64.10 E

Final Report

RESEARCH SECTION LIBRARY

3529 EFFECTS OF CHEM

AND '

64.10 E

ARKANSAS HWY DEPT - RESEARCH

EFFECTS OF CHEMICAL AND MINERALOGICAL PROPERTIES ON THE ENGINEERING CHARACTERISTICS OF ARKANSAS SOILS

RESEARCH CONDUCTED BY DR. G. A. PLACE PRINCIPAL INVESTIGATOR AND ASSOCIATE PROFESSOR OF AGRONOMY AND DR. WENDELL R. COSTON RESEARCH ASSISTANT

DEPARTMENT OF AGRONOMY COLLEGE OF AGRICULTURE UNIVERSITY OF ARKANSAS FAYETTEVILLE, ARKANSAS

ARKANSAS STATE HIGHWAY DEPARTMENT DIVISION OF PLANNING AND RESEARCH IN COOPERATION WITH U. S. DEPARTMENT OF TRANSPORTATION BUREAU OF PUBLIC ROADS

RESEARCH PROJECT 19

NOVEMBER 1969

EFFECTS OF CHEMICAL AND MINERALOGICAL PROPERTIES ON THE ENGINEERING CHARACTERISTICS OF ARKANSAS SOILS

by DR. G. A. PLACE Principal Investigator and Associate Professor of Agronomy

> and DR. WENDELL R. COSTON Research Assistant

Department of Agronomy College of Agriculture University of Arkansas Fayetteville, Arkansas

FINAL REPORT of

Highway Research Project No. 19

for

THE ARKANSAS HIGHWAY DEPARTMENT PLANNING AND RESEARCH DIVISION

Prepared In Cooperation With The U. S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads

November, 1969

TABLE OF CONTENTS

cknowledgements	I
reface · · · · · · · · · · · · · · · · · · ·	II
bstract	II
esearch Implementation	V
ist of Tables	II
ntroduction	1
rocedures	3
esults and Discussion	5
ummary and Conclusion	19
iterature Cited	25
ppendix	26

•

ACKNOWLEDGEMENTS

Soil samples used in this study and their profile descriptions were furnished by the United States Department of Agriculture Soil Conservation Service, Little Rock, Arkansas. Acknowledgement is also given to the University of Arkansas Soil Testing and Research Laboratory for their assistance in the routine chemical tests. Mr. Bob Kessinger of the Division of Planning and Research, Arkansas Highway Department, is the project coordinator and Mr. J. E. Clements of the Division of Materials and Tests, Arkansas Highway Department, is the chairman of the project subcommittee.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Bureau of Public Roads.

PREFACE

Arkansas Highway Department Research Project No. 19 entitled "Effects of Chemical and Mineralogical Properties on the Engineering Characteristics of Arkansas Soils" was approved by the Bureau of Public Roads and the Arkansas Highway Department to be effective July 1, 1964. Dr. M. E. Horn, Associate Professor in Agronomy, was assigned as the Principal investigator. He resigned his University appointment May 31, 1968 and the responsibilities of Principal Investigator were assumed by Dr. G. A. Place, Associate Professor in Agronomy. Dr. W. R. Coston, Research Assistant in Agronomy, who has been with the project since its beginning, was responsible for all laboratory analyses made at the University of Arkansas Soil Research Laboratory. The project also provided Dr. Coston the opportunity to earn the doctorate degree.

Since the Project was initiated, data for chemical, physical, mineralogical and engineering properties were obtained from 213 soil samples taken from 82 soil series in 15 Arkansas counties. These soils were formed from parent materials such as loess, alluvium, coastal plains deposits, calcareous marl or sedimentary bedrock residium such as chert, sandstone, siltstone, shale and limestone. A technical report was prepared for each county and may be consulted if information for a specific soil series is needed.

II

ABSTRACT

Soil samples were collected from 82 soil series in 15 Arkansas counties and analyzed for engineering, chemical, and mineralogical properties.

The objectives were (1) determine if soil chemical and physical properties can be related to soil engineering properties, and (2) determine if clay mineralogical composition is related to the chemical and physical properties that are related to soil engineering properties.

All data were subjected to linear regression analysis. First, the data from all 15 counties were combined and results for liquid limit (LL), plasticity index (PI), group index (GI), maximum density (MD), and optimum moisture (OM) were treated as dependent variables. The independent variable was either, cation exchange capacity (CEC), % clay (C), % expandable clay (PE), exchangeable potassium (K) or exchangeable calcium (Ca). Then the data were subdivided according to texture, horizons, plastic or non-plastic, parent material, and families to determine if R^2 values could be improved. The mineralogical and chemical data were also analyzed by the two groupings. The variables, illite (I), amorphous material (A), quartz (Q), vermiculite (V), montmorillonite (M), kaolinite (Ka), exchangeable potassium (K), and CEC were each treated under separate analysis as the independent variable and all others functioned as the dependent variables.

The results revealed:

1. Data for (CEC) or (C) from all 15 counties can be combined and used to predict (LL), (PI), (GI), (MD), and (OM).

III

- Mineralogical data can be used to predict (CEC) of these respective soils.
- There was no advantage in dividing the data into soil subgroupings.

RESEARCH IMPLEMENTATION

The purpose of sampling is to select a sample that represents the average composition of the whole. After a homogeneous sample is collected it is the intent of the analyzer to obtain precise and accurate measurements. Thus, it behooves a researcher to continuously seek new and better procedures that can be used to improve the accuracy of measurements made on the population in question.

There is reason to question the reliability of the present techniques that are being utilized to measure engineering properties of soils. Therefore, if other parameters could be measured with greater precision and related to engineering properties the level of competence would be increased. Results from this study indicate this is possible. The parameters, cation exchange capacity (CEC) expressed as me/100 g of soil and % clay (C) of the soil, can be measured with greater accuracy by different individuals than can the engineering properties such as Atterberg Limits. These new parameters can be related to the engineering properties by the following equations:

1.	Clay functioning as independent variable	R ²
	LL = 1.128 (C) + 1.708	0.817**
	PI = 0.614 (C) - 3.240	0.803**
s	GI = 0.136 (C) + 0.510	0.648**
	MD = -0.348 (C) + 114.281	0.475**
	OM = 0.245 (C) + 12.330	0.681**
2.	CEC functioning as independent variable	

LL = 1.661 (CEC) + 5.174 0.663** PI = 0.948 (CEC) - 2.078 0.714**

V

GI	= 0.616 (CEC) + 0.330	0.691**
MD	= - 0.625 (CEC) + 115.060	0.570**
OM	= 0.400 (CEC) + 12.432	0.677**

The above equations show that five engineering parameters can be evaluated from a single measurement, (C) or (CEC), that can be obtained quickly, precisely, accurately, and economically. Cost factors will not be presented because that is beyond the scope of this study.

It is not suggested that the above equations be implemented because they are based on only 205 observations. Hence, a large number of samples from many soil types should be collected in order to refine the equations. The greatest contribution attained from this study is establishment of the fact that other parameters can be used to predict engineering properties of soils.

LIST OF TABLES

- Table 1. Coefficients of determination (R²) for the independent variables, soil chemical and physical properties, and the dependent variables, engineering properties.
- Table 2. Linear regression equations for predicting engineering properties of soils in 15 counties.
- Table 3. Soil groupings for regression analyses.
- Table 4. Coefficients of determination (R^2) for clay and cation exchange capacity vs engineering properties for the soil groupings.
- Table 5. Multiple linear regression analysis of the engineering and chemical data from all locations.
- Table 6. Multiple linear regression equations for the dependent variables LL, PI, GI, and MD within soil groupings.
- Table 7. Coefficient of determination (R²) for the dependent variable, cation exchange capacity, and the independent variables, clay minerals.
- Table 8. Multiple linear regression analysis of the mineralogical data from all locations.
- Table 9. Multiple linear regression equations for the mineralogical properties within soil groupings.

INTRODUCTION

Engineering properties of soils vary because the nature and property of the soil clays vary. These clays, even in relatively small amounts, influence engineering use because of their influence on water retention and movement and, consequently, on the stability of soils when they are used as foundation materials. Since virtually all highways are built on soils or geologic materials from which they are derived, it is important to gain knowledge about basic soil properties that influence engineering uses. Early investigations dealt mainly with measurements of physical properties and did not investigate the fundamental causes of the particular properties involved. However, in recent years more attention has been given to investigation of relationships between soil chemical and mineralogical properties and soil physical properties. Investigations of the mineralogical composition of soil clays, their distribution in various particle size groups and with depth in the soil profile, and their chemical environment provide information useful in predicting the performance of a soil under various engineering uses. Studies of this nature are important because they provide a basic knowledge of soil properties that can be very useful in detecting soils of unusual nature that may not be recognized by testing physical characteristics alone.

Gill and Reaves (2) studied the relationships of several soils and attempted to associate these properties with the mechanical strength of soils. They found, with the exception of compressibility, cation exchange capacity (CEC) was the chemical property that correlated best with the physical properties of the soils studied. Farrar and Coleman (1) also conducted similar studies and obtained correlation coefficients of 0.90 or greater for CEC vs Liquid Limit, CEC vs Total Surface Area, and Liquid Limit vs Total Surface Area. LeFerre also (3) determined that soil plasticity (PI) is largely a function of soil surface area. These three studies are compatible since they show that CEC and PI are related to soil surface area. Farrar and Coleman (1) noted that values for CEC and Clay content could possibly be used to predict Atterberg limits.

The objectives of this investigation were to determine by regression analysis: (1) if soil chemical and physical properties can be used to predict soil engineering properties, (2) if grouping soils data according to texture, horizons, plastic, non-plastic, parent materials, and families will improve the predictors for engineering properties, and (3) if mineralogy of the clay fraction is related to the chemical and physical properties that are used to predict the soil engineering properties.

