CITY OF JACKSONVILLE
CONSTRUCTION PLANS FOR CITY STREET

W. MAIN ST./HARRIS RD./
JACKSONVILLE CUTOFF
INTERS. IMPVTS. (JACKSONVILLE)(S)
PULASKI COUNTY
FEDERAL AID PROJ. NO. STPU-9222(9)
JOB 061267

DESIGN TRAFFIC DATA:

- DESIGN YEAR: 2032
- 2012 ADT: 9500
- 2032 ADT: 12800
- 2032 DHV: 1408
- DIRECTIONAL DISTRIBUTION: 0.60
- TRUCKS: 3%
- DESIGN SPEED: 25 MPH

NOTES: TRAFFIC VOLUME FROM HIGHEST VOLUME LEG

THIS PROJECT IS SET ASIDE FOR SMALL BUSINESS

P.E. JOB NO. 061297
F.A.P. NO. 0230-9222-009

7.23.13
NOTES:

REFER TO CROSS SECTIONS FOR DEVIATION FROM THE NORMAL SLOPES, NO CHANGES SHALL BE MADE FROM THE PLANNED SLOPES WITHOUT THE APPROVAL OF THE ENGINEER.

* IN CUT SLOPE SIDEWALK 0.32'/" TOWARD CURB. IN fill SLOPE SIDEWALK 0.32' /"AWAY FROM CURB. CONSTRUCT SIDEWALK TO A UNIFORM THICKNESS OF 4".

FOR CROSS SLOPES IN TRANSITION AREAS SEE PLAN & PROFILE SHEETS AND CROSS SECTIONS.

PRIOR TO AND DURING PLACEMENT OF PAVEMENT IN FRONT OF THE CURB AND GUTTER, THE CONTRACTOR SHALL PROVIDE POSITIVE DRAINAGE AT ALL TIMES. THE METHODS USED SHALL BE APPROVED BY THE ENGINEER. PAYMENT FOR THE WORK SHALL BE CONSIDERED INCLUDED IN THE PRICE BUT FOR THE VARIOUS CONTRACT ITEMS.

THE FINAL 2" OF SURFACE COURSE IS TO BE PLACED AFTER ALL OTHER COURSES HAVE BEEN LAYED. LONGITUDINAL JOINTS SHALL BE AT LANE LINES.

ROUNDABOUT RADIUS POINT

60'-0"

24'-0" SUBGRADE

CONCRETE COMBINATION CURB & GUTTER TYPE A (2'-0"

SEE LANDSCAPING DETAILS FOR UNDERWALK

ROUNDABOUT SECTION

STA.10+00.00 TO STA.13+70.71

TYPICAL SECTIONS OF IMPROVEMENT

JACOBS
NOTES:

REFER TO CROSS SECTIONS FOR DEVIATION FROM THE NORMAL SLOPES. NO CHANGES SHALL BE MADE FROM THE PLANNED SLOPES WITHOUT THE APPROVAL OF THE ENGINEER.

* IN OUT SLOPE SIDEWALK 0.02’ TO TOWARDS CURB IN FALL SLOPE SIDEWALK 0.02’ TOWARDS CURB, CONSTRUCT SIDEWALK TO A UNIFORM THICKNESS OF 4’.

FOR CROSS SLOPES IN TRANSITION AREAS, SEE PLAN & PROFILE SHEETS AND CROSS SECTIONS.

PRIOR TO AND DURING PLACEMENT OF PAVEMENT IN FRONT OF THE CURB AND GUTTER, THE CONTRACTOR SHALL PROVIDE POSITIVE ORGANIZATION AT ALL TIMES. THE METHODS USED SHALL BE APPROVED BY THE ENGINEER. PAYMENT FOR THIS WORK SHALL BE CONSIDERED INCLUDED IN THE PRICE BID FOR THE VARIOUS CONTRACT ITEMS.

THE FINAL 2” OF SURFACE COURSE IS TO BE PLACED AFTER ALL OTHER COURSES HAVE BEEN Laid. LONATIONAL JOINTS SHALL BE AT LANE LINES.

