ARKANSAS STATE HIGHWAY AND TRANSPORTATION DEPARTMENT
CONSTRUCTION PLANS FOR STATE HIGHWAY

PARKER ROAD EXTENSION
(JONESBORO) (S)
CRAIGHEAD COUNTY

FEDERAL AID PROJECT HDP-9227(48)
JOB 100807

STA. 112+27.13
END JOB 100807

STA. 73+74.43
BEGIN JOB 100807

NOT TO SCALE

LENGTH COMPUTED ALONG C.L. PARKER RD.
GROSS LENGTH OF PROJECT 3858.70 FEET OR 0.730 MILES
NET LENGTH OF ROADWAY 3820.70 FEET OR 0.703 MILES
NET LENGTH OF BRIDGES 0.00 FEET OR 0.000 MILES
NET LENGTH OF PROJECT 3820.70 FEET OR 0.703 MILES

PROJECT COORDINATES

<table>
<thead>
<tr>
<th>BEGIN</th>
<th>MD-POINT</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATITUDE</td>
<td>N 35°49'36"</td>
<td>N 35°50'05"</td>
</tr>
</tbody>
</table>
| LONGITUDE | W 90°44'46" | W 90°45'10"
| STATION | 73+74.43 | 112+27.13 |

DESIGN DATA

- DESIGN TRAFFIC DATA
- PARKER RD
- DESIGN YEAR 2036
- 2016 ADT 6,211
- 2036 ADT 8,288
- 2036 DHV 10,044
- DIRECTIONAL DISTRIBUTION 3%
- TRUCKS 60%
- DESIGN SPEED 50 MPH

ARKANSAS HIGHWAY DISTRICT 10

GARVER
LIC. NO. 766
P.E. JOB 100807
11-16-15
GENERAL NOTES:

1. GRADE LINE ERRATA: FINISHED GRADE WHERE SHOWN ON PLANS.
2. ALL PIPE LINES, POWER, TELEPHONE, AND TELEGRAPH LINES TO BE MOVED OR LOWERED BY THE RESPECTIVE OWNERS AS PER AGREEMENT WITH SUCH OWNERS.
3. ANY EQUIPMENT OR APPURTENANCE THAT INTERFERES WITH THE PROPOSED CONSTRUCTION AND WHICH MAY BE THE PROPERTY OF UTILITY SERVICE ORGANIZATIONS SHALL BE MOVED BY THE OWNERS UNLESS OTHERWISE PROVIDED.
4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING U.S. MAILBOXES WITHIN THE PROJECT LIMITS IN SUCH A MANNER THAT THE PUBLIC MAY RECEIVE CONTINUOUS MAIL SERVICE. PAYMENT WILL BE CONSIDERED INCLUDED IN THE PRICE BID FOR THE VARIOUS BID ITEMS.
5. ALL LAND MARKINGS LOCATED WITHIN THE CONSTRUCTION AREA SHALL BE PROTECTED IN ACCORDANCE WITH SECTION 107.05 OF THE STANDARD SPECIFICATIONS.
6. ALL TREES THAT DO NOT DIRECTLY INTERFERE WITH THE PROPOSED CONSTRUCTION SHALL BE SPARED AS DIRECTED BY THE ENGINEER. CARE AND DISPOSITION SHALL BE USED TO INSURE THAT ALL TREES NOT TO BE REMOVED SHALL BE HARVESTED AS LITTLE AS POSSIBLE DURING THE CONSTRUCTION OPERATIONS.
7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING A FENCE TO CONTROL LIVESTOCK IN AREAS WHERE PASTURES ARE BEVERED. WIRE FENCE MAY BE CONSTRUCTED INITIALLY ON A PERM. BASIS THEREOF, THE CONTRACTOR AT HIS OWN EXPENSE, MAY ELECT TO PROVIDE TEMPORARY Fencing SUITABLE TO CONTAIN LIVESTOCK.
8. THIS PROJECT IS COVERED UNDER A NATIONAL 14 SECTION 404 PERMIT. REFER TO SECTION 110 OF THE STANDARD SPECIFICATIONS, EDITION OF 2014, FOR PERMIT REQUIREMENTS.
9. THE EXISTING ASPHALT PAVEMENT TO BE REMOVED FROM THE REMAINING PAVEMENT SHALL BE SEPARATED BY SAWING ALONG A NEAT LINE. AFTER SAWING, THE PAVEMENT TO BE REMOVED SHALL BE CAREFULLY REMOVED IN A MANNER THAT WILL NOT DAMAGE THE PAVEMENT THAT IS TO REMAIN. ANY DAMAGE OF THE ASPHALT PAVEMENT THAT IS TO REMAIN IN PLACE SHALL BE REPAIRED AT THE CONTRACTORS EXPENSE.
10. ALL FLEXIBLE BASE AND ASPHALTIC PAVEMENT REMOVED SHALL BE PAID FOR UNDER PAY ITEM 210 - EXCAVATION AND EMBANKMENT, UNLESS OTHERWISE NOTED.

GOVERNING SPECIFICATIONS:

ARKANSAS HIGHWAY COMMISSION STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION, EDITION OF 2014, AND THE FOLLOWING SPECIAL PROVISIONS AND SUPPLEMENTAL SPECIFICATIONS.

INDEX OF SHEETS, GOVERNING SPECIFICATIONS & GENERAL NOTES
DETAIL FOR DRIVEWAY TURNOUTS
PARKER RD. STA. 103+60
PARKER RD. STA. 106+75

NO. 4 BARS AT 1/2" HORIZONTAL SPACING

TOP VIEW
MIN 3" COVER

NO. 4 BARS AT 1/2" HORIZONTAL SPACING

VARIABLE HEIGHT

FRONT VIEW
SIDE VIEW

PIPE EXTENSION
REINFORCED CONCRETE COLLAR DETAIL

DETAIL FOR SOLID SODDING AROUND DROP INLETS

DETAIL OF UNDERCUT
PARKER RD. STA. 73+14 TO STA 103+75
θ = 2° k = 50'

PROPOSED OVERLAY
EXISTING ASPHALT PAVEMENT, DETAIL AND OVERLAY

HEAT PIPES

EXISTING GROUND

COLD MILL EXISTING ASPHALT PAVEMENT

OIL-SOLID SODDING
DEEP INLET

DETAIL FOR TRANSITIONS

9-2-15
CONSTRUCTION SEQUENCE NOTES

1. Place traffic barricades, drums, and signs as shown.
2. Construct Parker Road as shown on the plans.

☐ STAGE 1 (CONSTRUCTION)

☐ TRAFFIC

☐ TRAFFIC DRUM
NOTE: THE 4" YELLOW STRIPING QUANTITY HAS BEEN ESTIMATED BASED ON A DOUBLE YELLOW CENTERLINE STRIPE FOR THE ENTIRE PROJECT. THE PROJECT MUST BE MARKED FOR POSTING/ footing zones PRIOR TO THE PLACEMENT OF ANY FINAL STRIPE, CONTACT THE MAINTENANCE DIVISION TO SCHEDULE THE ZONING OF THE PROJECT.

PERMANENT PAVEMENT MARKINGS

THERMOPLASTIC PAVEMENT MARKING WHITE 0"-
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.

THERMOPLASTIC PAVEMENT MARKING WHITE 0"
PARKER RD, STA 42+00 TO STA 42+10 = 100 LF.
NOTE:
The 4" yellow striping quantity has been estimated based on a double yellow centerline stripe for the entire project. The project must be marked for passing/passing zones prior to the placement of any final striping. Contact the maintenance division to schedule the zoning of the project.

NOTE:
The 4" yellow striping quantity has been estimated based on a double yellow centerline stripe for the entire project. The project must be marked for passing/passing zones prior to the placement of any final striping. Contact the maintenance division to schedule the zoning of the project.