PROCEDURES

Duplicate soil samples were collected by the USDA Soil Conservation Service from 82 soil series in 15 Arkansas counties (Figure 1). Appendix Tables 1 and 2 give the county, number of samples and series collected from each county, and the series names for the soils that were sampled. Appendix Table 3 gives the series and horizons that were analyzed for engineering and mineralogical properties. One set of samples was used by the Arkansas Highway Department in making engineering tests that include Atterberg Limits (liquid limits, plastic limits, and plasticity index), Group Indexes, Maximum Density, and Optimum Moisture. The second set was used by project personnel to determine clay mineralogy composition of these soils that included montmorillonite, kaolinite, illite, vermiculite, quartz, amorphous material, and percent expandable material (montmorillonite plus vermiculite). In addition, complete sets of samples from all horizons present in each of the 82 soil series were used by project personnel in making particle size distribution and chemical analyses. Two sets of particle size measurements were made. One was for fine silt $(5.0-2.0\mu)$, coarse clay $(2.0-0.2\mu)$, medium clay $(0.2-0.08\mu)$, fine clay, $(<0.08\mu)$ and total clay. The second one was for very coarse sand, coarse sand, medium sand, fine sand, very fine sand, total sands, silt, and clay. The chemical analysis included pH, % O.M., P, K, Ca, Mg, Na, H, % Base Saturation, Cation Exchange Capacity (CEC) and Free Iron Oxides. The CEC was assumed to be the sum of the cations measured above. Details of these methods are given in Appendix B of the Technical Reports.

The engineering, chemical, and mineralogical data were statistically analyzed with multiple linear regression to determine if engineering properties could be obtained from chemical and physical properties of the soil and mineralogical data

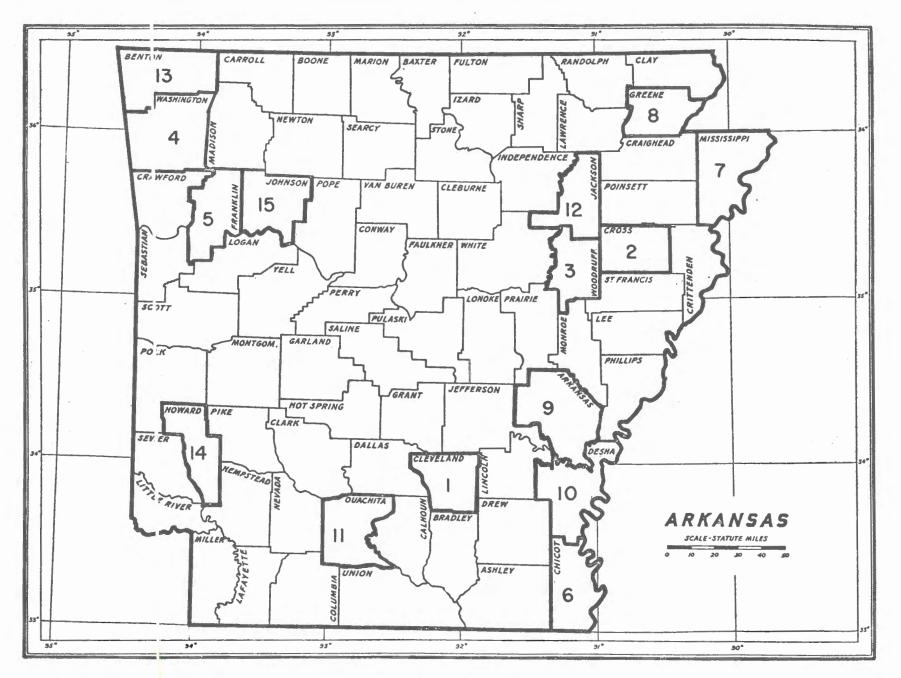


FIGURE I - Counties Sampled For Project 19.

could be used to predict the chemical or physical properties that predict engineering properties.

RESULTS AND DISCUSSION

Variation in engineering properties that can be ascribed to soil chemical and physical properties was measured by obtaining their coefficients of determination $(R^2)^{\dagger}$. The results are given in Table 1 and include all the observations (n = 205) obtained from the 15 counties. The engineering properties were best related to cation exchange capacity (CEC) of the clay fraction and clay content (C) of the soil. In comparing these two variables, higher R^2 values were obtained for clay content vs liquid limit (LL), plasticity index (PI), and optimum moisture (OM), and lower values for maximum density (MD), and group index (GI). The highest R^2 value (0.817) was obtained for (C) vs (LL). Thus, 82% of the variation in (LL) can be accounted for by the variation in clay content of the soils. With this information, regression equations (Table 2) can be constructed and used to predict (LL) values by measuring the clay content of these soils. The same type of expression can be used to predict (PI) values with a great deal of confidence since (C) vs (PI) has an R^2 value of 0.803. Even though clay content does not account for as much variation as, perhaps, is desired the expressions should be useful in determining engineering properties of soils because the determination of clay is simple, accurate, and highly reproducible as compared to the values that are obtained for engineering properties. The same argument can be used with (CEC) data to predict engineering properties (Table 2). Even though the R^2 values were good, it was assumed they could be improved, if the data were subdivided into

^{*} R² is equal to the proportion of the total variability of the dependent variable that may be ascribed to the effect of the independent or causative variable. For example, in Table 1 CEC vs LL has an R² of 0.663. This means the variation in CEC accounts for 66.3% of the variation in LL.

Table 1. Coefficients of determination (R²) for the independent variables, soil chemical and physical properties, and the dependent variables, engineering properties.

Engineering Properties					
Soil* Properties	LL †	PI	GI	MD	OM
CEC	0.663	0.714	0.691	0.570	0.677
С	0.817	0.803	0.648	0.475	0.681
PE	0.448	0.514	0.452	0.361	0.442
S	0.373	0.316	0.416	0.271	0.294
M2M	0.266	0.233	0.425	0.240	0.244
K	0.413	0.444	0.413	0.362	0.371
Ca	0.218	0.287	0.333	0.227	0.231

* n = 205

⁺ LL - liquid limits, PI - Plasticity index, GI - Group index, MD - Maximum density, OM - Optimum moisture, CEC - Cation exchange capacity, C - % clay, PE - % expandable clay (montmorillonite + vermiculite), S - % sand, M2M - material passing 200 mesh sieve, and K and Ca exchangeable with 1.0 <u>N</u> neutral ammonium acetate.

Table 2. Linear regression equations for predicting engineering properties of soils in 15 counties.[†]

A. Clay - Independent Variable	R ²
$LL^{\$} = 1.128$ (C) + 1.708	0.817***
PI = 0.614 (C) - 3.240 GI = 0.136 (C) + 0.510	0.803** 0.648**
MD = -0.348 (C) + 114.281	0.475**
OM = 0.245 (C) + 12.330	0.681**
B. CEC - Independent Variable	
LL = 1.661 (CEC) + 5.174	0.663**
PI = 0.948 (CEC) - 2.078	0.714**
GI = 0.616 (CEC) + 0.330	0.691**
MD = -0.625 (CEC) + 115.060	0.570**
OM = 0.400 (CEC) + 12.432	0.677**

⁺ Equations are based on 205 observations.

§ See Footnote ([†]) in Table 1 for definition of symbols.

1 (*) and (**) denote R² values are significant at 0.05 P and 0.01 P, respectively.

the soil groupings shown in Table 3. The results in Table 4 show that only a few R² values for (LL) and (PI) were increased; six for (LL) and four for (PI). In all cases except one, (CEC) for alluvium parent material, the increase in R^2 values occurred where the amount of clay (C) in the soil was involved. The highest value (0.918) was obtained for clay content in Coastal Plains parent material vs (LL). However, in most cases the increase was only slightly greater than the value of 0.817 that was obtained when the data from all 15 counties were combined and analyzed. Thus, another approach was undertaken to determine if higher R² values could be attained. Data from the 15 counties were again combined and analyzed by multiple linear regression analysis. Separate analyses were used where each independent variable was eventaully treated as the dependent variable while the remaining variables were treated as independent variables. The results in Table 5 show that high R^2 values were obtained. However, in every equation that had high R² values it was necessary to include a large number of independent variables. Thus, these equations are not practical because measurements on a large number of variables would be required. Also, the R² values are not much better than those given in Table 2. Therefore, the data were again subdivided into the groupings shown in Table 3 and subjected to multiple linear regression analysis. The objective was to obtain equations that have only one or two independent variables and \mathbb{R}^2 values not less than 0.750. Most of the equations did not conform to this criteria and have been put in Appendix Table 4 for a matter of record. The expressions that conform to the criteria have been included in Table 6. The expressions in Table 6 for the dependent variable (LL) are of little practical value because the only independent variable that occurs in the equations is PI. Since (LL) values are used to calculate PI values, there was no advantage in subdividing the soil samples to obtain better expressions for predicting (LL).

		Number of Obs	ervations
Sou	rces	Mineralogical	Engineering
1.	Textures a. C † b. SiL, Si c. L, CL	29 75 27	29 76 27
	d. SL, LS, S, SC, SCL e. SiC, Si, CL	36 37	37 36
2.	Horizons a. A b. B c. C & R	39 99 66	39 100 66
3.	Plastic Soils	163	163
4.	Non-Plastic Soils	41	42
5.	Parent Materials a. Alluvium Soils 1) Counties: Chicot, Desha, Woodruff, Jackson	66	65
	Mississippi b. Alluvium - Loess Soils l) Counties: Chicot, Desha, Arkansas, Cross, Woodruff, Jackson, Mississippi, Greene	99	98
	c. Coastal Plains 1) Counties: Ouachita, Clevela	28 nd	27
	 d. Sandstone and Siltstone Soils 1) Counties: Washington, Johns Franklin 	52	54
6.	Soil Families a. Very fine clayey (>61% Clay) b. Fine clayey (36-60% Clay) c. Fine silty, fine loamy	12 43 78	12 43 80
	(18-35% Clay) d. Sandy, Coarse loamy and coarse silty, (<18% Clay)	71	70

Table 3. Soil groupings for regression analyses.

⁺ C - Clay, SiL - silt loam, Si - silt, L - loam, CL - clay loam, SL - sandy loam, LS - loamy sand, S - sand, SC - sandy clay, SCL - sandy clay loam, SiC - silty clay, SiCl - silty clay loam.

