Construction workers should handle wet concrete and washout water with care because it may cause skin irritation and eye damage. If the washwater is dumped on the ground (Fig. 1), it can run off the construction site to adjoining roads and enter roadside storm drains, which discharge to surface waters such as rivers, lakes, or estuaries. The red arrow in Figure 2 points to a ready mixed truck chute that’s being washed out into a roll-off bin, which isn’t water type. This washwater, shown in the foreground, will likely follow similar paths to nearby surface waters. Rainfall may cause concrete washout containers that are uncovered to overflow and transport the washwater to surface waters. Rainwater polluted with concrete washwater can also percolate down through the soil and alter the soil chemistry, inhibit plant growth, and contaminate the groundwater. Its high pH can increase the toxicity of other substances in the surface waters and soils. Figures 1 and 2 illustrate the need for better management practices.

Best Management Practice Objectives

The best management practice objectives for concrete washout are to (a) collect and retain all the concrete washout water and solids in leak proof containers, so that this caustic material does not reach the soil surface and then migrate to surface waters or into the ground water, and (b) recycle 100 percent of the collected concrete washout water and solids. Another

Environmental and Human Health Impacts

Concrete washout water (or washwater) is a slurry containing toxic metals. It’s also caustic and corrosive, having a pH near 12. In comparison, Drano liquid drain cleaner has a pH of 13.5. Caustic washwater can harm fish gills and eyes and interfere with reproduction. The safe pH ranges for aquatic life habitats are 6.5 – 9 for freshwater and 6.5 – 8.5 for saltwater.
objective is to support the diversion of recyclable materials from landfills. Table 1 shows how concrete washout materials can be recycled and reused.

Table 1 – Recycling concrete washout materials

<table>
<thead>
<tr>
<th>Uses of Recycled Materials</th>
<th>Concrete Washout Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washwater</td>
<td></td>
</tr>
<tr>
<td>Cement fines</td>
<td>x</td>
</tr>
<tr>
<td>Coarse aggregate</td>
<td>x</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>x</td>
</tr>
<tr>
<td>Hardened concrete</td>
<td>x</td>
</tr>
<tr>
<td>Unused wet concrete</td>
<td>x</td>
</tr>
<tr>
<td>Reused to washout additional mixer truck chutes or drums</td>
<td>x</td>
</tr>
<tr>
<td>Reused as ready mixed concrete ingredient</td>
<td>x</td>
</tr>
<tr>
<td>Reused as an ingredient of precast concrete products, e.g., highway barriers, retaining wall blocks, riprap</td>
<td>x</td>
</tr>
<tr>
<td>Reused as crushed concrete products, e.g., road base or fill</td>
<td>x</td>
</tr>
<tr>
<td>Reused to pave the yards of ready mixed concrete plants</td>
<td>x</td>
</tr>
<tr>
<td>Returned back to a surface water, e.g., river, lake, or estuary</td>
<td>x</td>
</tr>
</tbody>
</table>

a. Fine particles of cementitious material (e.g., Portland cement, slag cement, fly ash, silica fume)
b. Recyclable, if allowed by the concrete quality specifications
c. Treated to reduce the pH and remove metals, so it can be delivered to a municipal wastewater treatment plant, where it is treated further and then returned to a natural surface water

Washwater recycling, treatment, disposal

Washwater from concrete truck chutes, hand mixers, or other equipment can be passed through a system of weirs or filters to remove solids and then be reused to wash down more chutes and equipment at the construction site or as an ingredient for making additional concrete. A three chamber washout filter is shown in Figure 3. The first stage collects the coarse aggregate. The middle stage filters out the small grit and sand. The third stage has an array of tablets that filter out fines and reduces the pH. The filtered washwater is then discharged through a filter sock. An alternative is to pump the washout water out of the washout container (Fig 4) and treat the washwater off site to remove metals and reduce its pH, so it can be delivered to a publicly owned treatment works (POTW), also known as a municipal wastewater treatment plant, which provides additional treatment allowing the washwater to be discharged to a surface water. The POTW should be contacted to inquire about any pretreatment requirements, i.e., the National Pretreatment Standards for Prohibited Dischargers (40CFR 403.5), before discharging the washwater to the POTW. The washwater can also be retained in the washout container and allowed to evaporate, leaving only the hardened cementitious solids to be recycled.