PERMANENT PAVEMENT MARKING AND SIGNING DETAILS

Walnut Ridge
Trumann

Walnut Ridge
Trumann
SOIL BORING LOG

<table>
<thead>
<tr>
<th>BORING TEST PIT NO.</th>
<th>APPROX STATION</th>
<th>SAMPLE DEPTH (ft)</th>
<th>WATER CONTENT (%)</th>
<th>ATTENUATION LIMITS</th>
<th>PERCENT PASSING 500</th>
<th>UNIFIED CLASS</th>
<th>AASHO CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79+60</td>
<td>CL 0.5-1.5</td>
<td>19</td>
<td>37</td>
<td>19</td>
<td>18</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>75+60</td>
<td>CL 6.5</td>
<td>5</td>
<td>28</td>
<td>19</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>83+60</td>
<td>6Y R 2.5-3.5</td>
<td>20</td>
<td>40</td>
<td>21</td>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>95+60</td>
<td>CL 0.5-1.5</td>
<td>16</td>
<td>28</td>
<td>22</td>
<td>6</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>95+60</td>
<td>CL 4.5-5.5</td>
<td>11</td>
<td>28</td>
<td>19</td>
<td>9</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>103+00</td>
<td>CL 2.5-3.5</td>
<td>21</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>111+00</td>
<td>CL 9-10</td>
<td>25</td>
<td>33</td>
<td>21</td>
<td>12</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>111+00</td>
<td>CL 19-20</td>
<td>21</td>
<td>59</td>
<td>17</td>
<td>42</td>
<td>74</td>
</tr>
</tbody>
</table>

SOIL CHARACTERISTICS TABULATED ABOVE ARE REPRESENTATIVE AT THE LOCATION OF THE SAMPLE, AND FROM SURFACE INDICATIONS ARE TYPICAL FOR THE LIMITS SHOWN. THESE DATA ARE SHOWN FOR INFORMATION ONLY, THE STATE WILL NOT BE RESPONSIBLE FOR VARIATIONS IN THE SOIL CHARACTERISTICS AND/OR EXTENT OF SAME DIFFERING FROM THE ABOVE TABULATIONS.
ADVANCE WARNING SIGNS AND DEVICES

<table>
<thead>
<tr>
<th>SIGN NUMBER</th>
<th>DESCRIPTION</th>
<th>SIGN SIZE</th>
<th>STAGE I</th>
<th>MAX NUMBER</th>
<th>TOTAL REQUIRED</th>
<th>SCAFFRACEo</th>
<th>SCAFFRACE</th>
<th>TRAFFIC DRUMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-2</td>
<td>END ROAD WORK</td>
<td>46X28</td>
<td>EACH</td>
<td>3</td>
<td>3</td>
<td>22.6</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>W2-2</td>
<td>ROAD WORK 72" FT</td>
<td>46X28</td>
<td>EACH</td>
<td>1</td>
<td>1</td>
<td>19.0</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>W2-1</td>
<td>ROAD WORK 144" FT</td>
<td>46X28</td>
<td>EACH</td>
<td>1</td>
<td>1</td>
<td>19.0</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>W2-1</td>
<td>ROAD WORK 144" FT</td>
<td>46X28</td>
<td>EACH</td>
<td>1</td>
<td>1</td>
<td>19.0</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>W2-2</td>
<td>ROAD WORK AHEAD</td>
<td>46X20</td>
<td>EACH</td>
<td>2</td>
<td>2</td>
<td>20.5</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>M1-2</td>
<td>ROAD CLOSED</td>
<td>46X20</td>
<td>EACH</td>
<td>2</td>
<td>2</td>
<td>20.5</td>
<td>EACH</td>
<td>EACH</td>
</tr>
<tr>
<td>1/2 SCAFFRACE TYPE EST</td>
<td>2</td>
<td>2</td>
<td>32.0</td>
<td>EACH</td>
<td>1</td>
<td>1</td>
<td>92.0</td>
<td>EACH</td>
</tr>
<tr>
<td>TRAFFIC DRUMS</td>
<td>12</td>
<td>12</td>
<td>144.0</td>
<td>EACH</td>
<td>1</td>
<td>1</td>
<td>12.0</td>
<td>EACH</td>
</tr>
</tbody>
</table>

TOTAL: 144.0

NOTE: THIS IS A HIGH VOLUME ROAD AS DEFINED IN SECTION 640.03 OF THE STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION, EDITION OF 2014.

CONSTRUCTION PAVEMENT MARKINGS AND PERMANENT PAVEMENT MARKINGS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ENTIRE JOB</th>
<th>RAISED PB MARKERS (TYPE)</th>
<th>THERMOPLASTIC PAVEMENT MARKING</th>
<th>REFLECTORIZED PB PAVEMENT MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTIRE PROJECT</td>
<td>300</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 300

* Quantities estimated to be used if and where directed by the Engineer. See Section 164.03 of the Standard Specifications. FPO underdrains shall be connected to drop inlets and installed where directed by the Engineer. Payment for connecting to drop inlets shall be considered included in the price bid for 4" pipe underdrains.

STRUCTURES

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>SIDE DRAIN</th>
<th>REINFORCED CONCRETE PIPE OVULIERS</th>
<th>FLASSED END SECTIONS FOR REINFORCED CONCRETE PIPE OVULIERS</th>
<th>DROP INLETS</th>
<th>SOLID SCOURING</th>
<th>WATER</th>
<th>STANDARD DRAWINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td>207</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>PE-1, PE-2, PCC-1</td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74+00</td>
<td>PARMER RD</td>
<td>CONSTRUCT DROP INLET OUTLET, M903 PIPE OVAL VERT. TEE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: 100

NOTE: THIS IS A HIGH VOLUME ROAD AS DEFINED IN SECTION 644.03. STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION, EDITION OF 2014.

4" PIPE UNDERDRAINS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>UNDERDRAIN/Pipe PROTECTORS</th>
<th>EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL: 300

* Quantities estimated to be used if and where directed by the Engineer. See Section 164.03 of the Standard Specifications. FPO underdrains shall be connected to drop inlets and installed where directed by the Engineer. Payment for connecting to drop inlets shall be considered included in the price bid for 4" pipe underdrains.

SELECTED PIPE BEDDING

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SELECTED PIPE BEDDING (G.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

TOTAL: 100

* Quantities estimated to be used if and where directed by the Engineer. See Section 164.03 of the Standard Specifications. FPO underdrains shall be connected to drop inlets and installed where directed by the Engineer. Payment for connecting to drop inlets shall be considered included in the price bid for 4" pipe underdrains.

CLEARING AND GRUBBING

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>CLEARING</th>
<th>GRUBBING</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>PARMER RD</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL: 8
TEMPORARY EROSION CONTROL

<table>
<thead>
<tr>
<th>STATION</th>
<th>STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAG 1</td>
<td>BAG 1</td>
</tr>
<tr>
<td>DITCH 1</td>
<td>DITCH 1</td>
</tr>
<tr>
<td>DITCH 2</td>
<td>DITCH 2</td>
</tr>
<tr>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>PIPE 1</td>
<td>PIPE 1</td>
</tr>
<tr>
<td>SLUDGE TUBE</td>
<td>SLUDGE TUBE</td>
</tr>
<tr>
<td>SLUDGE TUBE</td>
<td>SLUDGE TUBE</td>
</tr>
<tr>
<td>SEDIMENT BASIN</td>
<td>SEDIMENT BASIN</td>
</tr>
<tr>
<td>SEDIMENT REMOVAL</td>
<td>SEDIMENT REMOVAL</td>
</tr>
<tr>
<td>TEMPORARY SEEDING</td>
<td>TEMPORARY SEEDING</td>
</tr>
<tr>
<td>MULCH COVER</td>
<td>MULCH COVER</td>
</tr>
<tr>
<td>WATER</td>
<td>WATER</td>
</tr>
<tr>
<td>CLEANING AND GRADING</td>
<td>CLEANING AND GRADING</td>
</tr>
<tr>
<td>BAG 1</td>
<td>BAG 1</td>
</tr>
<tr>
<td>DITCH 1</td>
<td>DITCH 1</td>
</tr>
<tr>
<td>DITCH 2</td>
<td>DITCH 2</td>
</tr>
<tr>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>PIPE 1</td>
<td>PIPE 1</td>
</tr>
<tr>
<td>SLUDGE TUBE</td>
<td>SLUDGE TUBE</td>
</tr>
<tr>
<td>SLUDGE TUBE</td>
<td>SLUDGE TUBE</td>
</tr>
<tr>
<td>SEDIMENT BASIN</td>
<td>SEDIMENT BASIN</td>
</tr>
<tr>
<td>SEDIMENT REMOVAL</td>
<td>SEDIMENT REMOVAL</td>
</tr>
<tr>
<td>TEMPORARY SEEDING</td>
<td>TEMPORARY SEEDING</td>
</tr>
<tr>
<td>MULCH COVER</td>
<td>MULCH COVER</td>
</tr>
<tr>
<td>WATER</td>
<td>WATER</td>
</tr>
</tbody>
</table>