Soil Soil Engineering Properties Groups Variables LL PI GI MD OM 1. Textures a. C C 0.801 0.750 0.432 0.413 0.347 b. SiL, Si C 0.301 0.396 0.434 0.233 0.153 b. SiL, Si C 0.530 0.598 0.147 0.006 0.190 c. L, GL C 0.582 0.402 0.179 0.051 0.216 d. SL, LS, S, SC, SCL C 0.828 0.767 0.140 0.020 0.089 c. SiC, SICL C 0.533 0.472 0.386 0.287 0.318 cEC 0.517 0.665 0.696 0.454 0.360 0.433 cEC 0.577 0.663 0.430 0.468 0.527 b. B C 0.667 0.712 0.558 0.676 c. C 6.687 <									
1. $\frac{\text{Textures}}{\text{a. C}}$ CCC 0.801 0.750 0.432 0.413 0.347 CCC 0.371 0.396 0.434 0.233 0.153 b. SiL, Si C 0.530 0.598 0.147 0.066 0.190 c. L, CL C C 0.582 0.402 0.179 0.051 0.216 d. SL, IS, S, SC, SCL C 0.322 0.402 0.179 0.051 0.216 d. SL, IS, S, SC, SCL C 0.328 0.767 0.140 0.020 0.089 c. SiC, SCL C 0.328 0.767 0.140 0.020 0.089 c. SiC, SICL C 0.533 0.472 0.386 0.287 0.318 CCC 0.537 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.661 c. C & R C 0.665 0.696 0.454 0.360 0.430 c. C & R C 0.667 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.661 c. C & R C 0.667 0.867 0.712 0.558 0.785 cCC 0.692 0.736 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.806 0.745 0.602 0.558 0.686 cCC 0.183 0.183 0.225 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 cCC 0.774 0.806 0.666 0.567 0.731 cCC 0.773 0.731 0.837 0.667 0.731 cCC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 cCC 0.674 0.748 0.794 0.571 0.729 d. Sandstone & CCC 0.674 0.731 0.667 0.731 c. Coastal Plains C 0.935 0.878 0.593 0.361 0.684 cCC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & CCC 0.674 0.748 0.704 0.486 0.738 6. <u>Femilies</u> a. >61Z Clay C 0.372 0.292 0.050 0.135 0.263 cCC 0.674 0.744 0.704 0.486 0.738 6. <u>Femilies</u> a. >61Z Clay C 0.372 0.292 0.050 0.135 0.263 cCC 0.310 0.255 0.233 0.361 0.684 cCC 0.674 0.744 0.704 0.486 0.738 6. <u>Femilies</u> a. >61Z Clay C 0.372 0.292 0.050 0.135 0.263 cCC 0.310 0.255 0.233 0.361 0.684 cCC 0.310 0.255 0.233 0.361 0.684 cCC 0.674 0.744 0.748 0.704 0.486 0.738 6. <u>Femilies</u> a. >61Z Clay C 0.372 0.292 0.050 0.135 0.263 c. 18-35% Clay C 0.227 0.242 0.203 0.215 0.225 0.203 0.130 c. 18-35% Clay C 0.224 0.214 0.194 0.048 0.080 0.155 cCC 0.300 0.225 0.238 0.602 d. <182 Clay C 0.440 0.441 0.448 0.030 0.17	Soi	1	· · · · · · · · · · · · · · · · · · ·	Soil		Engine	ering Pro	operties	
a.CC0.8010.7500.4320.4130.347B.Sil, SiC0.3710.3960.4340.2330.153b.Sil, SiC0.5300.5980.1470.0060.190CEC0.4330.5750.2680.1470.394c.L, CLC0.5820.4020.1790.0510.216d.Sl, IS, S,SCCEC0.5140.4340.4820.5330.591d.Sl, IS, S,SC, SCLC0.6280.7670.1400.0200.089e.SiC, SiCLC0.6230.4720.3860.2870.318CEC0.6240.5870.5990.4080.4542.Horizonsa.AC0.6050.6960.4540.3600.430CEC0.6240.5870.5910.6120.681b.BC0.7480.6740.5910.6120.681c.C & RC0.6690.64540.6230.676c.C & RC0.8670.7120.5580.765c.C & RC0.8060.7450.6020.5580.682d.Non-Plastic SoilsC0.4530.4500.6640.6230.6584.Non-Plastic SoilsC0.8340.8610.6940.5710.729c.C & RC & C0.8370.6670.5510.721	Gro	ups	V	ariables	LL	PI	GI	MD	OM
a.CC0.8010.7500.4320.4130.347B.Sil, SiC0.3710.3960.4340.2330.153b.Sil, SiC0.5300.5980.1470.0060.190CEC0.4330.5750.2680.1470.394c.L, CLC0.5820.4020.1790.0510.216d.Sl, IS, S,SCCEC0.5140.4340.4820.5330.591d.Sl, IS, S,SC, SCLC0.6280.7670.1400.0200.089e.SiC, SiCLC0.6230.4720.3860.2870.318CEC0.6240.5870.5990.4080.4542.Horizonsa.AC0.6050.6960.4540.3600.430CEC0.6240.5870.5910.6120.681b.BC0.7480.6740.5910.6120.681c.C & RC0.6690.64540.6230.676c.C & RC0.8670.7120.5580.765c.C & RC0.8060.7450.6020.5580.682d.Non-Plastic SoilsC0.4530.4500.6640.6230.6584.Non-Plastic SoilsC0.8340.8610.6940.5710.729c.C & RC & C0.8370.6670.5510.721									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	Tex	tures						
b. SiL, Si CEC 0.530 0.598 0.147 0.006 0.190 c. L, CL CEC 0.433 0.575 0.268 0.147 0.394 c. L, CL C C 0.582 0.402 0.179 0.051 0.216 CEC 0.514 0.434 0.482 0.533 0.591 d. SL, LS, S, CEC 0.371 0.377 0.154 0.004 0.326 e. SiC, SCL C 0.624 0.587 0.386 0.287 0.318 CEC 0.624 0.587 0.599 0.408 0.454 2. Horizons a. A C 0.605 0.696 0.454 0.360 0.430 CEC 0.557 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.686 0.467 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. Plastic Soils C C 0.453 0.450 0.064 0.003 0.061 CEC 0.699 0.676 0.654 0.0623 0.668 4. Non-Plastic Soils C C 0.453 0.450 0.004 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. Parent Materials a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.774 0.806 0.733 0.551 0.721 c. Coastal Plains C 0.918 0.762 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.834 0.861 0.694 0.571 0.729 CEC 0.774 0.806 0.667 0.551 0.721 c. Coastal Plains C 0.918 0.762 0.733 0.534 0.706 b. Alluvium C 0.837 0.837 0.667 0.551 0.721 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.774 0.806 0.668 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.287 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.287 0.292 0.050 0.135 0.263 b. 36-60% Clay C 0.372 0.292 0.050 0.135 0.263 cEC 0.209 0.217 0.425 0.259 0.238 0.130 c. 18-35% Clay C 0.287 0.142 0.200 0.223 0.130 c. 18-35% Clay C 0.287 0.142 0.200 0.223 0.130 c. 18-35% Clay C 0.287 0.142 0.200 0.223 0.130 c. 18-35% Clay C 0.287 0.440 0.441 0.366 0.033 0.017		a.	С	С	0.801		0.432	0.413	0.347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CEC	0.371	0.396	0.434	0.233	0.153
c. L, CL CL CC 0.582 0.402 0.179 0.051 0.216 d. SL, LS, S, SC, SCL C 0.514 0.434 0.482 0.533 0.591 d. SL, LS, S, SC, SCL C 0.628 0.767 0.140 0.020 0.089 e. SiC, SiCL C 0.533 0.472 0.366 0.287 0.318 CEC 0.624 0.587 0.599 0.408 0.454 2. Horizons a. A C 0.605 0.696 0.454 0.360 0.430 CEC 0.557 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.686 0.453 0.454 0.558 0.785 CEC 0.699 0.676 0.654 0.558 0.686 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.774 0.866 0.733 0.551 0.721 c. Coastal Plains C 0.813 0.450 0.064 0.003 0.061 b. Alluvium-Loess C 0.815 0.852 0.733 0.551 0.721 c. Coastal Plains C 0.918 0.762 0.753 0.551 0.721 c. Coastal Plains C 0.815 0.852 0.733 0.551 0.721 c. Coastal Plains C 0.918 0.762 0.731 0.803 0.723 0.734 cEC 0.774 0.866 0.666 0.668 0.668 0.667 0.331 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 cEC 0.773 0.731 0.803 0.723 0.738 6. <u>Families</u> a. >61Z Clay C 0.372 0.292 0.050 0.135 0.263 b. 36-60% Clay C 0.372 0.292 0.050 0.135 0.263 cEC 0.209 0.217 0.425 0.259 0.233 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 d. <a 10.1350="" 2013="" 201<="" doi="" href="https://doi.org/lib.3010.225" td=""><td></td><td>Ъ.</td><td>SiL, Si</td><td>С</td><td>0.530</td><td>0.598</td><td>0.147</td><td>0.006</td><td></td>		Ъ.	SiL, Si	С	0.530	0.598	0.147	0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CEC	0.433	0.575	0.268	0.147	0.394
d. SL, LS, S, SC, SCL C 0.828 0.767 0.140 0.020 0.089 CEC 0.371 0.377 0.154 0.004 0.326 e. SiC, SICL C 0.533 0.472 0.386 0.287 0.318 CEC 0.624 0.587 0.599 0.408 0.454 2. Horizons a. A C 0.605 0.696 0.454 0.360 0.430 cEC 0.557 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.867 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. Plastic Soils C 0.699 0.676 0.654 0.662 0.558 0.686 CEC 0.699 0.676 0.654 0.623 0.658 4. Non-Plastic Soils C 0.453 0.450 0.064 0.003 0.061 CEC 0.817 0.837 0.667 0.551 0.721 cEC 0.817 0.837 0.667 0.551 0.721 c. Coastal Plains C 0.817 0.837 0.667 0.551 0.721 c. Coastal Plains C 0.835 0.878 0.593 0.361 0.684 Siltstone & Siltstone & CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone & CEC 0.674 0.748 0.573 0.523 0.769 d. Sandstone & CEC 0.837 0.878 0.593 0.361 0.684 CEC 0.815 0.878 0.593 0.361 0.684 cEC 0.674 0.748 0.704 0.486 0.738 6. Families a. $>61X$ Clay C 0.372 0.292 0.050 0.135 0.263 cEC 0.311 0.230 0.255 0.233 0.130 c. 18-35% Clay C 0.247 0.142 0.200 0.223 0.168 cEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.227 0.292 0.050 0.135 0.263 d. 418% Clay C 0.244 0.194 0.048 0.080 0.155 d. 418% Clay C 0.244 0.194 0.048 0.080 0.155 0.418% CEC 0.500 0.441 0.156 0.033 0.017		c.	L, CL	С	0.582	0.402	0.179	0.051	0.216
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CEC	0.514	0.434	0.482	0.533	0.591
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		d.	SL, LS, S,	*					
e. SiC, SiCL C 0.533 0.472 0.386 0.287 0.318 CEC 0.587 0.599 0.408 0.454 2. Horizons a. A C 0.605 0.696 0.454 0.360 0.430 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.867 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.699 0.676 0.654 0.623 0.658 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.815 0.887 0.867 0.551 0.729 b. Alluvium C 0.433 0.450 0.064 0.003 0.061 CEC 0.815 0.887 0.551 0.721 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium C 0.834 0.861 0.694 0.551 0.721 CEC 0.774 0.806 0.667 0.551 0.721 CEC 0.774 0.806 0.667 0.551 0.721 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. <u>Families</u> a. $>61%$ CEC 0.297 0.292 0.050 0.135 0.263 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.227 0.425 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.441 0.048 0.080 0.155 CEC 0.500 0.441 0.048 0.080 0.155			SC, SCL	С	0.828	0.767	0.140	0.020	0.089
CEC 0.624 0.587 0.599 0.408 0.454 2. <u>Horizons</u> a. A C 0.605 0.696 0.454 0.360 0.430 CEC 0.557 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.867 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.806 0.745 0.602 0.558 0.686 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.813 0.183 0.125 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.666 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.774 0.806 0.725 0.697 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.774 0.780 0.593 0.361 0.684 5. <u>Parent Materials</u> a. Alluvium C 0.835 0.878 0.593 0.361 0.684 b. $36-60\%$ Clay C 0.372 0.292 0.050 0.135 0.263 b. $36-60\%$ Clay C 0.287 0.142 0.200 0.223 0.168 cEC 0.311 0.230 0.225 0.203 0.130 c. $18-35\%$ Clay C 0.227 0.227 0.255 0.203 0.130 c. $18-35\%$ Clay C 0.214 0.194 0.048 0.080 0.155 d. $(-18-35\%$ Clay C 0.214 0.194 0.048 0.080 0.155				CEC	0.371	0.377	0.154	0.004	0.326
2. <u>Horizons</u> a. A C 0.605 0.696 0.454 0.360 0.430 CEC 0.557 0.663 0.430 0.468 0.527 b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.867 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.806 0.745 0.602 0.558 0.686 CEC 0.699 0.676 0.654 0.623 0.658 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.774 0.806 0.668 0.567 0.731 CEC 0.774 0.806 0.668 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. <u>Families</u> a. $>61Z$ CLay C 0.372 0.292 0.050 0.135 0.263 b. $36-60\%$ Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35\% Clay C 0.214 0.194 0.048 0.800 0.155 d. $<18Z$ Clay C 0.214 0.194 0.048 0.800 0.155 CEC 0.500 0.461 0.362 0.578 0.602		e.	SiC, SiCL	С	0.533	0.472	0.386	0.287	0.318
a.AC0.6050.6960.4540.3600.430CEC0.5570.6630.4300.4680.527b.BC0.7480.6740.5910.6120.681c.C & RC0.8670.8670.7120.5580.785c.C & RC0.8670.8670.7120.5580.686c.C & RC0.8670.8670.7120.5580.6863.Plastic SoilsC0.8860.7450.6020.5520.6923.Plastic SoilsC0.4530.4500.0640.0030.061CEC0.1830.1830.2250.0180.1635.Parent Materials a.AlluviumC0.8340.8610.6940.5710.729d.Alluvium-LoessC0.8170.8370.6670.5510.721c.Coastal PlainsC0.8340.8610.6940.5710.729d.Sandstone & SiltstoneC0.8350.8780.5930.3610.6876.Families a.>61%CEC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263d.Sandstone & SiltstoneC0.3720.2920.0500.1350.263<				CEC	0.624	0.587	0.599	0.408	0.454
