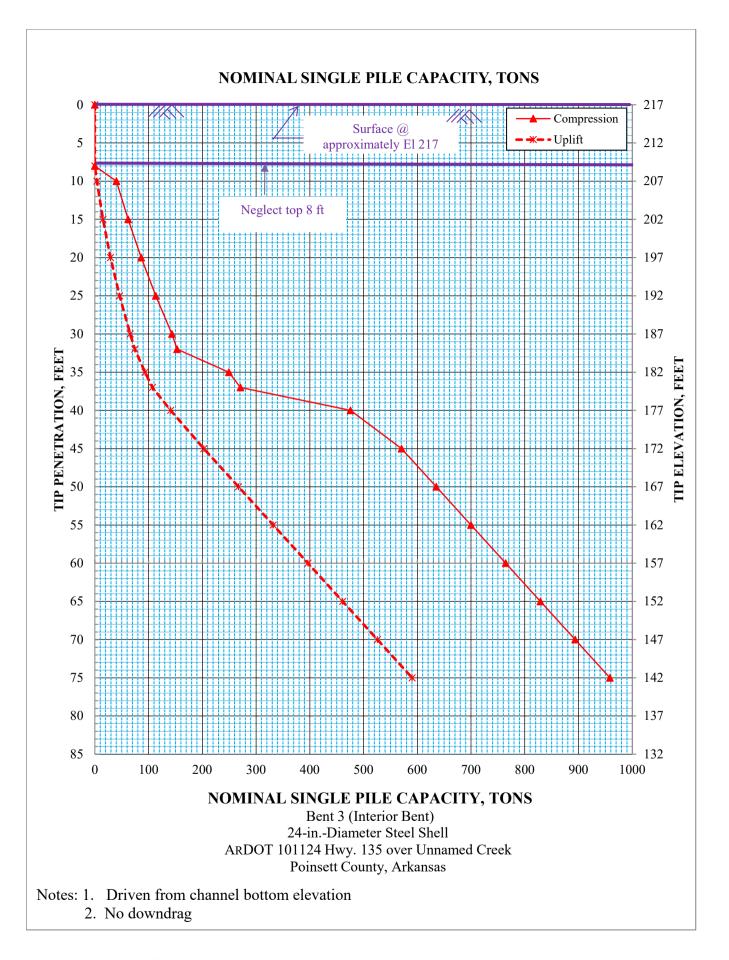


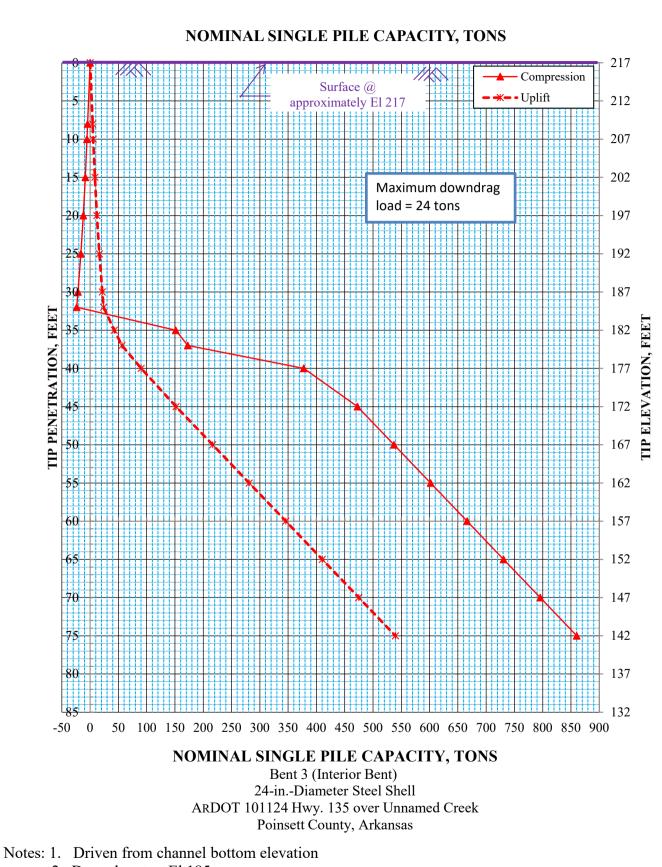

Liquefaction Analysis Results ARDOT 101124 Hwy 135 over Unnamed Ditch Bent 4 / Boring G4 GHBW Job No. 23-031 Poinsett County, Arkansas