SOIL STABILIZATION

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTIRE PROJECT</td>
<td>100</td>
</tr>
</tbody>
</table>

TOTA LS: 100 | 100 |

EROSION CONTROL

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LINE SEEDING</th>
<th>MULCH COVER</th>
<th>SECOND SEEDING APPLICATION</th>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTIRE PROJECT</td>
<td>22.05</td>
<td>11.28</td>
<td>11.28</td>
<td>11.28</td>
</tr>
<tr>
<td>TOTAL</td>
<td>22.05</td>
<td>11.28</td>
<td>11.28</td>
<td>11.28</td>
</tr>
</tbody>
</table>

EARTHWORK SUMMARY

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>REQUIRED EROSION</th>
<th>COMPLETED EROSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTIRE PROJECT</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

WIRE FENCE

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>WIRE FENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
<td>STATION</td>
</tr>
<tr>
<td>75474.06</td>
<td>10142.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10142.00</td>
</tr>
</tbody>
</table>

COLD MILLING ASPHALT PAVEMENT

<table>
<thead>
<tr>
<th>STATION</th>
<th>STATION</th>
<th>LOCATION</th>
<th>AVE. WIDTH</th>
<th>SQ. YD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>72424.43</td>
<td>72424.43</td>
<td>PARKER RD.</td>
<td>144.44</td>
<td>320</td>
</tr>
<tr>
<td>TOTAL</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACHM PATCHING OF EXISTING ROADWAY

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTIRE PROJECT</td>
<td>25</td>
</tr>
</tbody>
</table>

QUANTITIES

<table>
<thead>
<tr>
<th>QUANTITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
</tr>
<tr>
<td>70-18-89</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
BASE & SURFACING

<table>
<thead>
<tr>
<th>STATION</th>
<th>STATION</th>
<th>LOCATION</th>
<th>LENGTH</th>
<th>ACIMI SURFACE COURSE (1/2") (PG-64-22)</th>
<th>ACIMI BINDER COURSE (1") (PG-64-22)</th>
<th>AGGREGATE BASE COURSE (CLASS 7)</th>
<th>TACK COAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FEET</td>
<td>FEET</td>
<td>FEET</td>
<td>FEET</td>
<td>FEET</td>
</tr>
<tr>
<td>0276.43</td>
<td>0276.43</td>
<td>PARKER RD.</td>
<td>150.50</td>
<td>37.03</td>
<td>411.84</td>
<td>TON</td>
<td>53.36</td>
</tr>
<tr>
<td>0376.36</td>
<td>0376.36</td>
<td>PARKER RD.</td>
<td>46.50</td>
<td>46.50</td>
<td>410.01</td>
<td>TON</td>
<td>53.36</td>
</tr>
<tr>
<td>0446.25</td>
<td>0446.25</td>
<td>PARKER RD.</td>
<td>59.50</td>
<td>59.50</td>
<td>745.11</td>
<td>TON</td>
<td>91.37</td>
</tr>
<tr>
<td>0576.22</td>
<td>0576.22</td>
<td>PARKER RD.</td>
<td>126.60</td>
<td>126.60</td>
<td>954.14</td>
<td>TON</td>
<td>136.75</td>
</tr>
<tr>
<td>0609.43</td>
<td>0609.43</td>
<td>PARKER RD.</td>
<td>28.80</td>
<td>28.80</td>
<td>855.93</td>
<td>TON</td>
<td>107.79</td>
</tr>
<tr>
<td>0636.21</td>
<td>0636.21</td>
<td>PARKER RD.</td>
<td>122.20</td>
<td>122.20</td>
<td>610.53</td>
<td>TON</td>
<td>70.02</td>
</tr>
<tr>
<td>0709.14</td>
<td>0709.14</td>
<td>PARKER RD.</td>
<td>24.70</td>
<td>24.70</td>
<td>749.04</td>
<td>TON</td>
<td>97.55</td>
</tr>
<tr>
<td>0736.21</td>
<td>0736.21</td>
<td>PARKER RD.</td>
<td>122.20</td>
<td>122.20</td>
<td>855.93</td>
<td>TON</td>
<td>107.79</td>
</tr>
<tr>
<td>1134.22</td>
<td>1134.22</td>
<td>PARKER RD.</td>
<td>223.80</td>
<td>223.80</td>
<td>954.14</td>
<td>TON</td>
<td>273.13</td>
</tr>
<tr>
<td>1174.72</td>
<td>1174.72</td>
<td>PARKER RD.</td>
<td>45.00</td>
<td>45.00</td>
<td>855.93</td>
<td>TON</td>
<td>136.75</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>10249.43</td>
<td>2007.44</td>
<td>1214.45</td>
<td>2282.06</td>
<td>14036.02</td>
</tr>
</tbody>
</table>

BASES OF ESTIMATE:
- ACIMI SURFACE COURSE (1/2") : 0.2% ASPHALT BINDER (PG-64-22), 94.8% MINERAL AGGREGATE, Nmx = 115
- ACIMI BINDER COURSE (1") : 4.2% ASPHALT BINDER (PG-64-22), 95.8% MINERAL AGGREGATE, Nmx = 115

BASE & SURFACING - DRIVEWAYS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>WIDTH</th>
<th>ACIMI BINDER COURSE (CLASS 7)</th>
<th>ACIMI SURFACE COURSE (1/2") (200 LBS./PER S.Y.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEET</td>
<td>TONS</td>
<td>SQUARE YARDS</td>
</tr>
<tr>
<td>PARKER RD. @ 625, 109-94</td>
<td>30</td>
<td>165.37</td>
<td>506</td>
</tr>
<tr>
<td>PARKER RD. @ 625, 109-94</td>
<td>16</td>
<td>128.10</td>
<td>318</td>
</tr>
<tr>
<td>TOTALS:</td>
<td></td>
<td>393.47</td>
<td>824</td>
</tr>
</tbody>
</table>

BASES OF ESTIMATE:
- ACIMI SURFACE COURSE (1/2") : 3.2% ASPHALT BINDER (PG-64-22), 94.8% MINERAL AGGREGATE, Nmx = 115

THE CONTRACTOR, WITH THE APPRAISAL OF THE ENGINEER, WILL BE ALLOWED TO SUBSTITUTE A HIGHER PERFORMANCE GRADE ASPHALT SURFACE COURSE FOR DRIVEWAYS AND MINOR SIDE STREET CONSTRUCTION AT NO ADDITIONAL COST TO THE DEPARTMENT.

QUANTITIES
SURVEY CONTROL COORDINATES

Project Name: 100807
Date: 10-20-2014

AKRON STATE PLANE - NORTH ZONE BASED ON GPD CONTROL
PROJECTED TO GROUND.

