Research Project Cycles and Problem Statements

BY KIM ROMANO, P.E.

Problem Statements are developed on an annual cycle. Although the Research Section accepts Problem Statements throughout the year, staff are fully engaged in topic development and evaluations throughout the summer and autumn months. The Problem Statement development cycle begins a year before research studies can commence.

Anyone can submit problem Statements, but they usually come from academia and ArDOT employees. Research Section staff are actively involved throughout the process: preparing Problem Statements, assisting other Divisions with documenting needs, performing preliminary literature scans, evaluating and reviewing Problem Statements, and coordinating meetings to rank them.

As part of the process, the Research Section staff hosts Roundtable Meetings with ArDOT Divisions and Arkansas’ academic research community. Additionally, Research Staff visits each of the ten Districts to discuss opportunities for Research to support the Districts.

University of Arkansas (UA) professors met with ArDOT staff in the Materials Training room on July 30 for the 2019 Roundtable Meeting. The Roundtable, similar to speed dating, allows each professor a few minutes with staff from each Division to discuss what UA could offer. Likewise, the Divisions shared ongoing needs with the UA professors. Research staff at each table took notes and kept things moving.

The Maintenance Guidelines for MSE Walls (TRC2104) Problem Statement evolved through Roundtable discussions with Maintenance Division staff. Likewise, UA staff submitted many of the top ranking Problem Statements based upon topics discussed at the Roundtable meeting. Important topics selected for funding and introduced at the Roundtable include TRC2101 – Update of the ArDOT Workforce Forecasting System, and TRC2103 – Developing Guidelines for Evaluating Weathering Steel Bridges.

Research Section staff traveled to each of the ten Districts in late July and August to listen to their needs and ideas for Research topics. The most discussed topics included pavement, materials, and construction processes. A couple of Districts expressed concerns with Recycled Asphalt Pavement

Continued on page 2

Performance-Based Asphalt Mixture Design (PBD) for Arkansas

BY SANGHYUN CHUN PH.D., E.I.T.

The current asphalt mix design procedure used in Arkansas, commonly referred to as the Superpave mix design system, is based on component specifications (i.e., quality and properties of asphalt binder and aggregates) and requirements of volumetric properties. However, there have been concerns that the existing mix design criteria, such as Voids in Mineral Aggregates (VMA), gradation control points, and effective asphalt content, may not capture all critical aspects of asphalt mixtures found to be most strongly related to rutting and cracking performance. Consequently, the performance of Superpave mixtures varied significantly among the mixtures that met all existing mix design criteria. Therefore, there is a need to develop a Performance-Based Mixture Design (PBD) procedure that includes performance tests to evaluate rutting and cracking potentials and moisture resistance during the mix design phase. The PBD procedure will provide a more direct evaluation of expected performance than the existing mix design method solely based on volumetric properties.

TRC1802, Performance-Based Asphalt Mixture Design (PBD) for Arkansas, primarily sought to develop and implement a laboratory cracking test for asphalt mixture design that

Continued on page 3

Spotlight On T²

BY STACY WILLIAMS PH.D., P.E.

The Technology Transfer (T²) program has added another new class to its list of course offerings. The latest addition is ‘Concrete Construction Basics’, also known as ‘Concrete 101’. This class is good for every local agency because concrete is used in so many different applications. Whether it’s roadways, bridges, box culverts, parking

Continued on page 3
RESEARCH PROJECT CYCLES AND PROBLEM STATEMENTS

Continued from page 1

(RAP) and Recycled Asphalt Shingles (RAS) being used in new pavements and suggested ideas to address those concerns. Other Districts were concerned with recruiting and retaining staff in rural Resident Engineer offices. Research Staff developed Problem Statements for both of these issues.