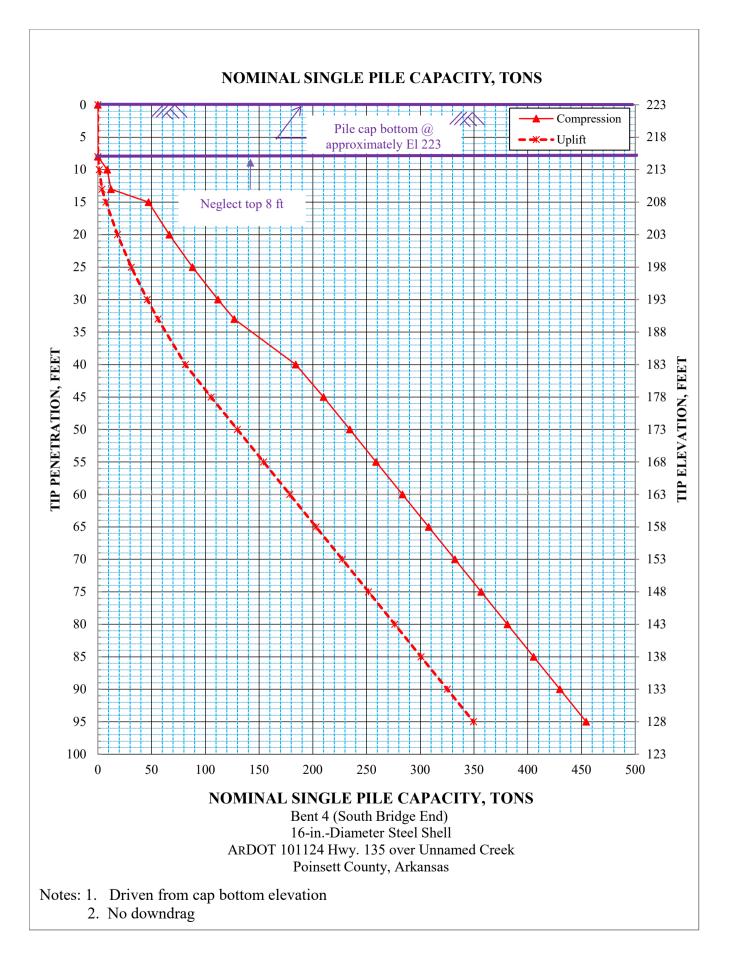


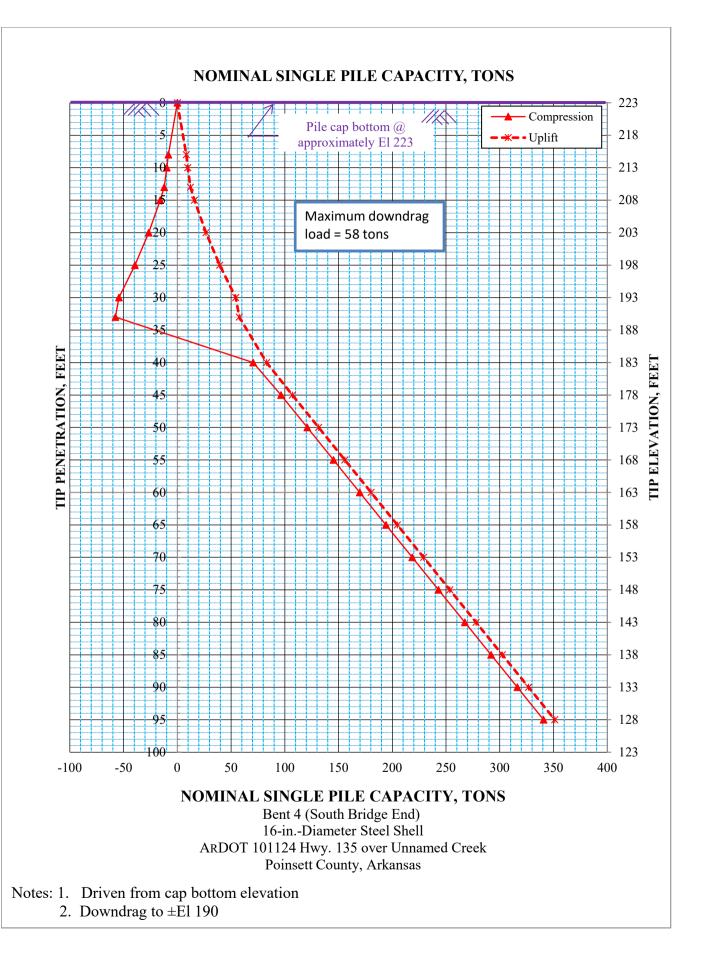


APPENDIX E








2. Downdrag to \pm El 190

2. Downdrag to \pm El 185

APPENDIX F

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Generalized Stratigraphy	Stiff sandy CLAY fill	Firm silty CLAY	Medium dense silty fine SAND	Medium dense to dense fine SAND	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-3	3-6	6-19	19-40	40 and deeper
Approximate El, ft	223-220	220-217	217-204	204-183	below 183
Recommend soil type	Sand (Reese)	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	118	110	118	58	63
Cohesion (c), lbs per sq ft	0	750	0	0	0
Angle of internal friction $(\phi), \circ$	32	0	32	35	38
Subgrade modulus (k), lbs per cu in.	25	100	60	90	125
Strain at 50% (EE50)	NA	0.01	NA	NA	NA

Note: Pile cap bottom at ±El 223

Seismic Loading with Liquefaction

Bent 1: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Stiff sandy CLAY fill	Firm silty CLAY	Medium dense silty fine SAND	Medium dense to dense fine SAND (liquefiable)	Dense to very dense fine to medium SAND
Depth below pile cap bottom, ft	0-3	3-6	6-19	19-40	40 and deeper
Approximate El, ft	223-220	220-217	217-204	204-183	below 183
Recommend soil type	Sand (Reese)	Stiff clay without free water	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	118	110	118	58	63
Cohesion (c), lbs per sq ft	0	750	0	0	0
Angle of internal friction $(\phi), \circ$	32	0	32	11	38
Subgrade modulus (k), lbs per cu in.	25	100	60	20	125
Strain at 50% (EE50)	NA	0.01	NA	NA	NA

Note: Pile cap bottom at ±El 223

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 2: Recommended Parameters for Lateral Load Analyses Using	LPILE©
--	--------

Generalized Stratigraphy	Loose silty fine SAND	Loose silty fine SAND	Medium dense fine SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-9	9-16	16-31	31-60	60 and deeper
Approximate El, ft	212-203	203-196	196-181	196-152	below 152
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	48	60	65	68
Cohesion (c), lbs per sq ft	0	0	0	0	0
Angle of internal friction (ϕ) , °	28	28	35	37	38
Subgrade modulus (k), lbs per cu in.	25	20	80	115	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA

Note: Ground surface at ±El 212

Seismic Loading with Liquefaction

Bent 2: Recommended Parameters for Lateral Load Analyses Using LPILE©

Generalized Stratigraphy	Loose silty fine SAND	Loose silty fine SAND (liquefiable)	Medium dense fine SAND (liquefiable)	Medium dense fine SAND	Dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-9	9-16	16-22	22-31	31-60	60 and deeper
Approximate El, ft	212-203	203-196	196-190	190-181	196-152	below 152
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	48	60	60	65	68
Cohesion (c), lbs per sq ft	0	0	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	8	11	35	37	38
Subgrade modulus (k), lbs per cu in.	25	20	20	80	115	125
Strain at 50% (EE50)	NA	NA	NA	NA	NA	NA

Note: Ground surface at ±El 212

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading
Bent 3: Recommended Parameters for Lateral Load Analyses Using LPILE®

Generalized Stratigraphy	Loose silty fine SAND	Medium dense fine SAND	Medium dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-32	32-37	37 and deeper
Approximate El, ft	217-209	209-185	185-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	56	60	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	32	35	38
Subgrade modulus (k), lbs per cu in.	25	50	80	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 217

Seismic Loading with Liquefaction

Generalized Stratigraphy	Loose silty fine SAND	Medium dense fine SAND (liquefiable)	Medium dense fine to medium SAND	Dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-32	32-37	37 and deeper
Approximate El, ft	217-209	209-185	185-180	below 180
Recommend soil type	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	56	60	68
Cohesion (c), lbs per sq ft	0	0	0	0
Angle of internal friction $(\phi), \circ$	28	8	35	38
Subgrade modulus (k), lbs per cu in.	25	20	80	125
Strain at 50% (EE50)	NA	NA	NA	NA

Note: Ground surface at ±El 217

LOCATION: Poinsett County, Arkansas GHBW JOB NUMBER: 23-031

Static Loading

Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

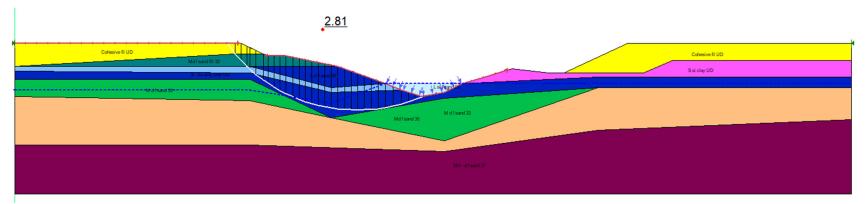
Generalized Stratigraphy	Firm silty CLAY	Loose silty fine SAND	Medium dense silty fine SAND	Medium dense fine SAND	Medium dense to dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-13	13-30	30-33	33 and deeper
Approximate El, ft	223-215	215-210	210-193	193-190	below 190
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	110	60	60	63
Cohesion (c), lbs per sq ft	500	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	28	35	34	36
Subgrade modulus (k), lbs per cu in.	30	25	60	60	90
Strain at 50% (EE50)	0.02	NA	NA	NA	NA