SURVEY FOOT

Point Name Northing Easting Elev Feature Description
--- --- --- ---
AG 546120.1 680700 16853100 3005900 320 800 OIL OIL OIL OIL
AB 546444.3 687400 16852900 30009900 320 800 OIL OIL OIL
AC 546768.5 654200 14843500 29870500 365 769 BM 02437 SC CHIR D1
AD 546768.5 693900 14843100 29870700 365 257 BM 025189 IN NORTH W1
AE 546563.2 125300 16852300 3087700 266 131 BM 020468 NE COR, OF D1

Notes: Repair and Cap - Standard = "Repair with 2" Aluminum Cap stamped "diameter marking common to all caps", or as indicated.
Other markings indicated in the point description of the individual point.

All distances are ground distances for this project.
A PROJECT CAD OF C. KRAMANZOGA HAS BEEN USED TO COMPUTE THE ABOVE GRID COORDINATES.
GRID DISTANCE = GRID DISTANCE X CAD.
GRID COORDINATES ARE STORED UNDER 00G07000.TCL
VERTICAL DATUM IS NAVD 88 POSITIONAL ACCURACY THIRD ORDER, UNLESS SPECIFIED OTHERWISE AT A SPECIFIC POINT.

BASIS OF BEARING:
AKRON STATE PLANE GRID REFERENCE - CONSUMED FROM GPD CONTROL POINTS 15.1 162809
CONSUMED ANGLES 90 43 37 25505 90 04 5 PM 707
GRID AZIMUTH = ASTERIAL, AZIMUTH = CONVERGENCE ANGLE.

ALLOCATION NAME: PARKE RD.

<table>
<thead>
<tr>
<th>POINT</th>
<th>TYPE</th>
<th>Northing</th>
<th>Easting</th>
<th>CASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8001</td>
<td>ORG</td>
<td>629,09.06</td>
<td>P69</td>
<td>54512.8938</td>
</tr>
<tr>
<td>8002</td>
<td>ORG</td>
<td>619,09.08</td>
<td>P69</td>
<td>54513.9935</td>
</tr>
<tr>
<td>8003</td>
<td>ORG</td>
<td>677,09.09</td>
<td>P69</td>
<td>54530.5415</td>
</tr>
<tr>
<td>8004</td>
<td>ORG</td>
<td>695,09.09</td>
<td>FT</td>
<td>54577.0974</td>
</tr>
<tr>
<td>8005</td>
<td>ORG</td>
<td>79,04.25</td>
<td>P69</td>
<td>54812.0108</td>
</tr>
<tr>
<td>8006</td>
<td>ORG</td>
<td>83,11.37</td>
<td>M</td>
<td>54577.1392</td>
</tr>
<tr>
<td>8007</td>
<td>ORG</td>
<td>85,55.75</td>
<td>FT</td>
<td>54726.0537</td>
</tr>
<tr>
<td>8008</td>
<td>ORG</td>
<td>96,04.81</td>
<td>FT</td>
<td>54716.6012</td>
</tr>
<tr>
<td>8009</td>
<td>ORG</td>
<td>97,60.90</td>
<td>M</td>
<td>54784.9099</td>
</tr>
<tr>
<td>8010</td>
<td>ORG</td>
<td>99,50.10</td>
<td>FT</td>
<td>54792.8203</td>
</tr>
<tr>
<td>8011</td>
<td>ORG</td>
<td>105,53.57</td>
<td>P69</td>
<td>54832.1927</td>
</tr>
<tr>
<td>8012</td>
<td>ORG</td>
<td>107,96.83</td>
<td>P69</td>
<td>54811.8807</td>
</tr>
<tr>
<td>8013</td>
<td>ORG</td>
<td>110,50.87</td>
<td>FT</td>
<td>54900.1060</td>
</tr>
<tr>
<td>8014</td>
<td>ORG</td>
<td>112,40.77</td>
<td>P69</td>
<td>54893.1105</td>
</tr>
</tbody>
</table>

ALLOCATION NAME: WASHINGTON AVE.

<table>
<thead>
<tr>
<th>POINT</th>
<th>TYPE</th>
<th>Northing</th>
<th>Easting</th>
<th>CASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8105</td>
<td>ORG</td>
<td>10,00.00</td>
<td>P69</td>
<td>54871.6070</td>
</tr>
<tr>
<td>8106</td>
<td>ORG</td>
<td>28,49.31</td>
<td>P69</td>
<td>54807.3463</td>
</tr>
</tbody>
</table>

ALLOCATION NAME: US HWY 63 MEDIAN

<table>
<thead>
<tr>
<th>POINT</th>
<th>TYPE</th>
<th>Northing</th>
<th>Easting</th>
<th>CASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8107</td>
<td>ORG</td>
<td>412,22.15</td>
<td>P69</td>
<td>54975.5119</td>
</tr>
<tr>
<td>8108</td>
<td>ORG</td>
<td>434,50.00</td>
<td>P69</td>
<td>54908.1501</td>
</tr>
<tr>
<td>8109</td>
<td>ORG</td>
<td>439,09.03</td>
<td>M</td>
<td>54698.0074</td>
</tr>
<tr>
<td>8110</td>
<td>ORG</td>
<td>440,50.38</td>
<td>PT</td>
<td>54054.1192</td>
</tr>
<tr>
<td>8111</td>
<td>ORG</td>
<td>464,55.49</td>
<td>M</td>
<td>55006.1449</td>
</tr>
<tr>
<td>8112</td>
<td>ORG</td>
<td>470,06.65</td>
<td>M</td>
<td>55112.9640</td>
</tr>
<tr>
<td>8113</td>
<td>ORG</td>
<td>479,09.88</td>
<td>P69</td>
<td>55116.1741</td>
</tr>
<tr>
<td>8114</td>
<td>ORG</td>
<td>484,48.41</td>
<td>P69</td>
<td>55112.1661</td>
</tr>
</tbody>
</table>

ALLOCATION NAME: RAMP 4

<table>
<thead>
<tr>
<th>POINT</th>
<th>TYPE</th>
<th>Northing</th>
<th>Easting</th>
<th>CASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>8125</td>
<td>ORG</td>
<td>437,22.08</td>
<td>P69</td>
<td>54778.2325</td>
</tr>
<tr>
<td>8126</td>
<td>ORG</td>
<td>457,00.08</td>
<td>P69</td>
<td>54773.0508</td>
</tr>
<tr>
<td>8127</td>
<td>ORG</td>
<td>441,55.51</td>
<td>M</td>
<td>54800.2706</td>
</tr>
<tr>
<td>8128</td>
<td>ORG</td>
<td>446,05.73</td>
<td>FT</td>
<td>54834.8987</td>
</tr>
<tr>
<td>8129</td>
<td>ORG</td>
<td>449,55.91</td>
<td>M</td>
<td>54803.7999</td>
</tr>
<tr>
<td>8130</td>
<td>ORG</td>
<td>450,23.33</td>
<td>M</td>
<td>54930.2453</td>
</tr>
<tr>
<td>8131</td>
<td>ORG</td>
<td>451,05.30</td>
<td>P69</td>
<td>54930.3668</td>
</tr>
<tr>
<td>8132</td>
<td>ORG</td>
<td>453,14.89</td>
<td>P69</td>
<td>54894.0287</td>
</tr>
</tbody>
</table>