a.AC0.6050.6960.4540.3600.430CEC0.5570.6630.4300.4680.527b.BC0.7480.6740.5910.6120.681c.C & RC0.8670.8670.7120.5580.785c.C & RC0.8670.8670.7120.5580.686c.C & RC0.8670.8670.7120.5580.6863.Plastic SoilsC0.8860.7450.6020.5520.6923.Plastic SoilsC0.4530.4500.0640.0030.061CEC0.1830.1830.2250.0180.1635.Parent Materials a.AlluviumC0.8340.8610.6940.5710.729d.Alluvium-LoessC0.8170.8370.6670.5510.721c.Coastal PlainsC0.8340.8610.6940.5710.729d.Sandstone & SiltstoneC0.8350.8780.5930.3610.6876.Families a.>61%CEC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263d.Sandstone & SiltstoneC0.3720.2920.0500.1350.263<									
a.AC0.6050.6960.4540.3600.430CEC0.5570.6630.4300.4680.527b.BC0.7480.6740.5910.6120.681c.C & RC0.8670.8670.7120.5580.785c.C & RC0.8670.8670.7120.5580.686c.C & RC0.8670.8670.7120.5580.6863.Plastic SoilsC0.8860.7450.6020.5520.6923.Plastic SoilsC0.4530.4500.0640.0030.061CEC0.1830.1830.2250.0180.1635.Parent Materials a.AlluviumC0.8340.8610.6940.5710.729d.Alluvium-LoessC0.8170.8370.6670.5510.721c.Coastal PlainsC0.8340.8610.6940.5710.729d.Sandstone & SiltstoneC0.8350.8780.5930.3610.6876.Families a.>61%CEC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263b.36-60%ClayC0.3720.2920.0500.1350.263d.Sandstone & SiltstoneC0.3720.2920.0500.1350.263<	2.	Hor	izons						
b. B C 0.748 0.674 0.591 0.612 0.681 CEC 0.696 0.669 0.663 0.672 0.676 c. C & R C 0.867 0.867 0.712 0.558 0.785 CEC 0.692 0.736 0.726 0.552 0.692 3. <u>Plastic Soils</u> C 0.806 0.745 0.602 0.558 0.686 CEC 0.699 0.676 0.654 0.623 0.658 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.666 0.566 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. <u>Families</u> a. $>61X$ Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35X Clay C 0.214 0.142 0.200 0.223 0.168 CEC 0.574 0.440 0.4411 0.156 0.033 0.017				С	0.605	0.696	0.454	0.360	0.430
c. $C \& R$ c. R c. R c				CEC	0.557	0.663	0.430	0.468	0.527
c. C & R C C C C C C C C C C C C C C C C C		Ъ.	В	С	0.748	0.674	0.591	0.612	0.681
$\begin{array}{ccccc} CEC & 0.692 & 0.736 & 0.726 & 0.552 & 0.692 \\ \hline 3. \ \underline{Plastic Soils} & C & 0.806 & 0.745 & 0.602 & 0.558 & 0.686 \\ \hline CEC & 0.699 & 0.676 & 0.654 & 0.623 & 0.658 \\ \hline 4. \ \underline{Non-Plastic Soils} & C & 0.453 & 0.450 & 0.064 & 0.003 & 0.061 \\ \hline CEC & 0.183 & 0.183 & 0.225 & 0.018 & 0.163 \\ \hline 5. \ \underline{Parent Materials} & & & & & & & & & \\ \hline CEC & 0.815 & 0.852 & 0.733 & 0.534 & 0.706 \\ \hline b. \ Alluvium-Loess & C & 0.817 & 0.837 & 0.667 & 0.551 & 0.721 \\ CEC & 0.774 & 0.806 & 0.6686 & 0.567 & 0.731 \\ \hline c. \ Coastal Plains & C & 0.918 & 0.762 & 0.719 & 0.687 & 0.839 \\ CEC & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \hline 6. \ \ \underline{Families} & & & & & & & & \\ \hline cEC & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \hline 6. \ \ \ \underline{Families} & & & & & & & & \\ \hline cEC & 0.209 & 0.217 & 0.425 & 0.259 & 0.248 \\ \hline b. \ 36-60\% \ Clay & C & 0.287 & 0.142 & 0.200 & 0.223 & 0.168 \\ \hline CEC & 0.311 & 0.230 & 0.255 & 0.203 & 0.130 \\ \hline c. \ 18-35\% \ Clay & C & 0.214 & 0.194 & 0.048 & 0.080 & 0.155 \\ \hline CEC & 0.500 & 0.461 & 0.362 & 0.578 & 0.602 \\ \hline d. \ <18\% \ Clay & C & 0.214 & 0.194 & 0.048 & 0.033 & 0.017 \\ \hline \end{array}$				CEC	0.696	0.669	0.663	0.672	0.676
3. <u>Plastic Soils</u> C CEC 0.806 0.745 0.602 0.558 0.686 0.699 0.676 0.654 0.623 0.658 4. <u>Non-Plastic Soils</u> C 0.453 0.450 0.064 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. <u>Parent Materials</u> a. Alluvium C 0.834 0.861 0.694 0.571 0.729 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.686 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. <u>Families</u> a. $>61X$ Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.578 0.602 d. <187 Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.578 0.602 d. <187 Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.578 0.602 d. <187 Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.578 0.602		с.	C&R	С	0.867	0.867	0.712	0.558	0.785
$\begin{array}{c cccc} CEC & 0.699 & 0.676 & 0.654 & 0.623 & 0.658 \\ \hline \\ \hline & Non-Plastic Soils & C & 0.453 & 0.450 & 0.064 & 0.003 & 0.061 \\ CEC & 0.183 & 0.183 & 0.225 & 0.018 & 0.163 \\ \hline \\ \hline & a. & Alluvium & C & 0.834 & 0.861 & 0.694 & 0.571 & 0.729 \\ & CEC & 0.815 & 0.852 & 0.733 & 0.534 & 0.706 \\ \hline \\ \hline & b. & Alluvium-Loess & C & 0.817 & 0.837 & 0.667 & 0.551 & 0.721 \\ CEC & 0.774 & 0.806 & 0.686 & 0.567 & 0.731 \\ \hline \\ c. & Coastal Plains & C & 0.918 & 0.762 & 0.719 & 0.687 & 0.839 \\ CEC & 0.773 & 0.731 & 0.803 & 0.723 & 0.769 \\ \hline \\ d. & Sandstone & Siltstone & C & 0.835 & 0.878 & 0.593 & 0.361 & 0.684 \\ CEC & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \hline \\ 6. & \frac{Families}{a. > 61\% Clay} & C & 0.372 & 0.292 & 0.050 & 0.135 & 0.263 \\ CEC & 0.209 & 0.217 & 0.425 & 0.259 & 0.248 \\ \hline \\ b. & 36-60\% Clay & C & 0.287 & 0.142 & 0.200 & 0.223 & 0.168 \\ CEC & 0.311 & 0.230 & 0.255 & 0.203 & 0.130 \\ \hline \\ c. & 18-35\% Clay & C & 0.214 & 0.194 & 0.048 & 0.080 & 0.155 \\ CEC & 0.500 & 0.461 & 0.362 & 0.578 & 0.602 \\ \hline \\ d. < 18\% Clay & C & 0.440 & 0.411 & 0.156 & 0.033 & 0.017 \\ \hline \end{array}$				CEC	0.692	0.736	0.726	0.552	0.692
$\begin{array}{c cccc} CEC & 0.699 & 0.676 & 0.654 & 0.623 & 0.658 \\ \hline \\ \hline & Non-Plastic Soils & C & 0.453 & 0.450 & 0.064 & 0.003 & 0.061 \\ CEC & 0.183 & 0.183 & 0.225 & 0.018 & 0.163 \\ \hline \\ \hline & a. & Alluvium & C & 0.834 & 0.861 & 0.694 & 0.571 & 0.729 \\ & CEC & 0.815 & 0.852 & 0.733 & 0.534 & 0.706 \\ \hline \\ \hline & b. & Alluvium-Loess & C & 0.817 & 0.837 & 0.667 & 0.551 & 0.721 \\ CEC & 0.774 & 0.806 & 0.686 & 0.567 & 0.731 \\ \hline \\ c. & Coastal Plains & C & 0.918 & 0.762 & 0.719 & 0.687 & 0.839 \\ CEC & 0.773 & 0.731 & 0.803 & 0.723 & 0.769 \\ \hline \\ d. & Sandstone & Siltstone & C & 0.835 & 0.878 & 0.593 & 0.361 & 0.684 \\ CEC & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \hline \\ 6. & \frac{Families}{a. > 61\% Clay} & C & 0.372 & 0.292 & 0.050 & 0.135 & 0.263 \\ CEC & 0.209 & 0.217 & 0.425 & 0.259 & 0.248 \\ \hline \\ b. & 36-60\% Clay & C & 0.287 & 0.142 & 0.200 & 0.223 & 0.168 \\ CEC & 0.311 & 0.230 & 0.255 & 0.203 & 0.130 \\ \hline \\ c. & 18-35\% Clay & C & 0.214 & 0.194 & 0.048 & 0.080 & 0.155 \\ CEC & 0.500 & 0.461 & 0.362 & 0.578 & 0.602 \\ \hline \\ d. < 18\% Clay & C & 0.440 & 0.411 & 0.156 & 0.033 & 0.017 \\ \hline \end{array}$									
4. Non-Plastic Soils C CEC 0.453 0.450 0.064 0.003 0.061 CEC 0.183 0.183 0.225 0.018 0.163 5. Parent Materials a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.686 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. $>61\%$ Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60\% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35\% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <187 Clay C 0.440 0.411 0.156 0.033 0.017	3.	P1a	stic Soils	С	0.806	0.745	0.602	0.558	0.686
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				CEC	0.699	0.676	0.654	0.623	0.658
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
5. Parent Materials a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.686 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017	4.	Non	-Plastic Soils	С	0.453	0.450	0.064	0.003	0.061
a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.666 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362				CEC	0.183	0.183	0.225	0.018	0.163
a. Alluvium C 0.834 0.861 0.694 0.571 0.729 CEC 0.815 0.852 0.733 0.534 0.706 b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.666 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362									
$\begin{array}{ccccccc} & \text{CEC} & 0.815 & 0.852 & 0.733 & 0.534 & 0.706 \\ \text{b. Alluvium-Loess C} & \text{C} & 0.817 & 0.837 & 0.667 & 0.551 & 0.721 \\ \text{CEC} & 0.774 & 0.806 & 0.686 & 0.567 & 0.731 \\ \text{c. Coastal Plains C} & 0.918 & 0.762 & 0.719 & 0.687 & 0.839 \\ \text{CEC} & 0.773 & 0.731 & 0.803 & 0.723 & 0.769 \\ \text{d. Sandstone & Siltstone C} & 0.835 & 0.878 & 0.593 & 0.361 & 0.684 \\ \text{CEC} & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \end{array}$	5.	Par							
b. Alluvium-Loess C 0.817 0.837 0.667 0.551 0.721 CEC 0.774 0.806 0.686 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017		a.	Alluvium						
c. Coastal Plains C CEC 0.774 0.806 0.686 0.567 0.731 c. Coastal Plains C 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. $>61\%$ Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60\% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35\% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. $<18\%$ Clay C 0.440 0.411 0.156 0.033 0.017									
 c. Coastal Plains C CEC 0.918 0.762 0.719 0.687 0.839 CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017 		Ъ.	Alluvium-Loess						
d. Sandstone & Siltstone CEC 0.773 0.731 0.803 0.723 0.769 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 6. Families CEC 0.674 0.748 0.704 0.486 0.738 6. Families C 0.372 0.292 0.050 0.135 0.263 6. Sandstone C 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 d. <18%									
 d. Sandstone & Siltstone C 0.835 0.878 0.593 0.361 0.684 CEC 0.674 0.748 0.704 0.486 0.738 6. Families a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017 		c.	Coastal Plains						
Siltstone C 0.835 0.878 0.593 0.361 0.684 6. Families 0.674 0.748 0.704 0.486 0.738 6. Families Clay C 0.372 0.292 0.050 0.135 0.263 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 d. <187 Clay C 0.214 0.194 0.048 0.030 0.155				CEC	0.773	0.731	0.803	0.723	0.769
$\begin{array}{ccccccc} CEC & 0.674 & 0.748 & 0.704 & 0.486 & 0.738 \\ \hline 6. & Families \\ \hline a. > 61\% \ Clay & C & 0.372 & 0.292 & 0.050 & 0.135 & 0.263 \\ & CEC & 0.209 & 0.217 & 0.425 & 0.259 & 0.248 \\ \hline b. & 36-60\% \ Clay & C & 0.287 & 0.142 & 0.200 & 0.223 & 0.168 \\ & CEC & 0.311 & 0.230 & 0.255 & 0.203 & 0.130 \\ \hline c. & 18-35\% \ Clay & C & 0.214 & 0.194 & 0.048 & 0.080 & 0.155 \\ & CEC & 0.500 & 0.461 & 0.362 & 0.578 & 0.602 \\ \hline d. < 18\% \ Clay & C & 0.440 & 0.411 & 0.156 & 0.033 & 0.017 \\ \hline \end{array}$		d.							
6. Families a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017			Siltstone						
a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay				CEC	0.674	0.748	0.704	0.486	0.738
a. >61% Clay C 0.372 0.292 0.050 0.135 0.263 CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay									
CEC 0.209 0.217 0.425 0.259 0.248 b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay	6.	Fam							
b. 36-60% Clay C 0.287 0.142 0.200 0.223 0.168 CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017		a.	>61% Clay						
CEC 0.311 0.230 0.255 0.203 0.130 c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017									
c. 18-35% Clay C 0.214 0.194 0.048 0.080 0.155 CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017		b.	36-60% Clay						
CEC 0.500 0.461 0.362 0.578 0.602 d. <18% Clay C 0.440 0.411 0.156 0.033 0.017									
d. <18% Clay C 0.440 0.411 0.156 0.033 0.017		C.	18-35% Clay	С					
CEC 0.282 0.242 0.348 0.058 0.214		d.	<18% Clay						
				CEC	0.282	0.242	0.348	0.058	0.214