Over 40 Problem Statements were submitted in 2019 for the FY 2021 funding cycle. Some duplicates were removed, and two Problem Statements were combined. Research Section staff reviewed each Problem Statement, conducted cursory literature searches by scanning national libraries and the Transportation Research Board’s Transport Research International Documentation (TRID) & Research in Progress (RIP), and documented findings using the Problem Statement Evaluation Form.

Seven Standing Subcommittees representing Construction, Design, Maintenance, Materials, Pavements, Planning, and Special Projects then rank the Problems Statements based on AAdOT needs. Some good ideas that are being explored on a national level may be ranked lower if research serving the same purpose is underway elsewhere. AAdOT participates in pooled fund studies and regional research consortiums that may cover a given topic.

Next, the Advisory Council reviews and ranks the Problem Statements. The Advisory Council is composed of stakeholders representing higher education, engineering, construction, and transportation, and business communities. The top ten topics get five-minute presentations to Transportation Research Committee (TRC). The top-ranked research topic of each Standing Subcommittee also makes a five-minute presentation to the TRC if the topic is not part of the Advisory Council’s top ten.

At the 2019 Fall TRC business meeting, presentations for thirteen topics were given and 38 Problem Statements were reviewed and ranked. Based on the available funding for FY2021, the top seven Problem Statements were developed into Requests for Proposals. The Project Subcommittee will review the proposals and select the Principal Investigators. Final funding of the projects will be approved at the Spring TRC business meeting, and the projects will begin on or after July 1, 2020. This year’s top seven ranking Problem Statements are:

- Update of the AAdOT Workforce Forecasting System
- Effect of Aggregate-Binder Compatibility on Performance of Asphalt Mixtures in Arkansas
- Developing Guidelines for Evaluating Weathering Steel Bridges
- Maintenance Guidelines for Mechanically Stabilized Earth (MSE) Walls
- Innovative Countermeasures to Deter Wrong-Way Driving
- UAS LiDAR for Developing Small Project Terrain Models
- Non-nuclear Moisture Content and Density Determination
- Do you have ideas for research? A notice of Problem Statement solicitation for FY2022 will go out in July, but if you have ideas or needs, no need to wait! Contact the Research Section, and the staff will assist in either developing a Problem Statement or finding existing resources that may help.

Non-nuclear Moisture Content and Density Determination

TRC2107 is a project investigating Non-Nuclear Density measurement techniques for moisture content and density of soil. Currently, AAdOT utilizes nuclear density gauges for QA/QC for embankment and subgrade material compaction. The cost associated with these gauges includes annual maintenance, dosimeter badges, training for radioactive materials, as well as secondary costs associated with transporting and storing radioactive devices. TRC2107 will investigate any available technology that can accurately and quickly determine the density and moisture of materials, and only devices comparable to the nuclear gauge will be considered. The projected outcome of the project will be to replace the nuclear density gauge.

Maintenance Guidelines for Mechanically Stabilized Earth (MSE) Walls

The objective of this research project is to determine Best Management Practices (BMP) for MSE walls, and the primary deliverable is to develop a maintenance inspector’s guidebook, which could provide assistance to address potential signs of distress. A part of this guidebook is to include a Grading Level (A – F) scale to be applied per AAdOT Maintenance guidelines and provide appropriate repair options. The details for BMP would include routine inspections and frequency of inspections, the Level of Effort needed to repair or reconstruct problematic issues, and emergency inspections after significant weather events or accidents that may have compromised MSE walls. Another deliverable is to expand on an ArcGIS database to be provided by AAdOT Maintenance Division. This inventory would include all MSE and other specified wall types currently maintained by AAdOT. Within the database system, the metrics will be outlined and categorized for each wall type to include System/Type, Design Specifications, Materials, Performance, and Maintenance History. Having these metrics outlined in a formal layout will provide clearer guidance for all maintenance personnel when inspections are conducted.
can be used in conjunction with the current Asphalt Pavement Analyzer (APA) rutting test for a transition of the mix design system in Arkansas from solely volumetric-based to performance-based. In particular, the project compared laboratory cracking test results to field cracking performance for mixtures placed in Arkansas. It is recommended that the Indirect Tensile Cracking Test at Intermediate Temperature (IDEAL-CT) be used to assess cracking resistance during the asphalt mixture design phase. The research results indicated the ability of the CTindex for use as a cracking performance indicator of asphalt mixtures to differentiate relative cracking performance in the field. The preliminary criteria for acceptable cracking performance (CTindex ≥ 50) were introduced based on the results obtained from this study. However, it is imperative that the recommended acceptance criteria be further validated through comprehensive field performance evaluation. The successful implementation of project findings procured from TRC1802 will result in consistently enhanced performance of asphalt mixtures placed in the field that will provide significant cost savings for ArDOT.
TRC2106 UAS LiDAR for Developing Small Project Elevation Models