SURVEY CONTROL DETAILS

- ARKANSAS LICENSED PROFESSIONAL ENGINEERS
- 12/2/15

- SURVEY CONTROL DETAILS
CURVE DATA

<table>
<thead>
<tr>
<th>Curve</th>
<th>PC</th>
<th>PI</th>
<th>PT</th>
<th>Δ</th>
<th>D</th>
<th>TanLen</th>
<th>Length</th>
<th>θ</th>
<th>La</th>
<th>Design Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA165-1</td>
<td>640-34.00</td>
<td>430-29.23</td>
<td>485-82.328</td>
<td>95°20'00" Rth</td>
<td>700.000"</td>
<td>155.30</td>
<td>334.18</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>LA163-1</td>
<td>645-00.49</td>
<td>470-17.68</td>
<td>495-45.89</td>
<td>47°01'40" LTH</td>
<td>310.000"</td>
<td>194.66</td>
<td>493.78</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>PARK-1</td>
<td>621-00.00</td>
<td>671.39</td>
<td>646.00</td>
<td>24°19'46" Rth</td>
<td>600.000"</td>
<td>245.44</td>
<td>600.00</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>PARK-2</td>
<td>615-00.25</td>
<td>834-35.71</td>
<td>915-55.75</td>
<td>17°51'20" Rth</td>
<td>730.000"</td>
<td>601.0</td>
<td>730.00</td>
<td>0.00</td>
<td>200</td>
<td>50 mph</td>
</tr>
<tr>
<td>PARK-3</td>
<td>600-00.00</td>
<td>1134-33.74</td>
<td>1234-33.74</td>
<td>23°11'12" Rth</td>
<td>760.000"</td>
<td>176.09</td>
<td>760.00</td>
<td>0.00</td>
<td>200</td>
<td>50 mph</td>
</tr>
<tr>
<td>PARK-4</td>
<td>595-56.67</td>
<td>1704-26.30</td>
<td>1670-26.30</td>
<td>24°00'24" Rth</td>
<td>300.000"</td>
<td>243.13</td>
<td>400.30</td>
<td>0.03</td>
<td>200</td>
<td>50 mph</td>
</tr>
</tbody>
</table>

Survey Control Details

- Job No.: 1000007
- Date: 9-2-15
- **Surveyor:** (Signature)

ARKANSAS LICENSED PROFESSIONAL ENGINEER

- **Engineer:** (Signature)
ENERGY DISSIPATORS TO BE USED FOR THE ENTIRE LENGTH OF DITCH WHEN SLOPE OF DITCH PAVING EXCEEDS 1:1. The dissipators will not be paid for directly, but shall be considered to be included in the price bid for concrete ditch paving.

NUMBER OF ELEMENTS FOR NEW HAVENS WITH WIDTH OF PAVING SPECIFIED

ENERGY DISSIPATORS (IN SCALE)

TOE WALL DEPTH MAY BE ALTERED TO 1' IF NEEDED BY THE ENGINEER IN ALT. EXCAVATION

THE STEEL AND ADDITIONAL CONCRETE FOR THE WALLS SHALL NOT BE PAID FOR EXCEPT FOR CONCRETE DITCH PAVING.

THE FULL WIDTH OF EACH SECTION SHALL BE POURED MONOLITHICALLY.

TOE WALLS TO BE CONSTRUCTED FULL WIDTH AT EACH END OF DITCH PAVING, AND POURED MONOLITHICALLY.

SOLID RCD ALONG DITCH PAVING TO BE PLACED WITHIN 14 DAYS OF DITCH PAVING CONSTRUCTION.

1' WIDE TRANSVERSE EXPANSION JOINTS SHALL BE PLACED IN CONCRETE DITCH PAVING AT 40 INTERVALS. THE SPACE SHALL BE FILLED WITH APPROVED JOINT FILLER COMPLIANT WITH AWWA 427-M-93.

ARIZONA STATE HIGHWAY COMMISSION

CONCRETE DITCH PAVING

STANDARD DRAWING CDP-1
CONCRETE COMBINATION CURB AND GUTTER

DETAIL OF GUTTER SLOPE
GUTTER SHALL BE CONSTRUCTED ON 2% SLOPE AWAY FROM ROADWAY, REGARDLESS OF ROADWAY SLOPE.

LONGITUDINAL SECTION

ELEVATION

ALTERNATE CONSTRUCTION METHOD FOR INTEGRAL CURB

DETAILS OF MODIFIED CURB

NOTE: USE MODIFIED CURB AS SPECIFIED ON STD 04-L. COMPENSATION FOR MODIFIED CURB WILL BE CONSIDERED INCLUDED IN THE PRICE OR FOR THE TYPE OF CURB OR CURB AND GUTTER SPECIFIED.
PLAN VIEW

**TRANSITION FROM A 6" TO A 4" TYPE 1" CURB FACE ON THE FRONT SIDE OF THE CONCRETE ISLAND IN THIS LENGTH

- 2'-6" MIN. CONCRETE ISLAND BEHIND BERM (AT ISLAND LOCATIONS)
- 1'-9" CHAMFER ON ISLAND
- APRON DEPTH 5" (10'-0" MINIMUM)
- CONSTRUCTION & PAY LIMITS FOR PCC DRIVE
- VAR. WIDTH CONCRETE WALK (WHEN SHOWN ON THE PLANS)
- VAR. WIDTH GRASS BERM (WHEN SHOWN ON THE PLANS)
- 124" MAX. SLOPE
- MODIFIED CURB BAND (W=28)

ISOMETRIC VIEW

- VAR. WIDTH CONCRETE ISLAND 6'-8" NOR. UNIFORM THICKNESS
- TYPE "B" CURB FACE (TYPICAL ALL SIDES)
- FINAL LIFT OF ACHM SURFACE COURSE
- ULTIMATE PAVEMENT SECTION (LESS FINAL LIFT OF ACHM SURFACE COURSE)
- VAR. WIDTH CONCRETE ISLAND 6'-8" NOR. UNIFORM THICKNESS
- TYPE "C" CURB FACE (TYPICAL ALL SIDES)
- ULTIMATE PAVEMENT SECTION (LESS FINAL LIFT OF ACHM SURFACE COURSE)

- CURBED ISLANDS FOR CHANNELIZATION

REFER TO PLANS FOR TYPE OF CURB FACE TO BE USED.
NO DIRECT PAYMENT WILL BE MADE FOR THE CURB FACES SHOWN ON THE ISLAND DETAILS. PAYMENT FOR THE CURB FACE WILL BE INCLUDED IN THE UNIT PRICE BID FOR THE ITEM "CONCRETE ISLAND".

DRIVEWAY EXTENSION DETAILS

- CUT SECTION
- FILL SECTION
- SLOPE 2:1 MAX.

DRIVEWAY VERTICAL ALIGNMENT DETAILS

- VAR. WIDTH PCC DRIVE (6'-8" UNIFORM THICKNESS)
- VAR. WIDTH CONE WALK (4'-0"
- VAR. WIDTH GRASS BERM (WHEN SHOWN ON PLANS)

SECTION A-A

- CONCRETE ISLAND (6'-8" THICK)

SECTION B-B

- VAR. WIDTH CONCRETE ISLAND (6'-8"
- VAR. WIDTH CONC. WALK (4'-0"
- VAR. WIDTH GRASS BERM (WHEN SHOWN ON PLANS)

USE TYPE "D" CURB FACE ON ALL SIDES OF CONC. ISLAND

EXPANSION JOINT

6" TYPICAL

ARKANSAS STATE HIGHWAY COMMISSION
DETAILS OF DRIVEWAYS & ISLANDS
STANDARD DRAWING DR-1
TABLE OF DIMENSIONS

<table>
<thead>
<tr>
<th>N</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>S</th>
<th>D</th>
<th>R1</th>
<th>R2</th>
<th>C1</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARCH PIPE

<table>
<thead>
<tr>
<th>N</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>P</th>
<th>R2</th>
<th>G-T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The measured span and rise shall not vary more than ±1% per cent from the values specified by alteration of 1:000.

END VIEW
CONCRETE ARCH PIPE

END VIEW
CIRCULAR PIPE

MULTIPLE R.C. PIPE CULVERTS

MULTIPLE C.M. PIPE CULVERTS

END SECTIONS FOR CORRUGATED METAL PIPE CULVERTS

SECTION A-A

NOTE: ALTERNATE CONNECTIONS TO THE PIPE CULVERTS IN ACCORDANCE WITH MANUFACTURER'S STANDARD PRACTICES, MAY BE MADE SUBJECT TO THE APPROVAL OF THE ENGINEER.
CONSTRUCTION SEQUENCE

1. Place structural bedding material to grade, do not compact.

2. Install pipe to grade.

3. Compact structural bedding outside the middle 75% of the pipe.

4. Place and compact compacting fill inside the middle 75% of the pipe.

NOTES: Haunch and structural bedding material will not be paid for separately, but compensation will be considered to be included in the price bid per linear foot of concrete pipe.