WEST MAIN ST,
2 LANE WITH RAISED MEDIAN
STA. I0+09.00 TO STA. I1+79.12
NOTES:
1. Silt fence shall be placed as the clearing and grubbing operations are started.
LEGEND

- E-5 SAND BAG DITCH CHECK
- E-6 ROCK DITCH CHECK
- E-7 DROP INLET SILT FENCE
- E-11 SILT FENCE
- E-14 SEDIMENT BASIN

REVISIONS

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
</tr>
</thead>
</table>

NOTES:

1. SILT FENCE SHALL BE PLACED AS THE CLEARING AND GRUBBING OPERATIONS ARE STARTED.
1. Silt fence shall be placed as the clearing and grubbing operations are started.
LEGEND
- E-5 Sand Bag Ditch Check
- E-6 Rock Ditch Check
- E-7 Drop Inlet Silt Fence
- E-11 Silt Fence
- E-14 Sediment Basin

REVISIONS

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
</tr>
</thead>
</table>

NOTES:
1. Silt Fence shall be placed as the clearing and grubbing operations are started.
NOTES:
1. TYPE III BARRICADE SHALL PROHIBIT TRAFFIC FROM ENTERING WORK ZONE.
2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED
 (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS)
 AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/BUSINESSES DURING CONSTRUCTION.

CONSTRUCTION PAVEMENT MARKINGS
TRAFFIC DRUMS = 17 EACH

A. REMOVE PAVEMENT MARKINGS (4" WHITE) = 286 L.F.
B. REMOVE PAVEMENT MARKINGS (4" YELLOW) = 702 L.F.
C. CONSTRUCTION PAVEMENT MARKINGS (4" WHITE) = 1008 L.F.
D. CONSTRUCTION PAVEMENT MARKINGS (4" YELLOW) = 578 L.F.

MAIN ST/JACKSONVILLE CUTOFF
STA. 9+17.00 TO STA. 5+52.00

EDGE OF EXISTING PAVEMENT
VAR. WIDTH GRADING
VAR. WIDTH ADMIXTURE
SURFACE COURSE (0.25"
220 LBS. PER SQ.YD.
VAR. WIDTH ADMIXTURE BINDER COURSE (0.5"
440 LBS. PER SQ.YD. & STACK COAT
VAR. WIDTH

0.02% ST. PER. FT.

AGGREGATE BASE COURSE
I-CLASS 77-7" COMP. DEPTH

STAGE I CONSTRUCTION
CONSTRUCT TEMPORARY WIDENING ON MAIN ST./JACKSONVILLE CUTOFF WESTBOUND RIGHT TURN LANE TO HARRIS RD. TO PROVIDE A TOTAL WIDTH OF 20' PAVED TRAVELED WAY TO SERVE AS TEMPORARY DETOUR. STRIPE FOR 2-WAY TRAFFIC.

LEGEND
- TRAFFIC DRUM OR CHANNELIZING DEVICES
- EXISTING TRAFFIC FLOW
- PROPOSED TRAFFIC FLOW
NOTES:
1. TYPE III BARRICADE SHALL PROHIBIT TRAFFIC FROM ENTERING WORK ZONE.
2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED
 (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS)
 AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/
 BUSINESSES DURING CONSTRUCTION.

ROAD CLOSED

3 TRAFFIC DRUMS
50' O.C.

CONSTRUCTION LIMITS
300'

BEGIN CONSTRUCTION AREA

500'

CONSTRUCTION LIMITS

END ROAD WORK

MAINTENANCE OF TRAFFIC

MAIN ST/JACKSONVILLE CUTOFF
STA. 13+30.00 TO STA. 09+88.00

EDGE OF
EXISTING PAVEMENT

VAR., WIDTH SUBGRADE

VAR., WIDTH ACVM
SURFACE COURSE 0/2"
420 LBS. PER SQ.YD.
VAR., WIDTH ACVM
BINDER COURSE 1/1
440 LBS. PER SQ.YD., BLACK COAT

VAR., WIDTH

0.02% FT., PER FT.,

AGGREGATE BASE COURSE
(CLASS 7) 1' COMPACTION

STAGE 1 CONSTRUCTION
CONSTRUCT TEMPORARY WIDENING ON MAIN ST./
JACKSONVILLE CUTOFF WESTBOUND RIGHT TURN
LANE TO HARRIS RD. TO PROVIDE A TOTAL WIDTH OF
20 PAVED TRAVELED WAY TO SERVE AS TEMPORARY DETOUR. STRIPE FOR 2-WAY TRAFFIC.

TRAFFIC DRUMS = 12 EACH

TRAFFIC DRUM MARKINGS (4" WHITE) = 694 FT.