Table 4. Coefficients of determination (R²) for clay and cation exchange capacity vs engineering properties for the soil groupings.

Table 5.	Multiple	linear	regression	analysis	of	the	engineering	and
	chemical	data fr	om all loc	ations. [†]				

Regression Equations (n = 205)	R ²
§ LL = 0.752 (S) - 0.365 (Si) + 0.619 (BS) - 0.843 (K) + 0.822 (M2M) - 0.729 (H) + 0.814 (CEC) + 0.279 (C) - 2.468	0.786**1
PI = -3.266 (M2M) - 0.852 (CEC) - 1.275 (BS) + 0.838 (K) + 187.689	0.652**
GI = 0.610 (BS) + 0.520 (Si) - 0.254 (CEC) + 1.599 (M2M) - 0.173 (Ca) + 0.551 (H) - 0.065 (C) - 82.817	0 .882**
MD = -0.029 (M2M) + 0.007 (Si) - 0.014 (BS) - 0.002 (K) + 0.006 (Ca) - 0.006 (H) + 0.006 (CEC) + 0.002 (C) + 2.010	0.646**
OM = -0.865 (S) + 1.016 (S1) + 0.080 (BS) + 0.346 (CEC) + 0.083 (Ca) - 0.473 (H) - 0.047 (K) - 8.897	0.941**
CEC = -0.085 (S) - 0.063 (Si) - 0.049 (C) + 3.336 (K) + 0.759 (Ca) + 0.806 (H) + 0.053 (PE) + 0.128 (OM) - 0.057 (LL) + 0.305 (PI) - 0.135 (GI) + 0.034 (BS) + 5.780	0.970**
C = -0.989 (Si) -0.987 (S) $+98.979$	0.986**
PE = -0.467 (S) - 0.471 (Si) - 0.577 (C) - 3.171 (K) + 0.660 (CEC) + 0.425 (PI) + 47.678	0.593**
M2M = 2.381 (GI) + 0.639 (Si) + 0.486 (C) - 19.656 (K) - 0.828 (Ca) - 0.478 (OM) + 0.594 (CEC) - 1.701 (PI) + 0.501 (LL) + 0.269 (BS) + 11.168	0.841**

[†] Variables include S, Si (silt), C, K, Ca, H (exchangeable hydrogen), CEC, BS (% base saturation), M2M, LL, PI, GI, MD, OM, PE.

§ See foot note in Table 1 for definition of symbols.

% (*) and (**) denote R² values are significant at 0.05 P and 0.01 P
respectively.

The results in Table 6B were obtained when PI was treated as the dependent variable. Four equations were obtained when (LL) was included as one of the independent variables. The best relationships occurred for those categories involving the texture extremities; sands and very fine clays. (PI) was best related to (LL) and this is to be expected since (PI) is defined in terms of (LL). Since the objective was to predict engineering properties by means of (CEC) or clay content, (LL) was omitted as an independent variable and the data were again computed. The second part of Table 6B gives these results. Two equations (sands and soils with less than 18% clay) were obtained and in both cases clay content was the only independent variable. (PI) values could be predicted for sandy soils by measuring their clay content, since the equation accounts for 77% of the variation in (PI). However, this is not as good as the same expression that was obtained when all the soils from the 15 counties were considered $(R^2 = 0.803 \text{ in Table 1})$. The results in Table 5B also show that when all the soils were considered in conjunction with other independent variables besides clay content, R^2 was increased to 0.901. However, this equation is not practical because some of the independent variables are engineering properties.

Relationships involving (GI) as the dependent variable are given in Table 6C. Since (GI) values are based on a relationship between (LL), (PI), and (M2M) the results in Table 6C could be expected. Since no other independent variables occurred in the equations (PI) and (M2M), there were no useful predictors for (GI) obtained by subdividing the data.