- LEGEND -

+ EL = Normal inside diameter of pipe

+ SF 0 = Saturated, fine-grained soil

+ SF 1 = Unstressed soil

+ SF 2 = Undrained soil

+ SF 3 = Unstressed soil

+ SF 4 = Underdrained soil

MINIMUM HEIGHT OF FILL 'H' OVER CIRCULAR R.C. PIPE

<table>
<thead>
<tr>
<th>CLASS OF PIPE</th>
<th>INSTALLATION TYPE</th>
<th>PREDICTION DISTANCE (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TYPE I</td>
<td>12.50</td>
</tr>
<tr>
<td>II</td>
<td>TYPE II</td>
<td>24.00</td>
</tr>
</tbody>
</table>

MAXIMUM HEIGHT OF FILL 'H' OVER CIRCULAR R.C. PIPE

<table>
<thead>
<tr>
<th>CLASS OF PIPE</th>
<th>INSTALLATION TYPE</th>
<th>PREDICTION DISTANCE (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TYPE I</td>
<td>21.32</td>
</tr>
<tr>
<td>II</td>
<td>TYPE II</td>
<td>32.50</td>
</tr>
</tbody>
</table>

MINIMUM HEIGHT OF FILL 'H' OVER R.C. ARCH & HORIZONTAL ELLIPTICAL PIPE

<table>
<thead>
<tr>
<th>CLASS OF PIPE</th>
<th>INSTALLATION TYPE</th>
<th>PREDICTION DISTANCE (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TYPE I</td>
<td>2.50</td>
</tr>
<tr>
<td>II</td>
<td>TYPE II</td>
<td>5.00</td>
</tr>
</tbody>
</table>

MAXIMUM HEIGHT OF FILL 'H' OVER R.C. ARCH & HORIZONTAL ELLIPTICAL PIPE

<table>
<thead>
<tr>
<th>CLASS OF PIPE</th>
<th>INSTALLATION TYPE</th>
<th>PREDICTION DISTANCE (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TYPE I</td>
<td>13.00</td>
</tr>
<tr>
<td>II</td>
<td>TYPE II</td>
<td>21.00</td>
</tr>
</tbody>
</table>

GENERAL NOTES

1. Concrete pipe culvert construction shall conform to Arkansas Highway and Transportation Department specifications. A separate submittal is required for each culvert installation. The notes in the plan section and subsection refer to the standard construction specifications.

2. Pipe, which is not conforming to Section 5 or Section 7, shall be used only if the engineer deems it satisfactory.

3. All backfill shall be placed in lifts no greater than 6 inches thick and compacted to the specified compaction requirements. The compaction requirements for each lift shall be based on the materials used and the expected load on the structure.

4. Each pipe shall be protected during construction by a cover sufficient to prevent damage from falling objects or equipment.

5. The minimum trench width shall be the outside diameter of the pipe plus 24 inches. The maximum allowable trench width shall be the minimum width practicable for working conditions.

6. Concrete pipe culverts shall be installed in a minimum clearance of 24 inches from any existing underground utilities or other structures.

7. Intermediate material shall be placed as directed by the engineer at the end of the culvert to prevent loss of structural bedding when percolating water is used for structural bedding and/or backfill.

8. Not more than one lifting hole may be provided in concrete pipe to facilitate handling. A pipe will be placed in the fall of the grade and the fill placed above it.

9. Concrete pipe culverts shall be placed in a trench that is excavated at the bottom of the excavated trench below the area identified as "structural bedding." All backfill shall be placed in lifts not greater than 6 inches thick and compacted to the specified compaction requirements above the pipe. The compaction requirements for each lift shall be based on the materials used and the expected load on the structure.

10. When the testing material excavated from the trench is not suitable for backfill, the pipe shall be placed in the area identified above the pipe, and the backfill shall be placed in lifts not greater than 6 inches thick and compacted to the specified compaction requirements above the pipe. If suitable material is not available, the engineer may authorize the use of "selected pipe backfill."
CONSTRUCTION SEQUENCE

1. Place structural bedding material to drain, do not compact.
2. Compact structural bedding outside of the model type of pipe.
3. Complete structural bedding operation by working from the side of the pipe to the side of structural bedding differential, wherever it is less.

NOTES:
- Structural bedding and structural bedding material will not be paid for separately, but compensation will be considered to be included in the price bid per linear foot of metal pipe.
- Structural backfill material is unstabilized soil.

EQUIVALENT METAL THICKNESSES AND GAUGES

<table>
<thead>
<tr>
<th>STEEL</th>
<th>ZINC-COATED</th>
<th>UNCOATED ALUMINUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.064</td>
<td>0.2958</td>
<td>0.060</td>
</tr>
<tr>
<td>0.076</td>
<td>0.3473</td>
<td>0.060</td>
</tr>
<tr>
<td>0.080</td>
<td>0.3946</td>
<td>0.060</td>
</tr>
<tr>
<td>0.085</td>
<td>0.4448</td>
<td>0.060</td>
</tr>
</tbody>
</table>

THESE THICKNESSES ARE MINIMUM.

EMBANKMENT AND TRENCH INSTALLATIONS

1. Structural backfill, embankment, and outer structural bedding material shall be compacted to 95% of minimum density according to the type of material used.
2. Installation type (or 2 may be used for corrugated steel, or aluminium pipe round.)
3. Installation type shall be used for corrugated steel or aluminium pipe with end x 1/2.
4. Installation type (or 2 may be used for corrugated steel, or aluminium pipe with end x 1/2.)

GENERAL NOTES

1. Metal pipe culvert construction shall conform to Arkansas State Highway and Transportation Department Standard Specifications for Highway Construction, except current edition with applicable supplemental specifications and special provisions unless otherwise noted in the plans, section and subsection refer to the standard construction specifications.
2. Metal pipe culvert design shall conform to Section 606 and job special provisions met pipe.
3. All pipe shall be protected during construction by a cover sufficient to prevent physical damage to the pipe.
4. The minimum trench width shall be the outside diameter of the pipe plus 24 inches.
5. The maximum allowable trench width shall be the minimum with practical for working conditions.
6. Multiple pipe culverts shall be installed with a minimum clearance of 24 inches.
7. Metal pipe culvert installation shall conform to steel Culverts-2 for installation clearances where flanged end sections are used.
8. A suitable material shall be placed as specified by the engineer at the end of the culvert to prevent loss of structural bedding when pervious material is used for structural bedding and/or backfill.
9. Metal pipe culvert installation shall be determined at the bottom of the existing material inside the pipe according to section 606 section 606.05.2.3 (a). Backfilling shall be continued to the underside area up to the selected pipe bedding, pay limit designated above.
10. Metal pipe culvert installation shall be determined by the engineer in the event that a pipe levee is required by the engineer.
11. Foundation material is not excluded for the pipe trench. All pipe levee is required by the engineer.
12. A suitable material is required by the engineer. The engineer may authorize the use of "Selected Pipe Backfill."
MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"

<table>
<thead>
<tr>
<th>TRENCH WIDTH FACTOR</th>
<th>"H" OF 0-3'</th>
<th>"H" OF 3'-6'</th>
<th>"H" OF 6'-9'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>1.20</td>
<td>1.13</td>
<td>1.05</td>
</tr>
<tr>
<td>1.50</td>
<td>1.40</td>
<td>1.30</td>
<td>1.20</td>
</tr>
<tr>
<td>1.75</td>
<td>1.60</td>
<td>1.50</td>
<td>1.40</td>
</tr>
<tr>
<td>2.00</td>
<td>1.90</td>
<td>1.80</td>
<td>1.70</td>
</tr>
<tr>
<td>2.25</td>
<td>2.10</td>
<td>2.00</td>
<td>1.90</td>
</tr>
<tr>
<td>2.50</td>
<td>2.40</td>
<td>2.30</td>
<td>2.20</td>
</tr>
</tbody>
</table>