Note: Pile cap bottom at ±El 223

Seismic Loading with Liquefaction

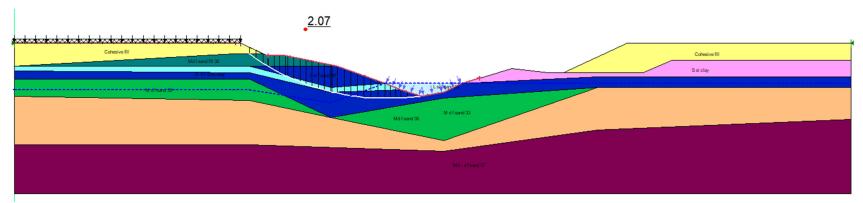
Bent 4: Recommended Parameters for Lateral Load Analyses Using LPILE©

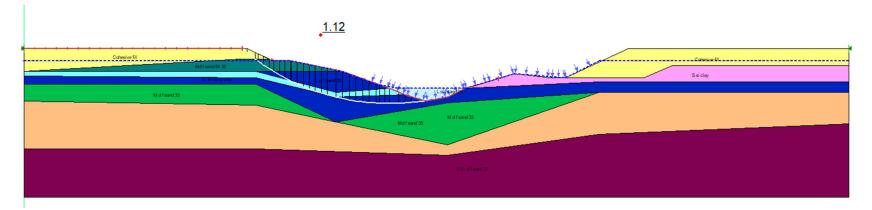
Generalized Stratigraphy	Firm silty CLAY	Loose silty fine SAND	Medium dense silty fine SAND	Medium dense fine SAND (liquefiable)	Medium dense to dense fine to medium SAND
Depth below pile cap bottom, ft	0-8	8-13	13-30	30-33	33 and deeper
Approximate El, ft	223-215	215-210	210-193	193-190	below 190
Recommend soil type	Soft clay	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Effective unit weight (γ), lbs per cu ft	110	110	60	60	63
Cohesion (c), lbs per sq ft	500	0	0	0	0
Angle of internal friction $(\phi), \circ$	0	28	35	11	36
Subgrade modulus (k), lbs per cu in.	30	25	60	20	90
Strain at 50% (EE50)	0.02	NA	NA	NA	NA

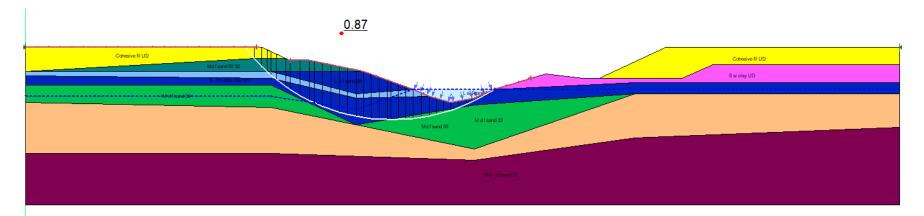

Note: Pile cap bottom at ±El 223

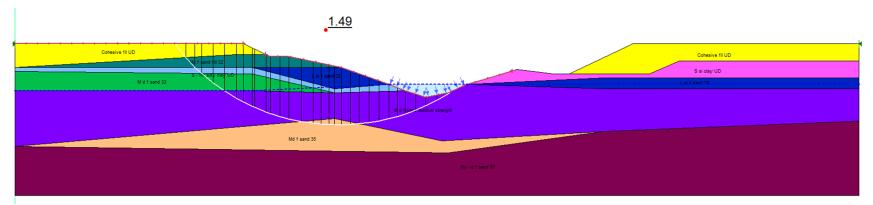
APPENDIX G

Summary of Stability Analysis Results ARDOT 101124 Hwy 135 over Unnamed Ditch GHBW Job No. 23-031 Poinsett County, Arkansas

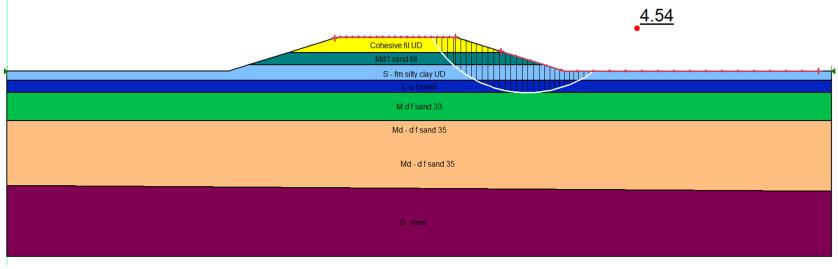

	Design Loading Condition	Calculated Minimum Factor of Safety
South End Slope (Bent 1) (2H:1V)	End of Construction	2.81
	Long Term	2.07
	Rapid Drawdown from El 225 to El 212	1.12
	Seismic ($k_h = A_S/2 = 0.5235$)	0.87
	Lateral Spread	1.49
South Side Slope (Bent 1) (3H:1V)	End of Construction	4.54
	Long Term	2.32
	Rapid Drawdown from El 225 to Existing Grade	2.51
	Seismic ($k_h = A_S/2 = 0.5235$	1.33
North End Slope (Bent 4) (2H:1V)	End of Construction	3.42
	Long Term	2.00
	Rapid Drawdown from El 225 to El 212	1.30
	Seismic ($k_h = A_S/2 = 0.5235$)	0.88
	Lateral Spread	1.33
North Side Slope (Bent 4) (3H:1V)	End of Construction	4.10
	Long Term	2.16
	Rapid Drawdown from El 225 to Existing Grade	1.23
	Seismic ($k_h = A_S/2 = 0.5235$	1.06


Results of Stability Analyses – End of Construction Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

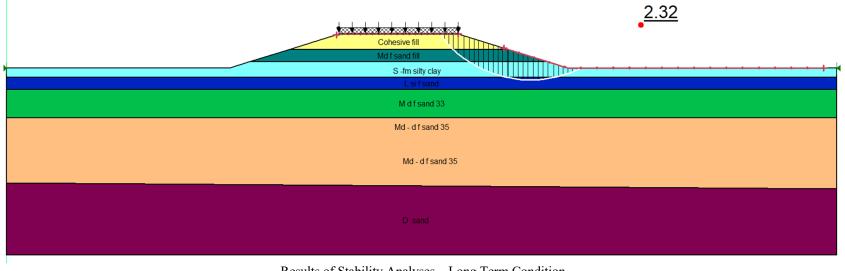

Results of Stability Analyses – Long Term Condition Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch


Results of Stability Analyses – Rapid Drawdown Condition from El 225 to El 212 Bent 1 End Slope 2H:1V Slope, H=25 ft \pm 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

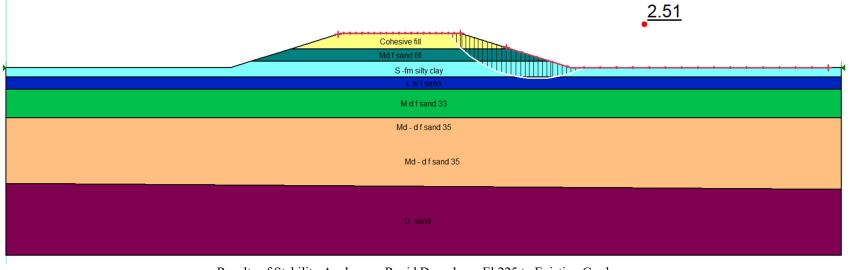
 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 1 End Slope} \\ \mbox{2H:1V Slope, H=25 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Unnamed Ditch} \end{array}$