Of the many projects picked up in the FY21, by far one of the most exciting is TRC2106. The Department is always looking for ways to implement new technology while being more efficient and accurate in the work that we do; and what better way to do that than with aerial LiDAR?

The goal of this project is to take small size bridge projects and produce a 3D model using an Unmanned Aircraft System (UAS) mounted with a LiDAR sensor in order to extrapolate quantities and get precision surveys with literally millions of points accurate up to mere inches! To get a model with this many data points and to this accuracy using conventional surveying would take a lifetime, but with aerial LiDAR it could be done in as little as an evening! Results from this method will then be compared to current techniques to produce a cost/benefit analysis to illustrate the many advantages it could potentially provide to the Department.

New Research Highlights

Continued from page 2

TRC2103 Developing Guidelines for Evaluating Weathering Steel Bridges

The objective of TRC2103 is to identify, develop, and implement a framework for evaluating weathering steel bridges in Arkansas. Doing so will allow ArDOT to identify if weathering steel bridges have any future potential for oxide film degradation. Also, the project will take into consideration the location (proximity to water, characteristics of the body of water, etc.) and function (overpass, hydraulic structure, etc.) of the bridges.

Weathering steel has improved corrosion-resistant behavior over conventional steel. However, it is not maintenance-free and will corrode if not used in the proper ambient conditions. While weathering steel retards corrosion, it may require future restoration thorough cleaning and painting. ArDOT inspects 1192 weathering steel bridges yearly. Of those, 908 structures are state-owned and have an element level inspection per the AASHTO Manual for Bridge Element Inspection, 2nd Edition. Approximately 23% of those 908 are documented to have oxide film degradation of the steel protective coating, otherwise known as patina.

The proposed research will provide ArDOT with a final report and implementation plan. This plan will discuss how to incorporate inspection guidelines on evaluating patina corrosion conditions of weathering steel bridges either by a workforce training or developing a Technology Transfer Program course.

TRC2105 Innovative Countermeasures to Deter Wrong-Way Driving

TRC2105 Innovative Countermeasures to Deter Wrong-Way Driving is being developed to research technologies to prevent wrong-way vehicle entry onto interstates and freeways. Wrong-way driving has been of concern since divided highways were first opened to traffic. Drivers encounter wrong-way vehicles head-on, and crashes are often severe.

Since 2011, annual reports of wrong-way driving crashes in Arkansas have been prepared, per Act 641 of the 87th Arkansas General Assembly, and applicable countermeasures have been implemented. In 2017, a statewide traffic safety job added signs and markings and upgraded devices at freeway entrance ramp intersections with surface streets.

This research will expand the toolbox of available countermeasures. Steps will include analyzing wrong-way crash data, reviewing emerging technologies and devices to deter wrong-way drivers, and testing the most promising countermeasures.

ARKANSAS DEPARTMENT OF TRANSPORTATION
System Information & Research Division
P.O. Box 2261 • Little Rock, AR 72203 • www.ArkDOT.gov
Research@ardot.gov • 501-569-4922