MINIMUM COVER FOR CONSTRUCTION LOADS

<table>
<thead>
<tr>
<th>PIPE DIAMETER (IN.)</th>
<th>0% LOAD</th>
<th>25% LOAD</th>
<th>50% LOAD</th>
<th>75% LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12"</td>
<td>15"</td>
<td>18"</td>
<td>21"</td>
</tr>
<tr>
<td>6</td>
<td>15"</td>
<td>18"</td>
<td>21"</td>
<td>24"</td>
</tr>
<tr>
<td>8</td>
<td>18"</td>
<td>21"</td>
<td>24"</td>
<td>27"</td>
</tr>
<tr>
<td>10</td>
<td>21"</td>
<td>24"</td>
<td>27"</td>
<td>30"</td>
</tr>
</tbody>
</table>

GENERAL NOTES

1. PIPE SHALL CONFORM TO AS 3545. TYPE 5 INSTALLATION SHALL CONFORM TO JER SPECIAL PROVISION "PLASTIC PIPE" AND SECTION 4 6 OF THE STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION CURRENT EDITION.
2. PLASTIC PIPE CULVERT DESIGN SHALL CONFORM TO AS 3545 BRIDGE DESIGN SPECIFICATIONS, FIFTH EDITION (1991) WITH ONE INTERVIEW.
3. THE MINIMUM ALLOWABLE TRENCH BASE WIDTH SHALL BE THE MINIMUM WIDTH PLUS A SUFFICIENT WIDTH TO DESIGN WORKING ROOM TO PROPERLY AND SAFELY PLACE AND COMPACT MAJORING AND OTHER BACKFILL MATERIAL.
4. IMPERVIOUS MATERIAL SHALL BE PLACED AS DIRECTED BY THE ENGINEER AT THE ENDS OF THE CULVERT TO PREVENT LOSS OF STRUCTURAL BEDDING MATERAL IS USED FOR STRUCTURAL BEDDING AND/OR BACKFILL.
5. WHEN DIRECTED BY THE ENGINEER IMPERVIOUS MATERIAL THAT IS DEPOSITED AT THE BOTTOM OF THE EXCAVATED TRENCH BELOW THE AREA DESIGNATED AS STRUCTURAL BEDDING AREA WILL BE EXCAVATED AND REPLACED WITH SELECTED SOIL. THE QUANTITY OF MATERIAL REQUIRED TO REPLACE BACKFILL IS EQUAL TO THE SELECTED PIPE BEDDING PAY LIMIT DESIGNATED ABOVE WILL BE MEASURED AND PAID FOR AS SELECTED PIPE BEDDING.
6. WHEN THE EXCAVATING MATERIAL, EXCAVATED FOR THE PIPE TRENCH IS DETERMINED BY THE ENGINEER TO BE IMPERVIOUS FOR BACKFILLING THE PIPE HENCE THE AREA DESIGNATED ABOVE AS STRUCTURAL BACKFILL IMPERVIOUS MATERIAL OR MAJORING IS DEPOSITED ON TOP OF THE PIPE AND ALL PRIMARY SURFACE WATER IS DRAINED THROUGH A GUTTER OR DRAINAGE SYSTEM.
7. FOR PIPE TYPES THAT ARE NOT SMOOTH OR THE OUTSIDE (CORRODED) OR PROFILS OR LARGE BACKFILL GRADES SHOULD BE SELECTED THAT WILL PERMIT THE FILLING OF THE CONSTRUCTION TO SUIT THE VALLEY.
8. HIGH DENSITY POLYETHYLENE PIPES OF DIAMETERS OTHER THAN SHOWN WILL NOT BE ALLOWED.
9. JOINTS FOR HELD PIPE SHALL MEET THE REQUIREMENTS FOR SIS TECHNICS AS SPECIFIED IN AS 3545 SECTION 26.2.2.4 AND SHALL BE INSTALLED IN ACCORD WITH MANUFACTURERS RECOMMENDATIONS.

CONSTRUCTION SEQUENCE

1. PLACE STRUCTURAL BEDDING MATERIAL TO GRADE. DO NOT COMPACT.
2. INSTALL PIPE TO GRADE.
3. COMPACT STRUCTURAL BEDDING OUTSIDE THE MIDDLE THIRD OF THE PIPE.
4. THE STRUCTURAL BACKFILL SHALL BE PLACED AND COMPACTED AT A SLOPE OF 1:2. OR LESS AS DIRECTED.一如既是, THE PIPE SHALL BE PROTECTED FROM HARMFUL EFFECTS OF ALL WAYS, PHYSICAL OR MECHANICAL.
5. PIPE INSTALLATION MAY REQUIRE THE USE OF RESTRAINTS, WEIGHTING OR OTHER APPROVED METHODS IN ORDER TO HELP MAINTAIN GRADE AND ALIGNMENT.

- LEGEND -

H = FULL HEIGHT OF TRENCH
B = OUTSIDE DIAMETER OF PIPE
D = MINIMUM STRUCTURAL BACKFILL MATERIAL
X = IMPERVIOUS SOIL
INSTALLATION TYPE

SELECTED MATERIALS
- 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.

MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL

MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"

MINIMUM COVER FOR CONSTRUCTION LOADS

MULTIPLE INSTALLATION OF PVC PIPES

GENERAL NOTES

1. **INSTALLATION TYPE**
 - TYPE 2

2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.

3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**

4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**

5. **MINIMUM COVER FOR CONSTRUCTION LOADS**

6. **MULTIPLE INSTALLATION OF PVC PIPES**

7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
 - 3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**
 - 4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**
 - 5. **MINIMUM COVER FOR CONSTRUCTION LOADS**
 - 6. **MULTIPLE INSTALLATION OF PVC PIPES**
 - 7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
 - 3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**
 - 4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**
 - 5. **MINIMUM COVER FOR CONSTRUCTION LOADS**
 - 6. **MULTIPLE INSTALLATION OF PVC PIPES**
 - 7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
 - 3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**
 - 4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**
 - 5. **MINIMUM COVER FOR CONSTRUCTION LOADS**
 - 6. **MULTIPLE INSTALLATION OF PVC PIPES**
 - 7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
 - 3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**
 - 4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**
 - 5. **MINIMUM COVER FOR CONSTRUCTION LOADS**
 - 6. **MULTIPLE INSTALLATION OF PVC PIPES**
 - 7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
 - 3. **MAXIMUM FILL HEIGHT BASED ON STRUCTURAL BACKFILL**
 - 4. **MINIMUM TRENCH WIDTH BASED ON FILL HEIGHT "H"**
 - 5. **MINIMUM COVER FOR CONSTRUCTION LOADS**
 - 6. **MULTIPLE INSTALLATION OF PVC PIPES**
 - 7. **GENERAL NOTES**
 - 1. **INSTALLATION TYPE**
 - TYPE 2
 - 2. **SELECTED MATERIALS**
 - 4" I.D. PIPE, 304-L STAINLESS STEEL, OR 30" I.D. PRECAST CONCRETE.
CONCRETE PAVEMENT

BROKEN LINE STRIPING

ASPHALT PAVEMENT

SOLID LINE STRIPING ON CONCRETE PAVEMENT

SOLID LINE STRIPING ON ASPHALT PAVEMENT

ASPHALT PAVEMENT

GENERAL NOTES:

1. ALL LINES SHALL HAVE A WIDTH OF 4 INCHES.
2. THE THICKNESS AND RATE OF PAINT APPLICATION SHALL BE AS SPECIFIED IN SECTION 76 OF THE
 STANDARD SPECIFICATIONS.
3. THIS DRAWING SHALL BE USED IN CONJUNCTION WITH
 THE LATEST REVISIONS OF THE "MANUAL ON
 UNIFORM TRAFFIC CONTROL DEVICES."
4. RAISED PAVEMENT MARKERS SHALL BE CENTERED
 BETWEEN SKIP LINES ON 40 FEET SPACING UNLESS
 OTHERWISE SHOWN ON THE PLANS.