TRAFFIC DRUM MARKINGS (4" YELLOW) = 764 FT.

CONSTRUCTION PAVEMENT MARKINGS (4" WHITE) = 763 FT.

CONSTRUCTION PAVEMENT MARKINGS (4" YELLOW) = 691 FT.
SHIFT TRAFFIC TO NORTH SIDE OF W MAIN STREET/JACKSONVILLE CUTOFF.
CONSTRUCT PROPOSED IMPROVEMENTS SOUTH AND EAST OF CONSTRUCTION TRAFFIC.

LEGEND

- TRAFFIC DRUM OR CHANNELIZING DEVICES

- EXISTING TRAFFIC FLOW

- PROPOSED TRAFFIC FLOW

CONSTRUCTION PAVEMENT MARKINGS

TRAFFIC DRUMS = 22 EACH

A. REMOVE PAVEMENT MARKINGS (4" WHITE) = 691 LF.
B. REMOVE PAVEMENT MARKINGS (4" YELLOW) = 1118 LF.
C. CONSTRUCTION PAVEMENT MARKINGS (4" WHITE) = 1008 LF.
D. CONSTRUCTION PAVEMENT MARKINGS (4" YELLOW) = 950 LF.

NOTES:
1. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED
(50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS)
AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
2. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/
BUSINESSES DURING CONSTRUCTION.
NOTES:
1. TYPE II BARRICADE SHALL PROHIBIT TRAFFIC FROM ENTERING WORK ZONE.
2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED
 (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS)
 AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/
 BUSINESSES DURING CONSTRUCTION.

LEGEND
- TRAFFIC DRUM OR CHANNELIZING DEVICES

EXISTING TRAFFIC FLOW

PROPOSED TRAFFIC FLOW

CONSTRUCTION PAVEMENT MARKINGS

TRAFFIC DRUMS = II EACH

A. REMOVE PERMANENT MARKINGS (4" WHITE) = 0 LF.
B. REMOVE PERMANENT MARKINGS 14" YELLOW) = 882 LF.
C. CONSTRUCTION PAVEMENT MARKINGS (4" WHITE) = 104 LF.
D. CONSTRUCTION PAVEMENT MARKINGS (4" YELLOW) = 864 LF.

STAGE 2
SHIFT TRAFFIC TO NORTH SIDE OF W. MAIN STREET/JACKSONVILLE CUTOFF,
CONSTRUCT PROPOSED IMPROVEMENTS SOUTH AND EAST OF CONSTRUCTION
TRAFFIC.
CONSTRUCTION PAVEMENT MARKINGS

TRAFFIC DRUMS = 22 EACH
① CPM (4" WHITE) = 413 L.F.
② CPM (4" YELLOW) = 726 L.F.

LEGEND

- TRAFFIC DRUM OR CHANNELIZING DEVICES
- EXISTING TRAFFIC FLOW
- PROPOSED TRAFFIC FLOW

NOTES:
1. ACCESS TO THE SOUTH LEG OF THE INTERSECTION WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. SOUTH LEG WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 3 P.M. SOUTH LEG WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M. WHEN CLOSED CONTRACTOR SHALL PROVIDE DETOUR AS APPROVED BY ENGINEER.
2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS) AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/BUSINESSES DURING CONSTRUCTION.
NOTES:

1. ACCESS TO THE SOUTH LEG OF THE INTERSECTION WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. SOUTH LEG WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 3 P.M., SOUTH LEG WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M. WHEN CLOSED CONTRACTOR SHALL PROVIDE DETOUR AS APPROVED BY ENGINEER.

2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER IN TAPERS) AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.

3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/ BUSINESSES DURING CONSTRUCTION.

LEGEND

- TRAFFIC DRUM OR CHANNELIZING DEVICES
- EXISTING TRAFFIC FLOW
- PROPOSED TRAFFIC FLOW

CONSTRUCTION PAVEMENT MARKINGS

TRAFFIC DRUMS = 14 EACH

① CPM (4" WHITE) = 0 L.F.
② CPM (4" YELLOW) = 277 L.F.
CONSTRUCTION PAVEMENT MARKINGS

TRAFFIC DRUMS = 13 EACH

@ CPM (4" WHITE) = 0 L.F.
@ CPM (4" YELLOW) = 0 L.F.