The last dependent variable under consideration was maximum density (MD) (Table 6D). The moisture content where a soil is most densely compacted is considered to be the optimum moisture (OM). Therefore, (MD) should be related to (OM) and the equations in Table 5D verify this relationship. Four of the equations

<u>A.</u>	Liquid Limit (LL)			
	Groupings	Equations	<u>n</u>	R ²
1.	Textures C SL, LS, S, SC, SCL	0.877 (PI) + 1.175 (OM) + 4.694 2.656 (PI) + 1.517	29 37	0.938** 0.914**
2.	Horizons B	0.945 (PI) + 1.181 (OM) + 0.592	100	0.934**
3.	Non-Plastic	3.145 (pi) - 0.001	42	0.999**
4.	Families 18-35% Clay <18% Clay	0.943 (PI) + 0.894 (OM) + 6.001 3.360 (PI) + 1.571	80 70	0.834** 0.880**
<u>B.</u>	Plasticity Index (PI)			
1.	<pre>b. Families >61% Clay <18% Clay c. Non-Plastic Excluding LL a. Texture SL, LS, S, SC, SCL b. Families</pre>		37 12 70 42 37	0.910** 0.920** 0.880** 0.999**
	>61% Clay <18% Clay c. <u>Non-Plastic</u> d. <u>All soils</u>	No significant terms 0.514 (C) - 2.518 No significant terms 0.259 (C) + 0.448 (OM) + 0.218 (MD) + 0.096 (GI) - 0.005 (M2M) - 31.009	12 70 42 205	0.411**
C.	Group Index			
1.	Textures SiL, Si L, CL SL, LS, S, SC, SCL SiC, SiCL	0.281 (PI) + 0.109 (M2M) - 3.366 0.547 (PI) + 1.920 0.150 (PI) - 0.104 (M2M) - 2.686 0.725 (pi) - 0.071	76 27 37 36	0.750** 0.784** 0.853** 0.919**

Table 6. Multiple linear regression equations for the dependent variables IL, PI, GI, and MD within soil groupings.[†]

.

•

С.	(Continued)	

1.	Families			
	36-60% Clay	0.746 (PI) - 0.360	43	0.884**
	<18% Clay	0.126 (PI) + 0.104 - 2.437	70	0.858**

D. Maximum Density (MD)

1.	Textures C SiL, Si L, CL SL, LS, S, SC, SCL SiC, SiCL	-1.406 (OM) + 130.41029-1.990 (OM) + 0.235 (C) + 136.68176-1.640 (OM) + 137.89427-2.345 (OM) + 0.311 (C) + 142.18137-1.733 (OM) - 138.45936	0.759** 0.799** 0.833** 0.921** 0.949**
2.	Horizons A B C & R	-1.932 (OM) + 138.231 39 -1.731 (OM) + 139.013 100 -2.066 (OM) + 0.129 (LL) + 139.78 66	
3.	Parent Materials Alluvium Alluvium-Loess Coastal Plains	-1.903 (OM) + 0.176 (PE) + 137.149 65 -1.899 (OM) + 0.161 (PE) + 137.641 98 -1.478 (OM) + 135.956 27	0.914** 0.920** 0.906**
4.	Families >61% Clay 36-60% Clay 18-35% Clay <18% Clay	-1.387 (OM) + 129.059 12 -1.479 (OM) + 132.705 43 -2.055 (OM) + 0.168 (C) + 80 139.910 -2.326 (OM) + 0.391 (C) + 70 140.880	0.675** 0.806** 0.926** 0.874**

[†] Footnote (†) in Table 2 gives the variables used in the multiple linear regression analysis.

also contain (C) as an independent variable, two others have (PE) and another one has (LL). When the R² values were considered for these relationships without (OM) they were less than 0.500. Therefore, these equations for (MD) have very little practical value.

Extensive mineralogical investigations were conducted to assist in detecting soils of unusual nature that might not be recognized by testing physical characteristics alone. Results in the previous section have shown that clay content and its (CEC) are related to engineering properties. Therefore, mineralogical data were obtained to determine if certain minerals were related to (CEC). Coefficients of determination (\mathbb{R}^2) were determined for the dependent variable, (CEC), and the independent variable, clay minerals, for 204 observations. The results are as follows:

 K[†]
 I
 A
 Q
 V
 M
 Ka

 0.521
 0.192
 0.118
 0.008
 0.005
 0.576
 0.003

The best relationships occurred between (CEC) and exchangeable (K) and (CEC) and montmorillonite content. Since the respective (R^2) values were accounting for only 50 to 60 percent of the variation in (CEC), soil groupings (Table 3) were established and (R^2) values were obtained between (CEC) and the mineralogical variables. The results in Table 7 show that the best relationships still exist between (CEC) and (K) and (CEC) and montmorillonite. However, the (R^2) values for various groups were only slightly improved over those obtained when all soils were considered together.

* K - exchangeable clay (me/100 g), I - illite, A - amorphous material, Q - quartz V - vermiculite, M - montmorillonite, and Ka - kaolinite.

Soil Groups				Min	erals			
1. Textures		K	I	A	Q	V	M	Ka
	C [†] SiL, Si L, CL SL,LS,S,SC,SCL SiC, SiCL	0.403 0.340 0.031 0.149 0.430	0.003 0.152 0.075 0.048 0.009	0.010 0.027 0.019 0.151 0.011	0.005 0.002 0.056 0.002 0.010	0.071 0.004 0.006 0.017 0.007	0.345 0.362 0.300 0.282 0.429	0.299 0.009 0.013 0.003 0.120
2.	Horizons A B C & R	0.449 0.474 0.621	0.642 0.090 0.225	0.050 0.122 0.172	0.085 0.003 0.206	0.014 0.035 0.001	0.540 0.393 0.743	0.021 0.004 0.028
3.	Plastic Soils .	0.472	0.143	0.094	0.002	0.031	0.552	0.002
4.	Non-Plastic Soils	0.149	0.187	0.022	0.033	0.128	0.073	0.035
5.	Parent Materials Alluvium Alluvium - Loess Coastal Plains Sandstone and Siltstone	0.607 0.615 0.298 0.180	0.578 0.490 0.216 0.133	0.147 0.102 0.307 0.001	0.355 0.229 0.014 0.004	0.022 0.018 0.085 0.118	0.699 0.671 0.510 0.003	0.230 0.153 0.096 0.264
6.	Families >61% Clay 36-60% Clay 18-35% Clay <18% Clay	0.271 0.333 0.268 0.192	0.386 0.007 0.107 0.132	0.130 0.081 0.003 0.001	0.102 0.003 0.002 0.031	0.295 0.054 0.036 0.065	0.127 0.428 0.582 0.207	0.399 0.160 0.115 0.016

Table 7 - Coefficients of determination (R²) for the dependent variable, cation exchange capacity, and the independent variables, clay minerals.

t See footnote in Table 1 for definition of symbols.

Table 8 - Multiple linear regression analysis of the mineralogical data from all locations.

Regression Equations (n=205)	R ²
+ CEC = 24.932 (K) + 0.449 (M) + 0.324 (V) + 4.415	0.714**
K = 0.011 (CEC) - 0.009 (V) + 0.011 (I) - 0.028 (A)	0.646**
0.002 (M) - 0.001 (BS)	
Q = 1.078 (K) - 0.193 (Ka) - 0.310 (V) + 0.458 (I)	0.151**
-0.073 (BS) $+8.374$	
V = -7.197 (K) + 0.392 (I) - 0.132 (M) + 0.102 (CEC)	0.335**
+ 1.984	
M = -7.526 (K) + 0.891 (CEC) - 0.847 (V) + 0.514 (I)	0.649**
- 0.329 (Ka) - 0.583	
Ka = -0.937 (K) + 0.139 (CEC) + 0.109 (V) + 0.354 (I)	0.294**
- 0.111 (M) - 0.138 (Q) - 0.986 (BS) + 7.473	
I = 11.872 (K) - 0.006 (CEC) - 0.109 (M) + 0.196 (K)	0.551**
+ 0.184 (Q) + 0.621 (V) + 0.034 (BS) - 3.041	
A = -2.574 (K) + 0.149 (CEC) - 0.010 (V) + 1.221	0.133**
BS = 50.283 (K) - 2.003 (Ka) + 1.169 (I) - 1.054 (Q)	0.371**
+ 45.689	
ala	

+

CEC - cation exchange capacity (me/100g), K - exchangeable potassium, Q - quartz, V - vermiculite, M - montmorillonite, Ka - kaolinite, I - illite, A - amorphous material, BS - % base saturation. The next step was then to analyze the data by multiple linear regression analysis. The results are given in Table 8 and include equations for each mineralogical variable being treated as the dependent variable. The results show that 71.4% of the variation in (CEC) can be accounted for by measuring the amounts of exchangeable (K), montmorillonite, and vermiculite. The data were analyzed a second time with CEC serving as the dependent variable. Also, the independent variables, (K) and (BS), were omitted. The following equation was obtained:

$$CEC = 0.570 (M) + 0.375 (I) + 8.103 \qquad R^2 = 0.606^{**T}$$

These results show that (V) was eliminated from the equation and (I) appeared. The equation did not contain (K) since it was discarded from the data before the statistical analysis was conducted. The results from both analyses and those given in Table 6 show that (M) accounts for a considerable part of the variation in (CEC). The only other equations given in Table 8 are those for the dependent variables (K), (M), and (I). None of these equations accounted for more than 65% of the variation in terms of the above mentioned dependent variables. They were not satisfactory because they all contained five independent variables.

Since the largest R^2 value for the expressions given in Table 8 was 0.714, the data were subdivided according to the groups given in Table 2 and analyzed by multiple linear regression. The regression analyses of the data were conducted by treating each independent variable as the dependent variable. The results are given in Appendix Table 5. The equations that had R^2 values greater than 0.500 and no more than three independent variables are given in Table 9. The results in Table 9A are given for the dependent variable, (CEC). The equation for, Soil Containing More Than 60% Clay, had a R^2 value of 0.816. This was the only equation

[†] See footnote ¶ in Table 4 for explanation of (**).

that had an \mathbb{R}^2 value greater than the one given for (CEC) in Table 8 (n = 204). When potassium was treated as the dependent variable the equations for Clay Textured and Alluvium Parent Material were the only ones that had \mathbb{R}^2 values greater than the one given in Table 8 for (K) (0.646). When quartz was treated as the dependent variable equations for Clay Textured Soils and the (C & R) Horizon occurred. Their respective \mathbb{R}^2 values of 0.672 and 0.575 are considerably better than the one (0.151) obtained when no subgrouping was used.