2" FOR ASPHALT OR CONCRETE PAVEMENT
6" FOR BITUMINOUS SURFACE TREATMENT

PAVEMENT EDGE LINE MARKING

NOTE:
THE RED LENS OF THE
TYPE DESIGNATION
WITH THE REFLECTIVE
THERMOPLASTIC
PAINTING.

DETAIL OF
STANDARD
RAISED PAVEMENT MARKERS

CROSSWALK AND STOPBAR DETAILS

STRIPE TO BE PAINTED ON CENTER LINE.

4" CONTINUOUS WHITE

STOPBAR OFFSET STOPBAR 4" FROM CROSSWALK

30 FT. OFF = PLACED 4 FT. O.C.

OFFSET NEAR END OF CROSSWALK 2 FT. MIN. FROM LINE EDGE

ARIZONA STATE HIGHWAY COMMISSION

PAVEMENT MARKING DETAILS

STANDARD DRAWING PM-1

DATE 08-30-00

REVISION 3

LOCATION PHX.

5-22-02

CROSSWALK & STOPBAR DETAILS

6-19-02

REVISED DETAIL OF STANDARD
RAISED PAVEMENT MARKERS

1-18-02

REVISED GENERAL NOTES &
REVISED PLASMA PARK MARKERS

3-12-02

REVISED DETAIL OF STANDARD
RAISED PAVEMENT MARKERS

3-12-02

REVISED DETAIL OF STANDARD
RAISED PAVEMENT MARKERS

3-10-02

DRAWN L. JONES

CHECKED J. R. GOODWIN

FL. 30-00
SuperElevation Table for Two-Way Traffic

<table>
<thead>
<tr>
<th>Design</th>
<th>Minimum</th>
<th>Desirable</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Desirable</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>LR</td>
<td>0.5</td>
<td>0.75</td>
<td>1.0</td>
<td>0.5</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>LR</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>LR</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Abbriviations
- LC: Normal Crown
- LC: Reverse Crown
- S: SuperElevation
- L: Length of SuperElevation Transition (ft)
- H: Height of SuperElevation Transition (ft)

Notes
- Maintain normal crown on inside until superElevation exceeds 0.25.
- Route of superElevation shall be continued in straight line method using applicable LC.

Standard Method when SuperElevation Revolves Around Center Line
- Use SuperElevation Formula
- Use Outside Subgrade Edge
- Use Inside Subgrade Edge

ARKANSAS STATE HIGHWAY COMMISSION
Tables and Method of SuperElevation for Two-Way Traffic
Standard Drawing SE-2
<table>
<thead>
<tr>
<th>Sign Type</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td></td>
<td>30" x 30"</td>
</tr>
<tr>
<td>YIELD</td>
<td></td>
<td>36" x 36"</td>
</tr>
<tr>
<td>SPEED LIMIT</td>
<td>50 M.P.H.</td>
<td>24" x 24"</td>
</tr>
<tr>
<td>ROAD NARROWS</td>
<td></td>
<td>30" x 30"</td>
</tr>
<tr>
<td>COUNTY ROUTE MARKER</td>
<td>16</td>
<td>24" x 24"</td>
</tr>
<tr>
<td>NARROW BRIDGE</td>
<td></td>
<td>30" x 30"</td>
</tr>
<tr>
<td>ONE LANE BRIDGE</td>
<td></td>
<td>30" x 30"</td>
</tr>
<tr>
<td>REGRAPHED IN BLUE BACKGROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHOOL</td>
<td></td>
<td>36" x 18"</td>
</tr>
</tbody>
</table>

Support Assemblies

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE A</td>
<td></td>
<td>2 LBS/FT.</td>
</tr>
<tr>
<td>TYPE B</td>
<td></td>
<td>2 LBS/FT.</td>
</tr>
<tr>
<td>TYPE C</td>
<td></td>
<td>3 LBS/FT.</td>
</tr>
</tbody>
</table>
THE CONTRACTOR SHALL DRILL AND POP-RIVET LEGEND, SHIELDS, ARROWS, OR OTHER COPY AS SHOWN.

DIRECT APPLIED BORDER

INTERSTATE

DIRECT APPLIED BORDER

AD-68 RIVETS

AD-68 RIVETS

AD-68 RIVETS

ABCDEF

GHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789 1/4 1/2 3/4

NOTES:

LEGEND ON GUIDE SIGNS ON THE MAIN LINES SHALL BE DEMOUNTABLE LEGEND.
LEGEND ON GUIDE SIGNS ON CROSS ROADS AND RAMPS SHALL BE DIRECT APPLIED.
THE DEMOUNTABLE AND DIRECT APPLIED LEGENDS SHALL BE TYPE I X SHEETING.

THE BACKGROUND ON ALL GUIDE SIGNS AND STANDARD SIGNS SHALL BE CONSTRUCTED USING TYPE I I I SHEETING.

TYPE I X SHEETING FOR BORDER, LEGEND, SHIELDS, ARROWS, OR OTHER COPY
SHALL BE ORIENTED VERTICALLY AS PER MANUFACTURERS' DATUM MARKS,
ORIENTATION MARKS, OR OTHER RECOMMENDATIONS.

SIGN LEGEND, SHIELDS, ARROWS OR OTHER COPY SHALL BE APPLIED WITH
RIVETS ONLY.

NO OTHER METHOD OF APPLYING CHARACTERS IS ALLOWED.
CLEARING AND GRUBBING

CONSTRUCTION SEQUENCE:
1. Plow perimeter controls (e.g., silt fences, diversion ditches).
2. Perform clearing and grubbing operation.

EXCAVATION

NOTES:
1. Number of phases will vary.
2. Phase 1 excavation.
3. Phase 2 excavation.
4. Final excavation.

GENERAL NOTE:
All cut slopes shall be processed, preferably seeded, and planted
with permanent or temporary measures to stabilize the face. Sideshoveling
not to exceed 10% vertical.

CONSTRUCTION SEQUENCE:
1. Excavate and stabilize interceptor and/or diversion ditches.
2. Perform phase 1 excavation. Place permanent or temporary seeding.
3. Perform phase 2 excavation. Place permanent or temporary seeding.
4. Perform final phase of excavation. Place permanent or temporary
 seeding. Install erosion control devices as required.

EMBANKMENT

GENERAL NOTE:
(a) Erosion control devices shall be installed prior to embankment.
 bedding and placed in firm, tamped layers at 12"-18" intervals.

CONSTRUCTION SEQUENCE:
1. Construct erosion control devices with permanent or temporary
 bedding, silt fences, or other erosion control devices as specified.
2. Place erosion control devices with permanent or temporary
 bedding. Install erosion control devices or a seating of earth
 of embankment.
3. Place final phase of embankment. Place permanent or temporary
 bedding, silt fences, or other erosion control devices as required.
4. Place final phase of embankment with permanent or temporary
 bedding, silt fences, or other erosion control devices as required.
GENERAL NOTES:

1. INSTALLATIONS TO BE USED WHERE NORMAL FENCING INSTALLATION WOULD CAUSE THE COLLECTION OF DIRT IN THE CHANNEL OR THE DEPRESSION WILL NOT PERMIT NORMAL INSTALLATION. INSTALLATIONS WILL BE MADE ONLY WHERE DIRECTED BY THE ENGINEER.

3. IN CONSIDERATION OF SUCH EXTREME IRREGULARITY THAT WIND DRIVING WILL NOT BE FEASIBLE, THE NORMAL FENCE WILL CONTINUE ON BOTH SIDES OF SUCH DEPRESSIONS OR Ditches AS SHOWN.

4. PAYMENT FOR THIS TYPE INSTALLATION USED WILL NOT BE MADE DIRECTLY BUT WILL BE INCLUDED IN THE CONTRACT UNIT PRICE Bid FOR WIRE FENCE OR CHAIN LINK FENCE.
STA. 106+00 TO STA. 107+00

PARKER RD.

STA. 106+00 TO STA. 107+00