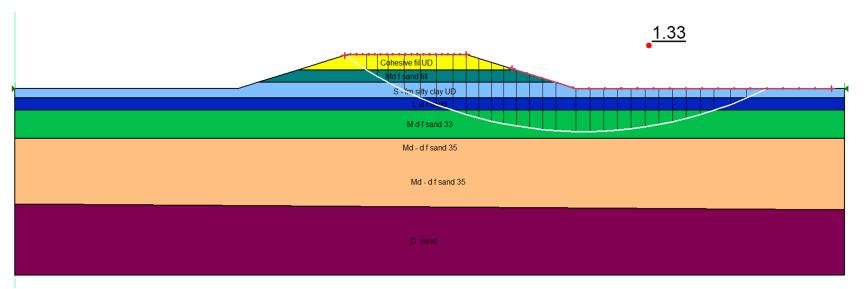


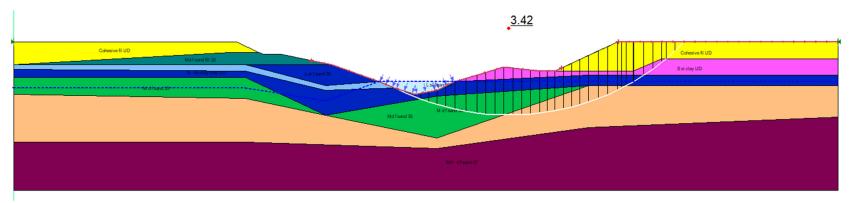
Results of Stability Analyses – Lateral Spread Bent 1 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

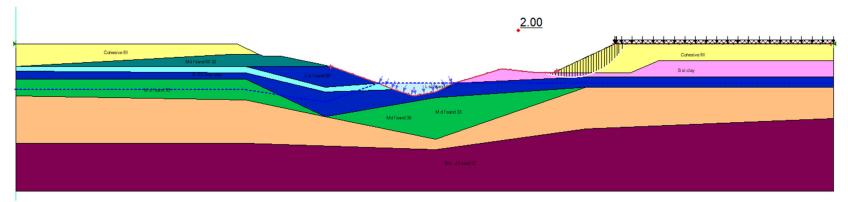


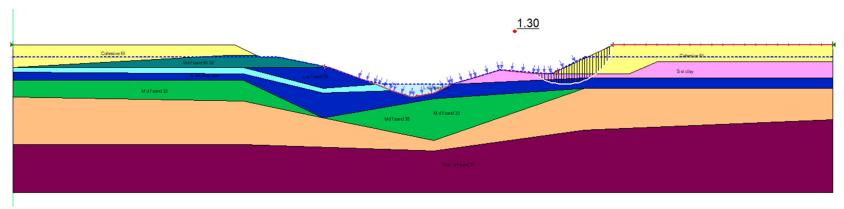
1

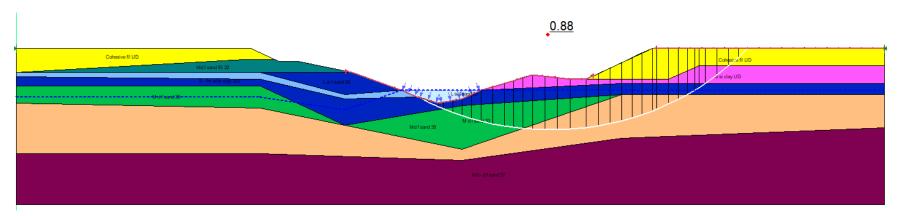

Results of Stability Analyses – End of Construction Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

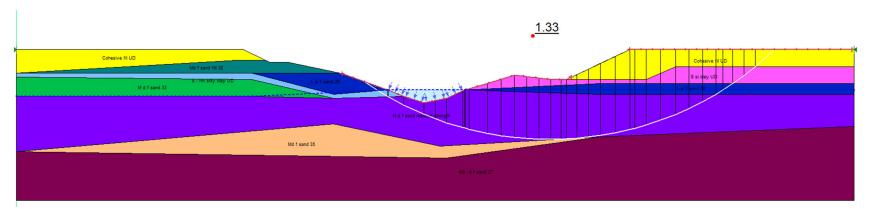

Results of Stability Analyses – Long Term Condition Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

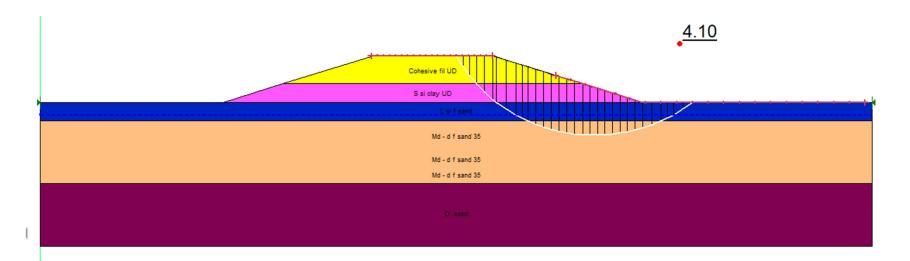

Results of Stability Analyses – Rapid Drawdown El 225 to Existing Grade Bent 1 Side Slope 3H:1V Slope, H=11 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

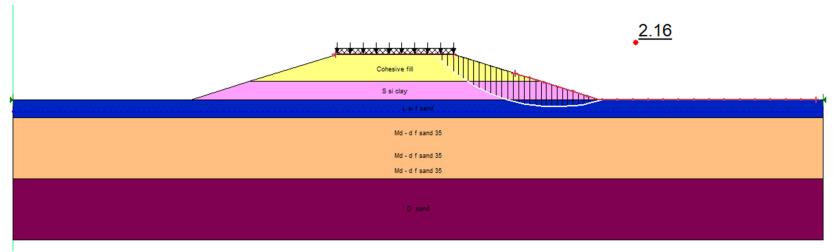

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 1 Side Slope} \\ \mbox{3H:1V Slope, H=11 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Unnamed Ditch} \end{array}$

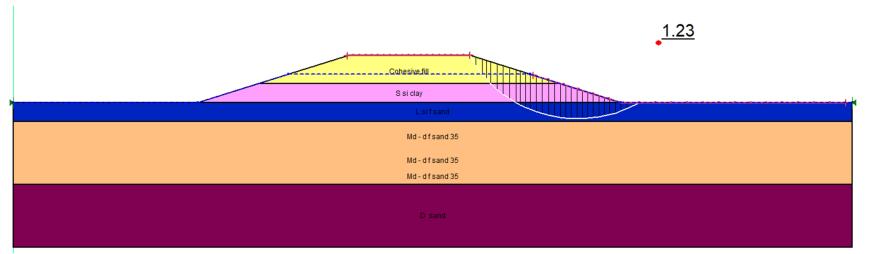

Results of Stability Analyses – End of Construction Bent 4 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