Relationships involving vermiculite as the dependent variable (Table 9D) were obtained for soils with Clay Texture, Soils Containing More Than 61% Clay, and Soils Containing 36 to 60% Clay. R^2 values for these subgroupings were better than those obtained without subgrouping. The same was true for (Ka) and (I), but only one subgrouping for (M), (Alluvium Parent Material) produced a R^2 value better than the one obtained without subgrouping.

SUMMARY AND CONCLUSIONS

Soil samples were collected from 82 soil series in 15 Arkansas counties and analyzed for engineering, chemical, and mineralogical properties.

The objectives of this investigation were to determine if soil chemical and physical properties can be related to soil engineering properties and if the mineralogical composition of the clay fraction is related to the chemical and physcial properties that are related to soil engineering properties.

The data from all 15 counties were combined and subjected to linear regression analysis. In separate analyses, cation exchange capacity (CEC), % clay (C), % expandable clay (PE), and exchangeable potassium (K) and calcium (Ca) were treated as independent variables and liquid limit (LL), plasticity index (PI), group index (GI), maximum density (MD), and optimum moisture (OM), were treated

Table 9 - Multiple linear regression equations for the mineralogical properties within soil groupings.

A. Gallon Exchange Gapacity (GEG)						
	Groupings	Equations	<u>n</u>	R ²		
1.	Textures SiL, Si	14.451 (K) + 0.330 (M) + 7.447	75	0.604**		
2.	Horizons B	31.002 (K) + 0.282 (M) + 6.650	99	0.598**		
3.	<u>Plastic Soils</u>	23.048 (K) + 0.417 (M) + 6.786	163	0.671**		
4.	Families >60% Clay	48.610 (K) - 1.376 (I) + 32.257	12	0.816**		
	18-35% Clay	9.151 (K) + 0.444 (M) + 8.632	78	0.635**		
	<18% Caay	13.501 (K) + 0.635 (V) + 0.292 (M) + 4.423	71	0.516**		
<u>B.</u>	Potassium (K)					
1.	Texture C	-0.015 (V) + 0.014 (I) + 0.009 (CEC) + 0.039	29	0.748**		
	SiC, SiCL	-0.027 (V) + 0.017 (I) + 0.016 (CEC) - 0.105	37	0.622**		
2.	Plastic Soil	-0.011 (V) + 0.013 (I) + 0.009 (CEC) + 0.070	163	0.580**		
3.	Parent Material Alluvium	0.015 (I) + 0.011 (CEC) + 0.033	66	0.684**		
<u>C.</u>	Quartz (Q)					
1.	<u>Texture</u> C	-4.354 (K) + 0.529 (I) - 0.441 (V) + 3.557	29	0.672**		
2.	Horizons C & R	5.665 (K) + 0.280 (I) + 0.372	66	0.575**		

A. Cation Exchange Capacity (CEC)

	Groupings	Equations	n	R ²
D.	Vermiculite (V)			
1.	Texture C	-13.347 (K) - 0.718 (Q) + 0.607 (I) + 6.364	29	0.564**
2.	Families >61% Clay 36-60% Clay	-30.087 K) + 20.835 -7.380 (K) + 0.348 (I) + 1.792	12 43	0.674** 0.500**
Ε.	Montmorillonite (M)			
1.	Texture SiC, SiCL	-9.657 (K) + 1.311 (CEC) - 0.976 (V) - 5.195	37	0.513**
2.	Horizons A	-3.451 (K) + 0.827 (CEC) - 4.397	39	0.548**
3.	<u>Parent Material</u> Alluvium	-13.756 (K) + 1.409 (CEC) - 0.989 (V) - 4.442	66	0.743**
4.	Families 18-35% Clay	1.138 (CEC) - 8.072	78	0.582**
F.	Kaolinite (Ka)			
1.	Texture C	-31.965 (K) - 1.038 (Q) + 0.932 (I) + 21.426	29	0.528**
2.	Parent Material Sandstone - Siltstone	-15.230 (K) + 1.019 (I) + 0.436 (CEC) - 1.280	52	0.681**
G.	Illite (I)			
1.	Texture C	14.561 (K) + 1.154 (Q) + 0.813 (V) - 5.155	29	0.768**
	SiC, SiCL	14.036 (K) + 1.349 (V) + 0.853	37	0.612**
2.	Horizon A	5.395 (K) + 0.487 (CEC) - 2.449	39	0.672**

.....

	Groupings	a and a start of grant and a start of a second start of the second		R ²
G.	(Continued)			-
3.	Non-Plastic	3.781 (K) + 0.740 (V) + 0.280 (M) + 0.556	41	0.606**
4.	Parent Material Alluvium	19.655 (K) + 0.432 (Ka) - 0.754	66	0.671**
	Sandstone and Siltstone .	12.537 (K) + 0.505 (Ka) + 0.098	52	0.642**

as dependent variables. The results for single comparisons show that only (CEC) and (C) are related to soil engineering properties. The best relationships occurred for (C) vs (LL) and (C) vs (PI); $R^2 = 0.817$ and 0.803, respectively. The data were then subdivided into groups according to texture, horizons, plastic soils, non-plastic soils, parent material, and families to determine if higher R^2 values could be determined. It occurred only for the parent material subgroups. In all cases except one, (CEC) vs (PI), the higher values were obtained for (C) vs (LL) and (C) vs (PI). The data were next analyzed with multiple linear regression analyses by treating the engineering variables in separate analysis as the dependent variable. The data were also subdivided into soil groupings as previously described. In both cases R^2 values were no better than those where single comparisons were made.

Separate relationships for mineralogy {illite (I), amorphous material (A), quartz (Q), vermiculite (V), montmorillonite (M), and kaolinite (Ka)} and exchangeable potassium (K) vs (CEC) were determined when the data from all locations were combined. The best R^2 values occurred for (CEC) vs (K) and (CEC) vs (M); 0.521 and 0.576, respectively. The other R^2 values were less than 0.200. The data were subdivided as previously described and again analyzed. The only R^2 values that were increased were those for (CEC) vs (K) or (M) in the alluvium and alluvium-loess and (CEC) vs (M) in the (C & R) horizon (0.607, 0.699, and 0.743, respectively).

Multiple linear regression analysis was then used as previously described to determine if the R^2 values could be increased. The best relationship occurred when (CEC) was the dependent variable. The independent variables were (K), (M), and (V). When (K) was discarded and the analysis conducted a second time, (I) replaced (V) and R^2 decreased from 0.714 to 0.606. The only other expressions of

importance were those for the dependent variables (K), (M), and (I). Their respective R^2 values were 0.646, 0.649, and 0.551. Subdivisions, as previously described, were made and R^2 for the dependent variable (CEC) in the family of soils with more than 60% clay was 0.816. The other R^2 values were less than 0.714. When the other variables were separately treated as the dependent variable, R^2 values were increased where the soil had a clay texture or belonged to the family that contains more than 60% clay.

Thus, in conclusion, data for (CEC) and (C) from all 15 counties can be combined and used to predict (LL), (PI), (GI), (MD), and (OM) and mineralogical data can be used to predict (CEC) of these respective soils. There was very little advantage obtained when the data were divided into soil subgroupings. APPENDIX

Tech. Rpt. No.	County	No. Samples	No. Soil Series	Parent Material
1.	Cleveland	13	5	Coastal Plain
2.	Cross	8	3	Loess
3.	Woodruff	9	3	Alluvium
4.	Washington	21	7	S.S., Si.S - Alluvium
5.	Franklin	20	8	S.S., Si.S
6.	Chicot	17	8	Alluvium
7.	Mississippi	23	10	Alluvium
8.	Greene	5	3	Alluvium
9.	Arkansas	20	7	Alluvium, loess
10.	Desha	9	3	Alluvium
11.	Ouachita	16	6	Coastal Plain
12.	Jackson	9	3	Alluvium
13.	Benton	14	5	Chert, Si.S, Alluvium
14.	lloward	14	6	Calcareous marl, Alluvium
15.	Johnson	15	5	S.S., Si.S Alluvium
		213	82	

Appendix Table 1 - Summary for the number of soil samples collected from each county and their respective series and parent material.

Appendix Table 2 - List of soil series and the counties where they were sampled.

	Series	County	S	eries	County
1.	Alaga	Ouachita	35.	Houston	Howard
2.	Allen	Washington	36.	Jay	Washington
3.	Alligator $(2)^{\dagger}$	Mississippi, Green	37.	Johnsburg (2)	Washington
4.	Amagon (3)	Arkansas, Jackson	38.	Kaufman	Howard
5.	Amy	Ouachita	39.	Kirvin (2)	Ouachita
6.	Arklaburla	Cross	40.	Lafe	Cross
7.	Bosket	Woodruff	41.	Leadvale (2)	Franklin, Johnson
8.	Brandon	Greene	42.	Linker	Franklin
9.	Bruno	Mississippi	43.	Miller	Arkansas
10.	Calloway	Chicot	44.	Montevallo	Franklin
11.	Caspiana	Johnson	45.	Morganfield (2)	Mississippi, Johnson
12.	Clarksville	Benton	46.	Muskogee	Johnson
13.	Cleora	Franklin	47.	Nacogdoches	Cleveland
14.	Colbert	Benton	48.	Newellton	Desha
15.	Collins	Greene	49.	Nixa	Benton
16.	Commerce	Desha	50.	Norwood	Arkansas
17.	Convent	Mississippi	51.	Norfolk	Ouachita
18.	Crevasse	Mississippi	52.	Ouachita	Ouachita
19.	Crowley (2)	Arkansas	53.	Oktibbeha	Howard
20.	Dubbs	Franklin	54.	Pembroke	Benton
21.	Dundee	Chicot	55.	Pickwick	Johnson
22.	Earle	Mississippi	56.	Portland	Chicot
23.	Enders	Franklin	57.	Razort	Benton
24.	Falkner	Franklin	58.	Saffell	Cleveland
25.	Fayetteville	Washington	59.	Sallisaw	Howard
26.	Foley	Woodruff	60.	Savannah (2)	Washington
27.	Forestdale	Mississippi	61.	Sharkey (2)	Chicot, Mississippi
28.	Gallion	Chicot	62.	Shubuta	Cleveland
29.	Grenada (2)	Chicot, Arkansas	63.	Steele	Mississippi
30.	Hartsells	Howard	64.	Stuttgart	Arkansas
31.	Hebert	Chicot	65.	Sumter	Howard
32.	Henry (2)	Chicot, Cross	66.	Susquehana	Cleveland
33.	Hillemann	Jackson	67.	Tippah	Cleveland
34.	Holston	Greene	68.	Tuckerman	Jackson
			69.	Tunica (2)	Desha, Mississippi

⁺ The number in parenthesis indicates number of profiles sampled from that particular series.