Solids recycling

The course aggregate materials that are washed off concrete truck chutes into a washout container can be either separated by a screen and placed in aggregate bins to be reused at the construction site or returned to the ready mixed plant and washed into a reclaimer (Fig. 5). When washed out into a reclaimer, the fine and course aggregates are separated out and placed in different piles or bins to be reused in making fresh concrete. Reclaimers with settling tanks separate cement fines from the washwater, and these fines can also be used in new concrete unless prohibited by the user’s concrete quality specifications.

Hardened concrete recycling

When the washwater in a construction site concrete washout container has been removed or allowed to evaporate, the hardened concrete that remains can be crushed (Fig. 6) and reused as a construction material. It makes an excellent aggregate for road base and can be used as fill at the construction site or delivered to a recycler. Concrete recyclers can be found at municipal solid waste disposal facilities, private recycling plants, or large construction sites.
Wet concrete recycling
Builders often order a little more ready mixed concrete than they actually need, so it is common for concrete trucks to have wet concrete remaining in their drum after a delivery. This unused concrete can be returned to the ready mixed plant and either (1) used to pour precast concrete products (e.g., highway barriers, retaining wall blocks, riprap), (2) used to pave the ready mixed plant’s yard, (3) washed into a reclaimer, or (4) dumped on an impervious surface and allowed to harden, so it can be crushed and recycled as aggregate. Unused wet concrete should not be dumped on bare ground to harden at construction sites because this can contribute to ground water and surface water contamination.

Washout Containers
Different types of washout containers are available for collecting, retaining, and recycling the washwater and solids from washing down mixed truck chutes and pump truck hoppers at construction sites.

Chute washout box
A chute washout box is mounted on the back of the ready mixed truck. If the truck has three chutes, the following procedure is used to perform the washout from the top down: (1) after the pour is completed, the driver attaches the extension chute to the washout box, (2) the driver then rotates the main chute over the extension chute (Fig. 7) and washes down the hopper first then the main chute, (3) finally the driver washes down the flop down chute and last the extension chute hanging on the box. All washwater and solids are captured in the box.

After the wash down, washwater and solids are returned to the ready mixed plant for recycling. A filter basket near the top of the washout box separates out the coarse aggregates so they can be placed in a bin for reuse either at the construction site or back at the cement plant.

Chute washout bucket and pump
After delivering ready mixed concrete and scraping the last of the customer’s concrete down the chute, the driver hangs a washout bucket shown in Figure 8 (see red arrow) on the end of the truck’s chute and secures the hose to insure no leaks. The driver then washes down the chute into the bucket to remove any cementitious material before it hardens. After washing out the chute, the driver pumps (yellow arrow points to the pump) the washwater, sand, and other fine solids from the bucket up into the truck’s drum to be returned to the ready mixed plant, where it can be washed into a reclaimer. A removable screen at the bottom of the washout bucket prevents course aggregate from entering the pump. This course aggregate can also be returned to the plant and added to the coarse aggregate pile to be reused. All the materials are recycled.

Hay bale and plastic washout pit
A washout pit made with hay bales and a plastic lining is shown in Figure 9. Such pits can be dug into the ground or built above grade. The plastic lining should be free of tears or holes that would allow the washwater to escape (Fig. 10). After the pit is used to wash down the chutes of multiple ready mixed trucks and the washwater has evaporated or has been vacuumed off, the remaining hardened solids can be broken up and removed from the pit. This process may damage the hay bales and plastic lining. If damage occurs, the pit will need to be repaired and relined with new plastic. When the hardened solids are removed, they may be bound up with the plastic lining and have to be sent to a landfill, rather than recycled. Recyclers usually accept only unmixed material. If the pit is going to be emptied and repaired more than a few times, the hay bales and plastic will be generating additional solid waste. Ready mixed concrete
trucks can use hay bale washout pits, but concrete pump trucks have a low hanging hopper in the back that may prevent their being washed out into bale-lined pits.