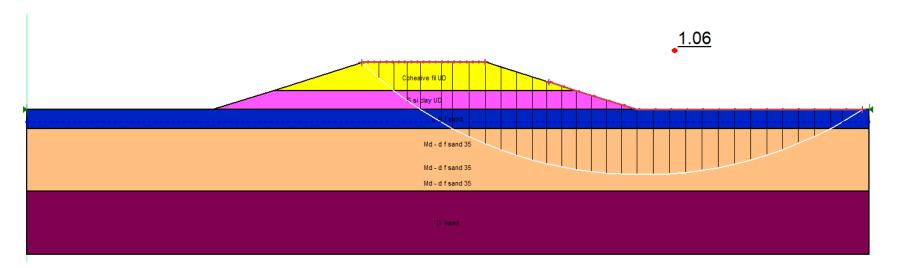

Results of Stability Analyses – Long Term Condition Bent 4 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch


Results of Stability Analyses – Rapid Drawdown Condition, El 225 to El 212 Bent 4 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch


 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition} (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 4 End Slope} \\ \mbox{2H:1V Slope, H=25 ft} \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Unnamed Ditch} \end{array}$


Results of Stability Analyses – Lateral Spread Bent 4 End Slope 2H:1V Slope, H=25 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch


Results of Stability Analyses – End of Construction Bent 4 Side Slope 3H:1V Slope, H=15 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch


Results of Stability Analyses – Long Term Condition Bent 4 Side Slope 3H:1V Slope, H=15 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

Results of Stability Analyses – Rapid Drawdown Condition, El 225 to Existing Grade Bent 4 Side Slope 3H:1V Slope, H=15 ft ± 23-031 – ARDOT Job No. 101124 – Hwy. 35 over Unnamed Ditch

 $\begin{array}{l} \mbox{Results of Stability Analyses - Seismic Condition (k_h = A_S / 2 = 0.5235) \\ \mbox{Bent 4 Side Slope} \\ \mbox{3H:1V Slope, H=15 ft } \pm \\ \mbox{23-031 - ARDOT Job No. 101124 - Hwy. 35 over Unnamed Ditch} \end{array}$

APPENDIX H

ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

SPECIAL PROVISION

JOB 100955

WOVEN GEOTEXTILE FABRIC FOR SUBGRADE REINFORCEMENT

Description: This item shall consist of furnishing and installing a woven geotextile for subgrade reinforcement system in close conformity with the lines, grades and dimensions as established by the Engineer.

Materials: Geotextile fabric shall be woven synthetic fiber fabric meeting the following requirements:

The geotextile structure shall remain dimensionally stable under construction stresses and have a high resistance to damage during construction, to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced.

Provide a woven geotextile with a minimum tensile strength of 1500 lbs/ft in the Cross Machine Direction (CD) at 5 percent strain and minimum tensile strength of 1500 lbs/ft in the Machine Direction (MD) at 5 percent strain when tested in accordance with ASTM D4595. The geotextile fabric shall also meet the requirements of Type 10 geotextile fabric as described in Section 625 of the Standard Specifications for Highway Construction 2014 Edition.

Identify, store and handle geotextile according to ASTM D4873. Limit geotextile fabric exposure to ultraviolet radiation to less than 10 days.

The Contractor shall furnish to the Engineer a production certification that the geotextile supplied meets the respective criteria set forth in these specifications. The certification shall state the name of the Manufacturer, product name, style number, chemical composition of the filaments, ribs, or yarns, and other information to fully describe the fabric. The Manufacturer shall have an on-site GAI-LAP accredited laboratory used for their quality control program. The production lot number must be provided with the supplied material. Quality control test results shall be provided upon request by the Engineer. Independent third party test data used to identify values for creep, durability and installation damage must be included with the production certification.

Construction Methods: The woven geotextile fabric shall be installed at locations shown in the plans or as directed by the Engineer and shall follow Manufacturer's installation requirements. The woven geotextile fabric shall be oriented such that the roll length is oriented parallel to the centerline. Adjacent rolls shall be overlapped a minimum of 2 feet and shall be tied together using pins or staples, unless otherwise recommended by the Manufacturer. Care shall be taken to ensure that the geotextile fabric sections do not separate at longitudinal or transverse laps during construction. The placement of the geotextile fabric around corners may require cutting and diagonal lapping.

SPECIAL PROVISION - WOVEN GEOTEXTILE FOR SUBGRADE REINFORCEMENT

The geotextile fabric shall be pinned at the beginning of the roll but shall be left free elsewhere to relieve wrinkles or folds in the material during the placement of stone backfill or base material. Sections of geotextile fabric which are damaged by construction activity shall be repaired or replaced at the Contractor's expense.

Rubber-tired vehicles shall be driven at speeds less than 10 mph and in straight paths over the fabric. A minimum fill thickness of 6 in. is required prior to operation of tracked construction equipment over the fabric. Tracked construction equipment shall not be operated directly upon fabric.

Method of Measurement: Woven Geotextile Fabric will be measured by the square yard of horizontal surface area covered by the material. No measurement will be made for lapping of the material required by the plans or required by the Manufacturers installation requirements.

Basis of Payment: Work completed and accepted and measured as provided will be paid for at the contract unit price bid per square yard for Woven Geotextile Fabric, which price shall be full compensation for furnishing, storing, and placing materials; for lapping and/or splicing; for necessary repairs; and for all labor, equipment, tools, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Woven Geotextile Fabric Pay Unit Square Yard

APPENDIX I

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

Description. This Special Provision shall be supplementary to Section 210, Excavation and Embankment, of the Standard Specifications, Edition of 2014. The following sentence shall be added after the last sentence of the first paragraph in Subsection 210.09 of the Standard Specifications, "The Contractor shall be responsible for maintaining the stability of all embankment materials incorporated into the project." This special provision shall apply to all compacted embankment within 100 ft of the bridge end slope intercept.

Highly plastic or predominantly silty soils shall not be used in embankments without chemical treatment. All embankment material, including material excavated from cut areas within the project limits, placed by the Contractor shall be evaluated in accordance with Table 1. Chemical treatment required by Table 1 for material placed by the Contractor shall be provided at no additional cost to the Department. Blending of multiple soil materials will not be allowed. Cut material not utilized on the project shall be removed from the project limits at no additional cost to the Department.

% Passing #200 Sieve	Plasticity Index	Treatment
$\leq 50\%$	No Limitations	4% Portland Cement
>50%	$PI \leq 9$	4% Portland Cement
>50%	$9 < PI \le 25$	None Required
>50%	$25 < PI \le 35$	4% Quicklime (dry)
>50%	PI > 35	6% Quicklime (dry)

Table 1. Treatment requirements for Compacted Embankment

Soils with \leq 50 percent passing the #200 sieve shall not be used in the outer 18 in. of embankments without approved cement treatment.

The quantity of chemical treatment required by this Special Provision shall be calculated by multiplying the percent of treatment required in Table 1 by the Maximum Dry Unit Weight of the material being treated and the volume of soil being treated. Layer thickness for this calculation shall be the loose, uncompacted lift thickness.