NOTES:

1. ACCESS TO THE NORTH LEG OF THE INTERSECTION WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. NORTH LEG WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 3 P.M., SOUTH LEG WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M. WHEN CLOSED CONTRACTOR SHALL PROVIDE DETOUR AS APPROVED BY ENGINEER.

2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED (50 CENTER TO CENTER TYPICAL AND 25 CENTER TO CENTER IN TAPERS) AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.

3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/ BUSINESSES DURING CONSTRUCTION.
STAGE 4

NOTES:
1. ACCESS TO THE NORTH LEG OF THE INTERSECTION WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. NORTH LEG WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 3 P.M. SOUTH LEG WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M. WHEN CLOSED CONTRACTOR SHALL PROVIDE DETOUR AS APPROVED BY ENGINEER.
2. TRAFFIC DRUMS/CHANNELIZING DEVICES SHOULD BE EQUALLY SPACED (50' CENTER TO CENTER TYPICAL AND 25' CENTER TO CENTER N TAPERS) AND LOCATED AT THE EDGE OF TRAVEL LANE IN TRANSITION AREA.
3. THE CONTRACTOR SHALL PROVIDE ACCESS TO ALL LOCAL RESIDENTS/BUSINESSES DURING CONSTRUCTION.

CONSTRUCTION PAVEMENT MARKINGS
- **TRAFFIC DRUM OR CHANNELIZING DEVICES**
- **EXISTING TRAFFIC FLOW**
- **PROPOSED TRAFFIC FLOW**

TRAFFIC DRUMS
- (a) CPM (4" WHITE) = 0 L.F.
- (b) CPM (4" YELLOW) = 0 L.F.
STAGE 3 DETOUR DETAILS

NOTES:
ACCESS TO THE SOUTH LEG (W. MAIN ST.) WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. W. MAIN ST. WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 1 P.M. HARRIS RD. WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M.
WHEN CLOSED, CONTRACTOR SHALL PROVIDE DETOUR AS SHOWN ABOVE FOR ALL EASTBOUND AND WESTBOUND TRAFFIC ATTEMPTING TO TURN ONTO HARRIS RD.

STAGE 4 DETOUR DETAILS

NOTES:
ACCESS TO HARRIS RD. WILL BE CLOSED OFF DURING THIS PHASE OF THE PROJECT. HARRIS RD. WILL BE CLOSED TO TRAFFIC DURING THE HOURS OF 9 A.M. TO 3 P.M. HARRIS RD. WILL BE OPEN TO TRAFFIC DURING THE HOURS OF 7-9 A.M. AND 3-6 P.M.
WHEN CLOSED, CONTRACTOR SHALL PROVIDE DETOUR AS SHOWN ABOVE FOR ALL EASTBOUND AND WESTBOUND TRAFFIC ATTEMPTING TO TURN ONTO HARRIS RD.
PERMANENT PAVEMENT MARKINGS

THERMOPLASTIC PAVEMENT MARKING SOLID YELLOW: 4" WIDE
- 100 L.F.
THERMOPLASTIC PAVEMENT MARKING DOUBLE SOLID YELLOW: 4"
- 300 L.F.
THERMOPLASTIC PAVEMENT MARKING SOLID WHITE: 4"
- 500 L.F.
Removal and Disposal of Items

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>CURB AND GUTTER</th>
<th>CONCRETE DRAWSWAYS</th>
<th>WALKS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Lt. of Cul.</td>
<td>10</td>
<td>30</td>
<td>5</td>
<td>135</td>
</tr>
<tr>
<td>150</td>
<td>Lt. of Cul.</td>
<td>15</td>
<td>20</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>200</td>
<td>Lt. of Cul.</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>45</td>
<td>75</td>
<td>15</td>
<td>135</td>
</tr>
</tbody>
</table>

Earthwork

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION / DESCRIPTION</th>
<th>UNCLASSIFIED ERUPTION</th>
<th>COMPACTED EMBANKMENT</th>
<th>SOIL STABILIZATION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>250</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>300</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>350</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>450</td>
<td>Lt. of Cul.</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>600</td>
<td>60</td>
<td>60</td>
<td>720</td>
</tr>
</tbody>
</table>

Driveways & Turnouts

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>WIDTH</th>
<th>MODIFIED CURB</th>
<th>PORTLAND CEMENT CONCRETE DRAWSWAYS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>150</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>200</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>250</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>300</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>350</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>400</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>450</td>
<td>Lt. 9600 NO.</td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>12</td>
<td>10</td>
<td>10-24</td>
<td>32</td>
</tr>
</tbody>
</table>

