SUPERELEVATION TABLE FOR ONE-WAY TRAFFIC

L (meters)	0	5	10	15	20	25	30	40	50	60	80	100	150	200	300	500	700	800	900	1000	1500	2000	3000	5000					
S - SUPERELEVATION																													
C - NORMAL CROWN																													
25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150				

GENERAL NOTES

1. On pavements with one-way traffic, the super-elevation shall be divided on the inside lane only.
2. Super-elevation values given in this table are values derived from the given speeds and super-elevation transition lengths.
3. Values in the table are rounded to the nearest multiples of 5 to provide shorter super-elevation transition lengths.
4. Values to the right of the vertical line may be used for minimum desirable values and to the left of the vertical line, the super-elevation values are to be added to the point of control.

SUPERELEVATION FORMULA

\[S = \frac{+ L + C}{2} \]

SUPERELEVATION CONTROL POINT

- **INSIDE LANE**
- **OUTSIDE LANE**

SUPERELEVATION FORMULA

\[S = \frac{+ L + C}{2} \]