Example: Maximum Dry Unit Weight = 110 lb/cf Treatment Required = 4% Volume of Soil = 12,000 cf

 $(110 \text{ lb/cf} \times (4/100) \times 12,000 \text{ cf}) / (2000 \text{ lb/ton}) = 26.4 \text{ Tons}$

Quality Control and Acceptance. The Contractor shall perform quality control and acceptance sampling and testing of all embankment material in accordance with Subsection 210.02 of the Standard Specifications. Additionally, the Contractor shall perform testing for gradation and

ARKANSAS DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION

JOB NO. 101124

COMPACTED COHESIVE EMBANKMENT

plasticity index for all embankment material in accordance with Section 306 of the Standard Specifications except that the size of the standard lot will be 3000 cubic yards. If quicklime is utilized, maximum laboratory density and optimum moisture shall be determined from a field sample obtained after initial mixing. If cement is utilized, maximum laboratory density and optimum moisture shall be determined in accordance with AASHTO T 134-19. Additional testing may be required when deemed necessary by the Engineer based on visual examination of the material.

Construction Requirements. Spreading and mixing of material shall be performed at its final location. The spreading and mixing procedures shall thoroughly and uniformly disperse the lime or cement additive into the soil. Chemical treatment shall be mixed and processed throughout the entire depth of each lift. Mixing shall be accomplished by means of rotary tillers, pulvimixers, or mechanical equipment as approved by the Engineer. Any procedure that results in excessive loss of lime or that does not achieve the desired results shall be immediately discontinued. Acceptance of material shall be in accordance with the Quality Control and Acceptance section of this special provision for in- place material.

Method of Measurement. All embankments constructed as described above will be measured as Compacted Embankment in accordance with Section 210 of the Standard Specifications and shall also include all labor, material, and equipment for furnishing, hauling, placing, and applying lime or cement additive; for pulverizing, watering, mixing, and compacting the additive to modify soil to meet the requirements herein; for performing quality control and acceptance sampling and testing; and for all labor, equipment, tools, and incidentals necessary to complete and maintain the work. Treatment of materials used for construction of embankments will not be paid for separately, but full compensation will be considered included in the contract price bid for Compacted Embankment.

Basis of Payment. The basis of payment shall be in accordance with Subsection 210.13(c) of the Standard Specifications and shall include all cost associated with furnishing, hauling, placing, and processing chemical treatments in soils at locations required by this Special Provision.

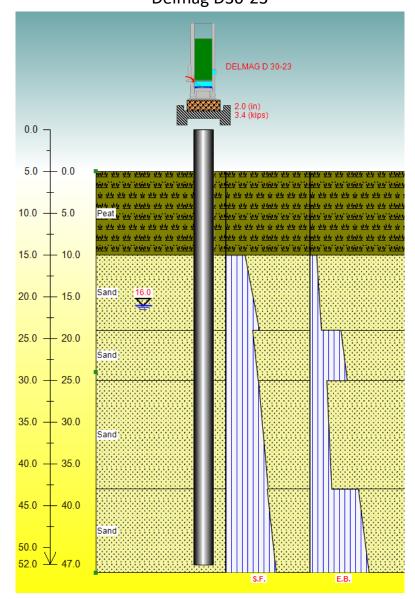
Payment will be made under:

Pay Item

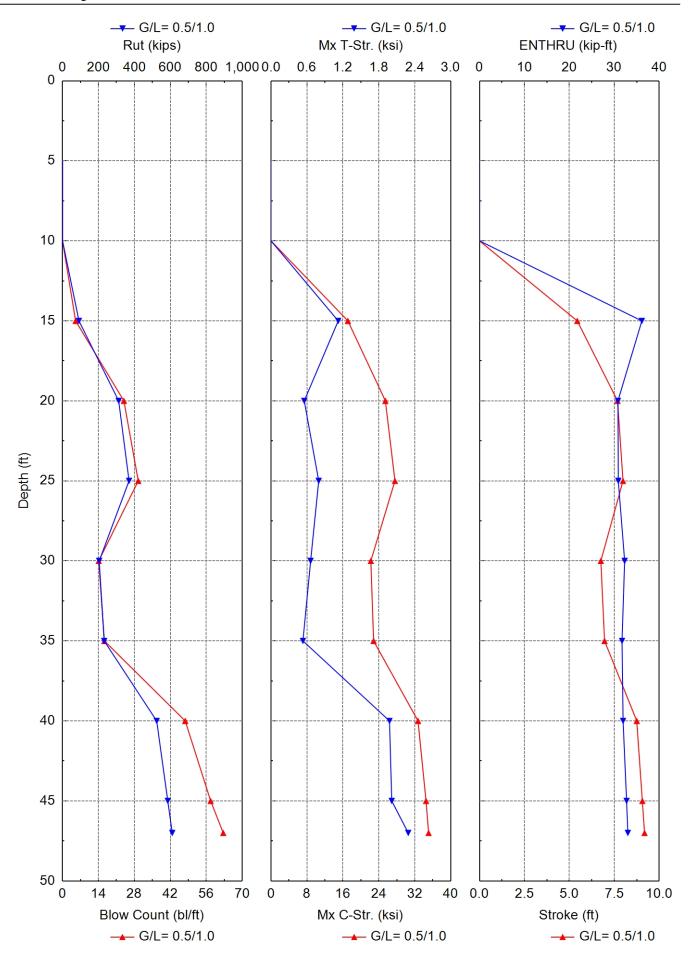
Pay Unit

Compacted Embankment

Cubic Yard

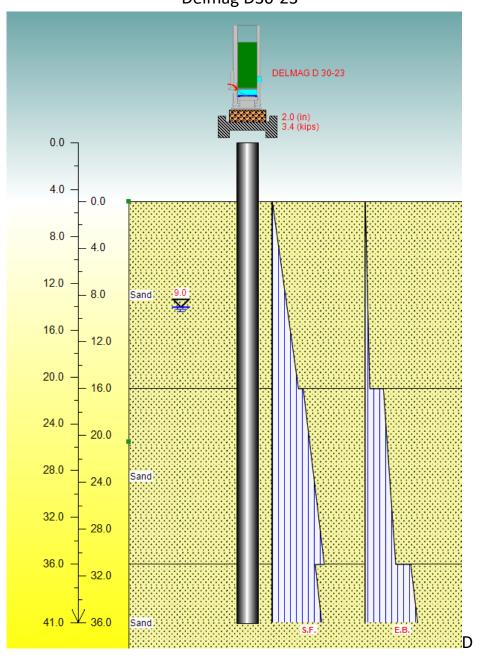

APPENDIX J

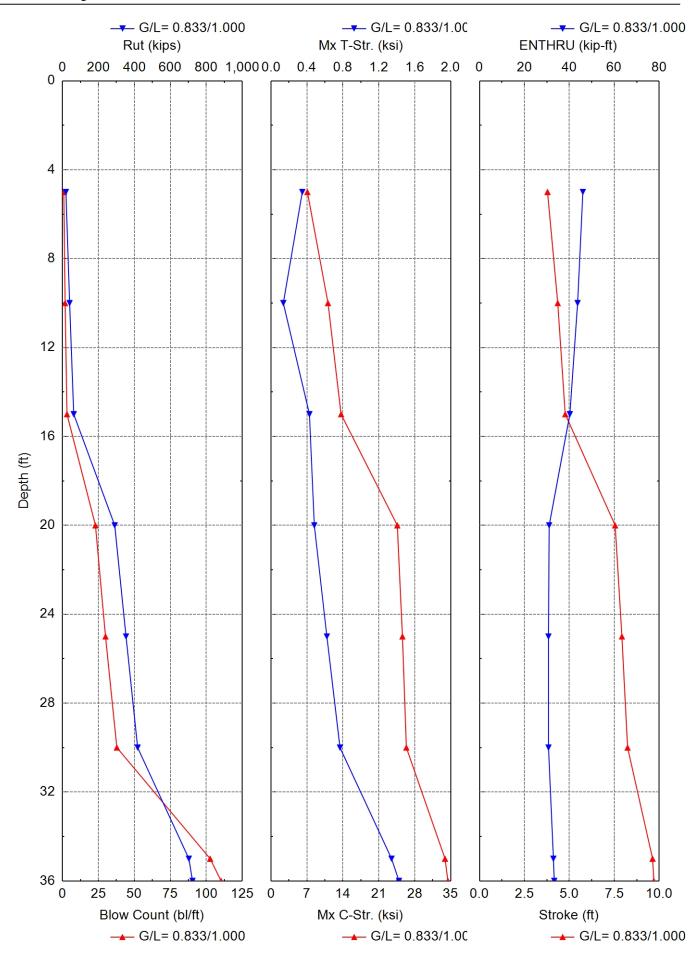
WEAP ANALYSES - STEEL SHELL PILES


Project: 101124 - Hwy 135 Poinsett County, Arkansas GHBW Project No: 23-031

Bridge	Bent	Pile Diameter (in)	Wall Thickness (in)	Min Ult Capacity for Axial Resistance (tons)	Pile Cap El.	Min Tip El.	Pile Length (ft)	Min Hammer Energy (ft- kip)	Max Comp Stress, ksi
	1	16	0.75	266	223	176	47	74	35.1
7 - Unnamed Ditch	2	24	0.50	360	212	176	36	74	34.5
	3	24	0.50	361	217	175	42	91	38.3
	4	16	0.75	250	223	167	56	74	28.1

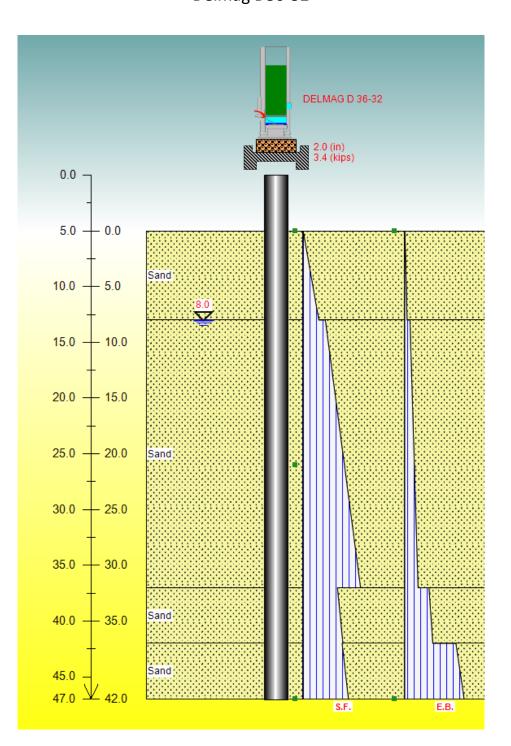
ArDOT 101124 Hwy 135 over Unnamed Ditch Bent 1 16-in-diameter Steel Shell Pile Delmag D30-23



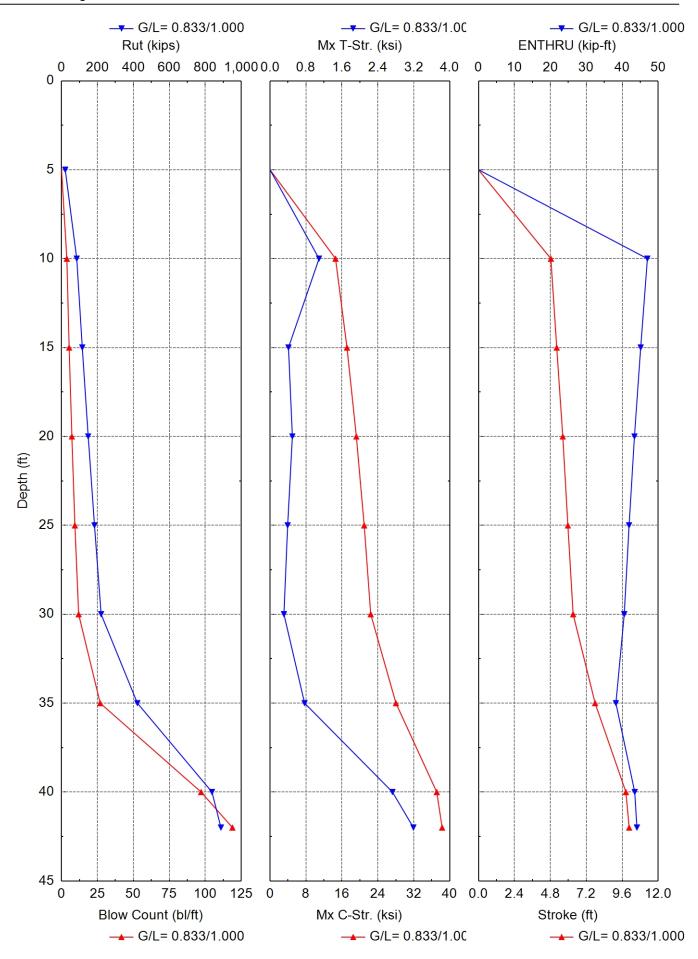

Gain/Loss Factor at Shaft/Toe = 0.500/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-		
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.18	0.0	D 30-23		
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.18	0.0	D 30-23		
15.0	91.5	5.9	85.6	5.1	17.112	1.122	5.44	36.1	D 30-23		
20.0	312.5	13.5	299.0	23.9	25.459	0.555	7.68	30.8	D 30-23		
25.0	370.2	21.1	349.0	29.5	27.584	0.796	7.99	30.9	D 30-23		
30.0	204.0	29.9	174.1	14.1	22.215	0.661	6.75	32.3	D 30-23		
35.0	231.8	39.6	192.1	16.3	22.839	0.533	6.96	31.7	D 30-23		
40.0	524.1	50.2	473.8	47.8	32.720	1.978	8.75	32.0	D 30-23		
45.0	585.6	61.8	523.9	57.7	34.507	2.015	9.06	32.7	D 30-23		
47.0	610.6	66.7	543.9	62.6	35.076	2.291	9.18	33.0	D 30-23		

Total driving time: 23 minutes; Total Number of Blows: 950 (starting at penetration 5.0 ft)