Removal and Disposal of Drop Inlets

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Lt. of Cul.</td>
<td>10-00</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Asphalt Concrete Patching for Maintenance of Traffic

<table>
<thead>
<tr>
<th>YARD</th>
<th>TACK COAT</th>
<th>GALLON</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Advanced Warning Signs and Devices

Construction Pavement Markings and Permanent Pavement Markings

Clearing and Grubbing

<table>
<thead>
<tr>
<th>STATION</th>
<th>LOCATION</th>
<th>CLEARING</th>
<th>GRUBBING</th>
<th>TN</th>
<th>DESCRIPTION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>150</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>200</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>250</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>300</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>350</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>400</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>450</td>
<td>Lt. 9600 NO.</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>ENTIRE PROJECT TO BE USED YARD AND WHERE DIRECTED BY THE ENGINEER</td>
<td>Lt. 9600 NO.</td>
</tr>
</tbody>
</table>

Erosion Control

Quantities

<table>
<thead>
<tr>
<th>QUANTITIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOVAL AND DISPOSAL OF ITEMS</td>
<td>135</td>
</tr>
<tr>
<td>EARTHWORK</td>
<td>720</td>
</tr>
<tr>
<td>DRIVeways & TURNOUTS</td>
<td>32</td>
</tr>
<tr>
<td>REMOVAL AND DISPOSAL OF DROP INLETS</td>
<td>1</td>
</tr>
<tr>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>20</td>
</tr>
<tr>
<td>ADVANCE WARNING SIGNS AND DEVICES</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION PAVEMENT MARKINGS AND PERMANENT PAVEMENT MARKINGS</td>
<td></td>
</tr>
<tr>
<td>CLEARING AND GRUBBING</td>
<td>2</td>
</tr>
<tr>
<td>EROSION CONTROL</td>
<td></td>
</tr>
<tr>
<td>QUANTITIES</td>
<td></td>
</tr>
</tbody>
</table>

Note: Quantities are estimated. See Section 104-03 of the Std. Specs.
SUMMARY OF QUANTITIES