Vinyl washout container

The vinyl washout container (Fig. 11) is portable, reusable, and easier to install than a hay bale washout pit. The biodegradable filter bag (Fig. 12) assists in extracting the concrete solids and prolongs the life of the vinyl container. When the bag is lifted, the water is filtered out and the remaining concrete solids and the bag can be disposed of together in a landfill, or the hardened concrete can be delivered to a recycler. After the solids have been removed several times and the container is full of washwater, the washwater can be allowed to evaporate, so the container can be reused. The washwater can be removed more quickly by placing another filter bag in the container and spreading water gelling granules evenly across the water. In about five minutes, the water in the filter bag will turn into a gel that can be removed with the bag. Then the gel and filter bag can be disposed to together.

Metal washout container

The metal roll-off bin (Fig. 13) is designed to securely contain concrete washwater and solids and is portable and reusable. It also has a ramp that allows concrete pump trucks to wash out their hoppers (Fig. 14). Roll-off providers offer recycling services, such as, picking up the roll-off bins after the washwater has evaporated and the solids have hardened, replacing them with empty washoff bins, and delivering the hardened concrete to a recycler (Fig. 15), rather than a landfill. Some providers will vacuum off the washwater, treat it to remove metals and reduce the pH, and deliver it to the treatment plant for additional treatment and then being discharged to surface water. Everything is recycled or treated sufficiently to be returned to a natural surface water.

Another metal, portable, washout container, which has a rain cover to prevent overflowing, is shown in Figure 16. It is accompanied by an onsite washwater treatment unit, which reduces the pH and uses a forced weir tank system to remove the coarse aggregate, fine aggregate, and cement fines. The washwater can then be reused at the construction site to wash out other mixer truck chutes and equipment. The solids are allowed to harden together and can be taken to a concrete recycler (Fig. 17) to be crushed and used as road base or aggregate for making precast products, such as retaining wall blocks. All materials are recycled.

Siting Washout Facilities

Concrete washout facilities, such as washout pits and vinyl or metal washout containers, should be placed in locations that provide convenient access to concrete trucks, preferably near the area where concrete is being poured. However they...
should not be placed within 50 feet of storm drains, open ditches, or waterbodies. Appropriate gravel or rock should cover approaches to concrete washout facilities when they are located on undeveloped property. On large sites with extensive concrete work, washouts should be placed at multiple locations for ease of use by ready mixed truck drivers. If the washout facility is not within view from the pour location, signage will be needed to direct the truck drivers.

Operating and Inspecting Washout Facilities

Concrete washout facilities should be inspected daily and after heavy rains to check for leaks, identify any plastic linings and sidewalls have been damaged by construction activities, and determine whether they have been filled to over 75 percent capacity. When the washout container is filled to over 75 percent of its capacity, the washwater should be vacuumed off or allowed to evaporate to avoid overflows. Then when the remaining cementitious solids have hardened, they should be removed and recycled. Damages to the container should be repaired promptly. Before heavy rains, the washout container’s liquid level should be lowered or the container should be covered to avoid an overflow during the rain storm.

Educating Concrete Subcontractors

The construction site superintendent should make ready mixed truck drivers aware of washout facility locations and be watchful for improper dumping of cementitious material. In addition, concrete washout requirements should be included in contracts with concrete delivery companies.

Reference

Websites and Videos

Construction Materials Recycling Association
www.concreterecycling.org

National Ready Mixed Concrete Association
www.nrmca.org

National Ready Mixed Concrete Research and Education Foundation
www.rmc-foundation.org

Additional information and videos on concrete washout containers and systems can be found if you do a Google search for "concrete washout.”

Photograph Credits

Figures 1, 2. Mark Jenkins, Concrete Washout Systems, Inc.
Figure 3. Mark Shaw, Ultra Tech International, Inc.
Figure 4. Mark Jenkins, Concrete Washout Systems, Inc.
Figure 5. Christopher Crouch, CCI Consulting
Figure 6. William Turley, Construction Materials Recycling Association
Figure 7. Brad Burke, Innovative Concrete Solutions, L.L.C.
Figure 8. Ron Lankester, Enviroguard
Figures 9, 10. Mark Jenkins, Concrete Washout Systems, Inc.
Figures 11, 12. Tom Card, RTC Supply
Figures 13, 14, 15. Mark Jenkins, Concrete Washout Systems, Inc.
Figures 16, 17. Rick Abney Sr., Waste Crete Systems, LLP