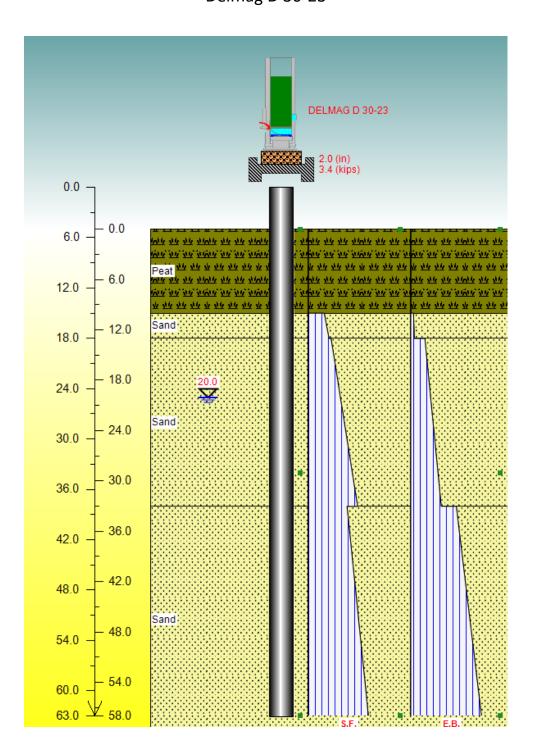
ArDOT 101124 Hwy 135 over Unnamed Ditch Bent 2 24-in-diameter Steel Shell Pile Delmag D30-23

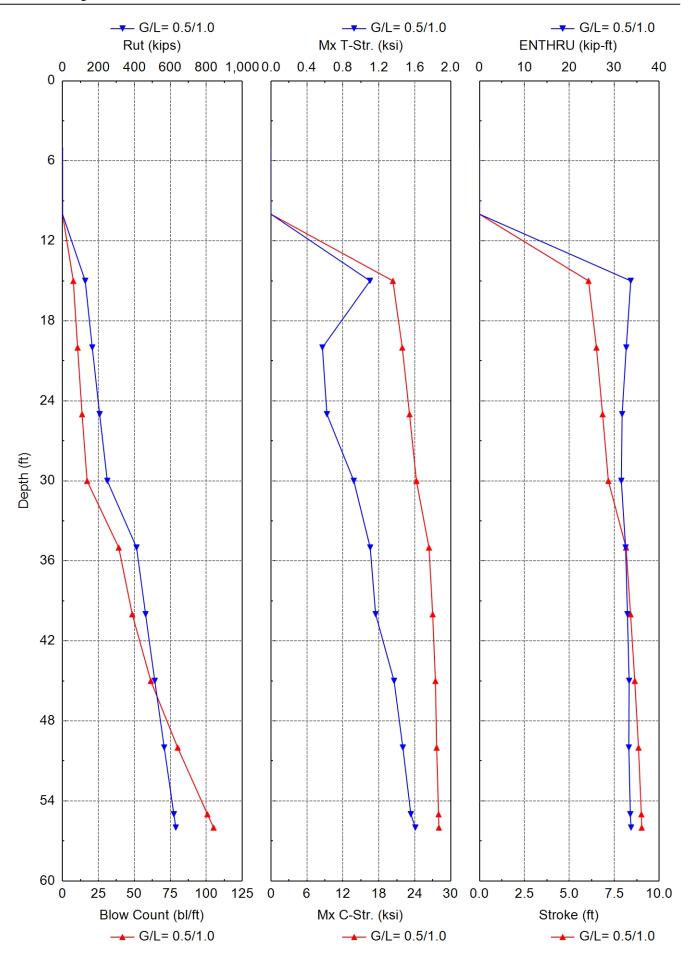


Gain/Loss Factor at Shaft/Toe = 0.833/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str.	Stroke	ENTHRU	JHammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-		
5.0	18.7	1.1	17.6	0.9	7.085	0.348	3.79	46.0	D 30-23		
10.0	39.5	4.2	35.3	1.8	11.096	0.137	4.35	43.7	D 30-23		
15.0	62.4	9.5	52.9	3.1	13.644	0.428	4.77	40.2	D 30-23		
20.0	290.5	17.7	272.8	22.9	24.598	0.482	7.55	31.0	D 30-23		
25.0	353.3	28.0	325.3	29.9	25.598	0.622	7.92	30.7	D 30-23		
30.0	418.0	40.1	377.9	37.8	26.358	0.768	8.24	30.7	D 30-23		
35.0	703.2	52.2	651.1	102.7	33.896	1.342	9.63	32.9	D 30-23		
36.0	723.3	54.7	668.6	110.3	34.453	1.425	9.70	33.3	D 30-23		


Total driving time: 20 minutes; Total Number of Blows: 842 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Ditch No. 1 Bent 3 24-in-diameter Steel Shell Pile Delmag D36-32


A UES Company



Gain/Loss Factor at Shaft/Toe = 0.833/1.000										
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHR	JHammer	
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-	
5.0	20.7	1.4	19.4	0.0	0.000	0.000	0.00	0.0	D 36-32	
10.0	84.6	6.1	78.5	3.7	14.582	1.091	4.83	47.0	D 36-32	
15.0	115.5	14.0	101.5	5.3	17.135	0.411	5.22	45.1	D 36-32	
20.0	148.5	24.0	124.5	7.2	19.211	0.497	5.63	43.4	D 36-32	
25.0	183.4	36.0	147.4	9.3	20.965	0.393	5.97	41.9	D 36-32	
30.0	220.4	50.0	170.4	11.9	22.415	0.310	6.32	40. 6	D 36-32	
35.0	422.0	62.1	359.9	26.9	28.027	0.770	7.79	38.2	D 36-32	
40.0	837.3	73.2	764.1	97.1	37.112	2.726	9.84	43.5	D 36-32	
42.0	887.2	78.0	809.1	118.9	38.315	3.192	10.06	44.1	D 36-32	

Total driving time: 19 minutes; Total Number of Blows: 779 (starting at penetration 5.0 ft)

ArDOT 101124 Hwy 135 over Unnamed Ditch Bent 4 16-in-diameter Steel Shell Pile Delmag D 30-23

Gain/Loss Factor at Shaft/Toe = 0.500/1.000											
Depth	Rut	Rshaft	Rtoe	Blow Ct	Mx C-Str	Mx T-Str	. Stroke	ENTHRU	JHammer		
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft	-		
5.0	0.0	0.0	0.0	0.3	0.000	0.000	11.18	0.0	D 30-23		
10.0	0.0	0.0	0.0	0.3	0.000	0.000	11.18	0.0	D 30-23		
15.0	126.2	5.4	120.8	7.5	20.346	1.101	6.07	33.7	D 30-23		
20.0	165.5	12.9	152.6	10.5	21.908	0.572	6.51	32.7	D 30-23		
25.0	206.5	22.2	184.3	13.6	23.124	0.622	6.85	31.7	D 30-23		
30.0	249.3	33.2	216.0	17.1	24.274	0.921	7.17	31.6	D 30-23		
35.0	412.0	44.8	367.1	39.1	26.370	1.104	8.15	32.5	D 30-23		
40.0	462.2	56.0	406.2	48.5	26.987	1.164	8.41	32.9	D 30-23		
45.0	513.5	68.3	445.2	61.4	27.450	1.370	8.64	33.3	D 30-23		
50.0	566.0	81.7	484.2	80.1	27.653	1.467	8.85	33.2	D 30-23		
55.0	619.6	96.3	523.3	100.8	27.973	1.556	9.01	33. 6	D 30-23		
56.0	630.4	99.3	531.1	105.1	28.029	1.607	9.03	33.7	D 30-23		

Total driving time: 43 minutes; Total Number of Blows: 1746 (starting at penetration 5.0 ft)