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>ITEM</th>
<th>QUANTITY</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>CLEARING</td>
<td>2</td>
<td>STATION</td>
</tr>
<tr>
<td>201</td>
<td>GRADING, ADOPTION AND DISPOSAL OF CUBES AND GUTTER</td>
<td>2</td>
<td>STATION</td>
</tr>
<tr>
<td>202</td>
<td>REMOVAL AND DISPOSAL OF CONCRETE CURBWAYS</td>
<td>150</td>
<td>FT.</td>
</tr>
<tr>
<td>203</td>
<td>REMOVAL AND DISPOSAL OF INFILL</td>
<td>10</td>
<td>SQ. YD.</td>
</tr>
<tr>
<td>203</td>
<td>REMOVAL AND DISPOSAL OF DROP INLETS</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>210</td>
<td>WALLAS, EXCAVATION</td>
<td>1420</td>
<td>CU. YD.</td>
</tr>
<tr>
<td>210</td>
<td>COMPACTED BASE COURSE (CLASS 1)</td>
<td>1038</td>
<td>CU. YD.</td>
</tr>
<tr>
<td>202</td>
<td>SOIL STABILIZATION</td>
<td>70</td>
<td>TON</td>
</tr>
<tr>
<td>203</td>
<td>ADOPTED BASE COURSE (CLASS 1)</td>
<td>587</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>TACK COAT</td>
<td>493</td>
<td>GALL.</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>1350</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>60</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>61</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>1365</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>62</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>240</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT BRUSH IN (CLASS 1)</td>
<td>10</td>
<td>TON</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>88</td>
<td>BOX YD.</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>100</td>
<td>BOX YD.</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>300</td>
<td>BOX YD.</td>
</tr>
<tr>
<td>204</td>
<td>ASPHALT CONCRETE PATCHING FOR MAINTENANCE OF TRAFFIC</td>
<td>300</td>
<td>BOX YD.</td>
</tr>
<tr>
<td>204</td>
<td>PORTLAND CEMENT CONCRETE CONCRETE</td>
<td>33.80</td>
<td>CU. YD.</td>
</tr>
<tr>
<td>204</td>
<td>MOBILIZATION</td>
<td>1.00</td>
<td>BOX LMB SUB</td>
</tr>
<tr>
<td>204</td>
<td>FURNISHING REL. OFFICE</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>MAINTENANCE OF TRAFFIC</td>
<td>1.56</td>
<td>LBM QMB</td>
</tr>
<tr>
<td>204</td>
<td>TRENCH</td>
<td>207</td>
<td>SQ. FT.</td>
</tr>
<tr>
<td>204</td>
<td>BARRIER</td>
<td>94</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>TRAFFIC DRUMS</td>
<td>56</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>CONSTRUCTION PAYMENT MARKINGS</td>
<td>856</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>REMOVAL OF PERMANENT PAYMENT MARKINGS</td>
<td>35</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>CONSTRUCTION CONCRETE PIPE CL moto CEMENTS</td>
<td>517</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>ELECTRICAL CONCRETE PIPE CL moto CEMENTS</td>
<td>40</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>CONSTRUCTION CONCRETE PIPE CL moto CEMENTS</td>
<td>5</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>CONSTRUCTION CONCRETE PIPE CL moto CEMENTS</td>
<td>7</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>SELECTED PIPE BEDDING</td>
<td>10</td>
<td>CU. YD.</td>
</tr>
<tr>
<td>204</td>
<td>DROP INLETS EXTENSIONS (H)</td>
<td>10</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>RIM</td>
<td>2</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>SEATING</td>
<td>0.90</td>
<td>ANRE</td>
</tr>
<tr>
<td>204</td>
<td>WALL COVER</td>
<td>1.30</td>
<td>ANRE</td>
</tr>
<tr>
<td>204</td>
<td>WATER</td>
<td>103.3</td>
<td>M.GAL.</td>
</tr>
<tr>
<td>204</td>
<td>TEMPORARY SEEDING</td>
<td>0.60</td>
<td>ANRE</td>
</tr>
<tr>
<td>204</td>
<td>BARIER</td>
<td>2019</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>SAND BASE SEEDING</td>
<td>66</td>
<td>BAG</td>
</tr>
<tr>
<td>204</td>
<td>S amp BASE SEEDING</td>
<td>66</td>
<td>BAG</td>
</tr>
<tr>
<td>204</td>
<td>CONCRETE</td>
<td>137</td>
<td>SQ. YD.</td>
</tr>
<tr>
<td>204</td>
<td>CONCRETE</td>
<td>811</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>CONCRETE</td>
<td>2469</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>HIGHWAY CONSTRUCTION CONTROL</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>MALING</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>MALING SUPPORTS (SAND)</td>
<td>1</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>WHEEL CLEAR RAMP (TYPE D)</td>
<td>26</td>
<td>SQ. YD.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING WHITE (A)</td>
<td>2415</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING WHITE (B)</td>
<td>126</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING WHITE (C)</td>
<td>586</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING WHITE (D)</td>
<td>540</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING WHITE (E)</td>
<td>120</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING (MED.-YLD.)</td>
<td>1000</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING (ARROWS)</td>
<td>4</td>
<td>EACH</td>
</tr>
<tr>
<td>204</td>
<td>THERMOPLASTIC PAYMENT MARKING (SUGAR)</td>
<td>20</td>
<td>LIN FT.</td>
</tr>
<tr>
<td>204</td>
<td>STANDARD SIGNS</td>
<td>385</td>
<td>SQ. FT.</td>
</tr>
<tr>
<td>204</td>
<td>CHANNEL, FACING SUPPORT (TYPE A)</td>
<td>48</td>
<td>EACH</td>
</tr>
</tbody>
</table>

REVISION BOX

DATE

REVISION

SHEET NUMBER

- 09/20/2013: ADDED SPECIAL PROVISION ARCHITECTURAL MONITORING
- 09/20/2013: ADDED ITEM 726 - CHANNEL, POST SIGN SUPPORT (TYPE A)
- 09/20/2013: ADDED ITEM 726 - CHANNEL, POST SIGN SUPPORT (TYPE A)

SUMMARY OF QUANTITIES AND REVISIONS
CONCRETE COMBINATION CURB AND GUTTER

DETAIL OF GUTTER SLOPE
GUTTER SHALL BE CONSTRUCTED ON 2% SLOPE AWAY FROM ROADWAY, REGARDLESS OF ROADWAY SLOPE.

ALTERNATE CONSTRUCTION METHOD FOR INTEGRAL CURB

DETAILS OF MODIFIED CURB

INTEGRAL CURB
PLAN VIEW

ISOMETRIC VIEW

SECTION A-A

SECTION B-B

CURBED ISLANDS FOR CHANNELIZATION

EXTENSION TYPICAL SECTIONS
1. Concrete - 6" PCC Concrete Driveway
2. Asphalt - 2" AC/3M Surface Course 0/21
3. Asphalt - 3" AC/3M Binder Course 0/21
4. AC/3M Base Course 0/12
5. Aggregate - 6" Aggregate Base Course

The type of extension shall be as shown in the plans. The contractor may, with the approval of the engineer, substitute a larger number of extensions of the type specified in the plans, but at no additional cost to the department.

DRIVEWAY EXTENSION DETAILS

DRIVEWAY VERTICAL ALIGNMENT DETAILS

NOTE: Driveways may not be sloped away from the roadway unless approved by the engineer.

SECTION A-A

CURVED ISLAND BEHIND WALK

CURVED ISLANDS FOR CHANNELIZATION

DATE: 11-29-07

DESCRIPTION: ABERKANS STATE HIGHWAY COMMISSION DETAILS OF DRIVEWAYS & ISLANDS

STANDARD DRAWING: DR-1
END SECTION FOR REINFORCED CONCRETE PIPE CULVERTS

CIRCULAR PIPE

MULTIPLE R.C. PIPE CULVERTS

MULTIPLE C.M. PIPE CULVERTS

END SECTIONS FOR CORRUGATED METAL PIPE CULVERTS

Notes: Alternate connections to the pipe culverts, in accordance with manufacturer's standard practices, may be made subject to the approval of the Engineer.
CONCRETE PAVEMENT

BROKEN LINE STRIPING

ASPHALT PAVEMENT

SOLID LINE STRIPING ON CONCRETE PAVEMENT

SOLID LINE STRIPING ON ASPHALT PAVEMENT

ASPHALT PAVEMENT

CONCRETE PAVEMENT

STRIPING AT ADJACENT NO PASSING LANES

CROSSWALK AND STOPBAR DETAILS

GENERAL NOTES:
Two drawings should be considered as typical only and the final location of the striping and raised pavement markers shall be determined by the sponsor.

This drawing should be used in conjunction with the "Manual on Uniform Traffic Control Devices" latest revision.

NOTE:
Dimensions shown for raised pavement markers are approximate. Gravel or pebbles may be used in conjunction with the markers. The sponsor may use any type of material that does not affect the pavement's surface finish. The sponsor should request the approval of the Designer. This drawing is for guidance only. The sponsor should consult with the Arkansas State Highway Commission before designating a specific concrete or asphalt material. The sponsor should consult with the Arkansas State Highway Commission before deciding on the location of the raised pavement markers.

NOTES:
1. All lines shall have a width of 4 inches.
2. The thickness and rate of paint application shall be as specified in Section 718 of the Standards Specifications.
3. This drawing shall be used in conjunction with the latest revised addition of the "Manual on Uniform Traffic Control Devices."}

ARKANSAS STATE HIGHWAY COMMISSION

DATE: 12-07-18

REVISED: NOVEMBER 2018

Pavement Marking Details

Standard Drawing PM-1

TYPE: DRAWING

DATE: 12-07-18

ARMS: 0-0-1

Pavement Marking Details

Standard Drawing PM-1

Type: Drawing

Date: 12-07-18

Arkansas State Highway Commission
OLDER HIGHWAY SIGNS

STANDARD HIGHWAY SIGNS

SUPPORT ASSEMBLIES

ARKANSAS STATE HIGHWAY COMMISSION
STANDARD HIGHWAY SIGNS AND SUPPORT ASSEMBLIES
STANDARD DRAWING SH-1
Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.

Typical application - 4-lane divided roadway where the roadway is closed.
CLEARING AND GRUBBING

CONSTRUCTION SEQUENCE
1. Place perimeter controls (e.g., Silt fences, sediment basins, etc.)
2. Perform clearing and grubbing operations

EXCAVATION

EXISTING GROUND

INTERCEPTOR OR
DIVERSION DITCH

EXISTING GROUND

NOTE:
NUMBER OF PHASES WILL VARY.
THREE PHASES SHOWN FOR ILLUSTRATION.

PHASE 1 EXCAVATION
PHASE 2 EXCAVATION
FINAL PHASE EXCAVATION

GENERAL NOTE
ALL SLOPES SHALL BE DREDGED, PREPARED, SEEDED, AND MULCHED AS THE WORK PROGRESSES. SLOPES SHALL BE EROSION CONTROL STABILIZED IN EQUAL INCREMENTS NOT TO EXCEED 50 FEET, MEASURED VERTICALLY.

CONSTRUCTION SEQUENCE
1. Excavate and stabilize interceptor and/or diversion ditches.
2. Perform Phase 1 Excavation, place permanent or temporary seeding.
3. Perform Phase 2 Excavation, place permanent or temporary seeding.
4. Perform final phase of excavation, place permanent or temporary seeding, stabilize ditches, construct ditch checks, diversion ditches, sediment basins, or other erosion control devices as required.

EMBANKMENT

DIVERSION DITCH TO BE IN PLACE UNTIL SLOPE IS COMPLETELY STABILIZED.

FINAL PHASE EMBANKMENT
PHASE 2 EMBANKMENT
PHASE 1 EMBANKMENT

SIDE DITCH (STABILIZE AS REQUIRED)
EXISTING GROUND
VARIOUS EROSION
CONTROL DEVICES

GENERAL NOTE
ALL EMBANKMENTS AND DITCHES SHALL BE DREDGED, PREPARED, SEEDED, AND MULCHED AS THE WORK PROGRESSES. SLOPES SHALL BE EROSION CONTROL STABILIZED IN EQUAL INCREMENTS NOT TO EXCEED 50 FEET, MEASURED VERTICALLY.

CONSTRUCTION SEQUENCE
1. Construct diversion ditches, construct checks, sediment basins, silt fences, or other erosion control devices as specified.
2. Place Phase 1 Embankment with permanent or temporary seeding.
3. Place Phase 2 Embankment with permanent or temporary seeding.
4. Place final Phase of Embankment with permanent or temporary seeding.
5. Place diversion ditches and slope drains and maintain until entire slope is stabilized.

ARKANSAS STATE HIGHWAY COMMISSION
TEMPORARY EROSION CONTROL DEVICES

DATE: 6/25/90
SIGNATURE: Grant Lynn

STANDARD DRAWING TEC-3
GENERAL NOTES FOR DETECTABLE WARNING DEVICES

The detectable warning device shall be located so that the nearest edge of the device is at least 6 inches (152 mm) from the face of the curb.

Type I Ramp Dimensions and Quantities:

<table>
<thead>
<tr>
<th>RAMP</th>
<th>TYPE</th>
<th>WIDTH</th>
<th>LENGTH</th>
<th>DEPTH</th>
<th>LENGTH</th>
<th>AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detectable Warning Device:

- Detectable warning device shall be threaded on a trolley and reeled in the primary direction of travel to permit easy travel by people in wheelchairs.
- Detectable warning device shall be on the alternate side for crosswalks and other crosswalks.
- The detectable warning device shall be maintained in the area.

Detectable Warning Device Area:

- The detectable warning device area shall be six inches (152 mm) wide and three inches (76 mm) deep.

Detected Area:

- The detected area shall be six inches (152 mm) wide and three inches (76 mm) deep.

NOTE:

- The cross slope of the ramp, landings, and subgrades, as well as the cross slope of the area required to match street longitudinal grade.

RAMP SELECTION CRITERIA:

1. First choice: Concrete locations with the walk adjacent to the curb (both new construction and in alterations).
2. Second choice: Concrete location with the walk offset from the curb, a distance equivalent to the maximum allowable grade, to allow the surface of the ramp to slope to the sidewalk.
3. Third choice: Concrete locations with new construction and alterations.
4. Fourth choice: Concrete locations with new construction and alterations.
5. Fifth choice: Concrete locations with new construction and alterations.
6. Sixth choice: Concrete locations with new construction and alterations.

NOTE:

- In alterations, the selection of the type of wheelchair ramp to be constructed shall be based on the width of the walk and the available space.
- In new construction, the selection of the type of wheelchair ramp shall be based on the width of the walk and the available space.
- In alterations, the selection of the type of wheelchair ramp to be constructed shall be based on the width of the walk and the available space.
- In new construction, the selection of the type of wheelchair ramp shall be based on the width of the walk and the available space.

ARKANSAS STATE HIGHWAY COMMISSION

WHEELCHAIR RAMPS
NEW CONSTRUCTION AND ALTERATIONS

STANDARD DRAWING WR-1