Appendix Table 3 - List of samples by series and county that were analyzed to determine the engineering and mineralogical properties.

Horizon	Depth Inches	SCS No.	U. of A. Lab. No.
CLEVELAND COUN	ITY - TECH	I. RPT. NO. 1	
Tippah very fine sand loam B2lt IIC2	10-17 32-62	S-62-Ark-13-3-4 S-62-Ark-13-2-7	2282 2285
Saffell gravelly fine sandy loam B2t C	7-36 36-65+	S-62-Ark-13-4-3 S-62-Ark-13-4-4	2288 2289
Shubuta fine sandy loam A2 B22t Cl	2-7 14-27 25-60	S-62-Ark-13-5-2 S-62-Ark-13-5-4 S-62-Ark-13-5-5	2291 2293 2294
Susquehanna silty clay loam B21t B22t C	3-10 10-20 20-72+	S-62-Ark-13-6-2 S-62-Ark-13-6-3 S-62-Ark-13-6-4	2296 2297 2298
Nacogdoches gravelly loam B2lt C1 IIC2 CROSS COUNTY -	8-14 25-41 41-72	S-62-Ark-13-7-3 S-62-Ark-13-7-5 S-62-Ark-13-7-6	2301 2303 2304
Arklabutla silt loam Clg C3g	13-20 36-72	UA-62-Ark-19-23-3 UA-62-Ark-19-23-5	2897 2899
Henry silt loam A2 B2ltg Bx	4-17 17-24 31-72	UA-63-Ark-19-22-2 UA-63-Ark-19-22-3 UA-63-Ark-19-22-5	2891 2892 2894
Lafe silt loam A2 B21t Cg	6-13 13-29 38 -72	UA-63-Ark-19-21-2 UA-63-Ark-19-21-3 UA-63-Ark-19-21-5	2886 2887 2889

Horizon	Depth <u>Inches</u>	SCS No.	U. of A. Lab. No.
WOODRUFF COU	NTY - TECH.	RPT NO 2	
		1011.110.3	
Bosket fine sandy loam	0-8	S = 6 2 = 4 mis = 7 4 = 2 = 1	2571
Ap	14-34	S-63-Ark-74-2-1 S-63-Ark-74-2-3	2571
B2	34-72	S-63-Ark-74-2-4	2573
C1	54-72	5-05-Ark-74-2-4	2014
Foley silt loam			
Al	0~5	S-63-Ark-74-4-1	2581
B22tg	22-42	S-63-Ark-74-4-5	2585
C	42-72+	S-63-Ark-74-4-6	2586
Amagon silt loam	0-7	S-63-Ark-74-6-1	2593
Alp	16-28	S-63-Ark-74-6-4	2596
B1	28-40	S-63-Ark-74-6-5	2590 2597
B21	20-40	5-05-Ark-74-0-5	2391
WASHINGTON CO	UNTY - TECH.	<u>RPT. NO.</u> 4	
<u>Johnsburg silt loam</u>			
Ap2	5-8	S-63-Ark-72-1-2	2349
B2t	16-23	S-63-Ark-72-1-4	2351
Bxtg	23-58	S-63-Ark-72-1-5	2352
Savannah silt loam			
A3	5-13	S-63-Ark-72-2-2	2355
B22t	17-25	S-63-Ark-72-2-4	2357
Bx2t	30-57	S-63-Ark-72-2-6	2359
par a may non			
Savannah fine sandy loam			
Ap	0-5	S-63-Ark-72-3-1	2361
B2t	11-22	S-63-Ark-72-3-3	2363
Bx2t	29-70	S-63-Ark-72-3-5	2365
Fayetteville fine sandy loam			
Ap	0-9	S-63-Ark-72-7-1	2384
Bl	16-25	S-63-Ark-72-7-3	2386
B22t	36-67	S-63-Ark-72-7-5	2388
	50, 07		2390
Allen loam	0.0	0 (0 4.1, 70 10 1	0/11
Ар	0-8	S-63-Ark-72-12-1	2411
B22t	29-39	S-63-Ark-72-12-4	2414
C	39-45+	S-63-Ark-72-12-5	2415

Horizon	Depth <u>Inches</u>	SCS No.	U. of A. <u>Lab. No.</u>
<u>Johnsburg loam</u> Ap Btg Bxtg	0-6 9-20 20-40	S-63-Ark-72-16-1 S-63-Ark-72-16-3 S-63-Ark-72-16-4	2616 2618 2619
Jay silt loam Ap B2t Bx2t	0-99 16-25 29-56	S-63-Ark-72-4-1 S-63-Ark-72-4-3 S-63-Ark-72-4-5	2366 2368 2370 2371
FRANKLIN COUNT	Y - TECH. R	PT. NO. 5	
Linker fine sandy loam Apl B2t	0-5 14-23	S-64-Ark-24-2-1 S-64-Ark-23-2-4	3402 3405
Falkner silt loam Ap B22t B23t	0 -7 19-32 32-68	S-64-Ark-24-6-1 S-64-Ark-24-6-4 S-64-Ark-24-6-5	3428 3431 3432
Dubbs fine sandy loam Ap2 B2t B32	3-7 7-27 37-44	S-64-Ark-24-8-2 S-64-Ark-24-8-3 S-64-Ark-24-8-5	3439 3440 3442
Montevallo gravelly fine sandy loam B2t R	7-11 11+	S-64-Ark-24-9-3 S-64-Ark-24-9-4	3445 3446
Leadvale fine sandy loam Blt B22t B23tx	5-10 13-23 23-39	S-64-Ark-24-10-3 S-64-Ark-24-10-5 S-64-Ark-24-10-6	3449 3451 3452
Holston gravelly loam A22 B2lt	4-8 8-25	S-64-Ark-24-11-3 S-64-Ark-24-11-4	3456 3457 3458
IIC	31-37+	S-64-Ark-24-11-6	3460
Cleora fine sandy loam C3 C5	17-30 46-72	S-64-Ark-24-12-4 S-64-Ark-24-12-6	3464 3466
Enders gravelly fine sandy loam B22t C	16-24 36-72+	S-64-Ark-24-4-4 S-64-Ark-24-4-7	3417 3420

Horizon	Depth <u>Inches</u> COUNTY - TECH. RP	<u>SCS No</u> . <u>F. NO. 6</u>	U. of A. Lab. No.
Calloway silt loam Ap B22tx	0-8 29-72	S-62-Ark-9-11-1 S-62-Ark-9-11-5	2191 2195
Dundee silt loam Al2 Cl IIC2	6-12 20-49 49-72+	S-62-Ark-9-5-2 S-62-Ark-9-5-4 S-62-Ark-9-5-5	2172 2174 2175
Gallion silt loam A2 B2 C	8–19 26–39 39–72	S-62-Ark-9-4-2 S-62-Ark-9-4-4 S-62-Ark-9-4-5	2167 2169 2170
Grenada silt loam A2 B2ltx B22tx	3-10 25-41 41-58	S-62-Ark-9-10-2 S-62-Ark-9-10-4 S-62-Ark-9-10-5	2187 2189 2190
Hebert silt loam Apl B2 C2	0-4 16-27 51-72	S-62-Ark-9-1-1 S-62-Ark-9-1-4 S-62-Ark-9-1-7	2159 2162 2165
Henry silt loam B2ltx	13-29	S-62-Ark-9-9-3	2183
Portland clay C	17-72	S-62-Ark-9-7-3	2178
Sharkey clay C	4-9+	S-62-Ark-9-8-2	2180
MISSISSIPP	I COUNTY - TECH. RP	T. NO. 7	
Crevasse loamy sand Cl IIC3g	12-28 47-73	S-64-Ark-47-2-3 S-65-Ark-47-2-5	3616 3618
Forestdale silty clay loam Ap B22tg Clg IIC4	0-8 20-34 34-62 78-88+	S-65-Ark-47-3-1 S-65-Ark-47-3-3 S-65-Ark-47-3-4 S-65-Ark-47-3-7	

Horizon	Depth Inches	SCS No.	U. of A. Lab. No.
Earle clay B21 B22 IIC1	5-34 34-55 55-76	S-65-Ark-47-4-2 S-65-Ark-47-4-3 S-65-Ark-47-4-4	3627 3628 3629
Alligator clay C2g IIC3g	20-51 51-74	S-65-Ark-47-5-3 S-65-Ark-47-5-4	3632 3633
Bruno fine sandy loam Cl	17-48	S-65-Ark-47-6-3	3636
Sharkey clay Cl	6-34	S-65-Ark-47-7-2	3638
Tunica clay B21g C	8-24 45-72	S-65-Ark-47-8-2 S-65-Ark-47-8-4	3641 3643
Morganfield fine sandy loam C1 C3	11-32 62-80	S-65-Ark-47-9-3 S-65-Ark-47-9-5	3646 3648
Commerce fine sandy loam Ap B21g C1	0-7 11-23 39-61	S-65-Ark-47-10-1 S-65-Ark-47-10-3 S-65-Ark-47-10-5	3651
Steele silt loam C2 C4g C6g	12–20 22–31 38–72	S-65-Ark-47-11-2 S-65-Ark-47-11-5 S-65-Ark-47-11-7	
GREENE COUNTY	- TECH. RPT.	NO. 8	
Brandon silt loam A2 B3	2-7 15-35	S-64-Ark-28-10-2 S-64-Ark-28-10-5	
Collins silt loam Al C2	6-15 25-74	S-64-Ark-28-11-2 S-64-Ark-28-11-4	3179 3181
Alligator silt loam Clg	11-32	S-64-Ark-28-12-3	3184

Horizon		Depth Inches	SCS No.	U. of A. Lab. No.
	ARKANSAS COUNTY -	TECH. RPT.	NO. 9	
Miller silty clay Cl C2 IIC3	loam	7-39 39-51 51-72	S-65-Ark-1-1-2 S-65-Ark-1-1-3 S-65-Ark-1-1-4	4064 4065 4066
Norwood silt loam Cl C2 C3		8-33 33-52 52-72	S-65-Ark-2-2-2 S-65-Ark-1-2-3 S-65-Ark-1-2-4	4068 4069 4070
<u>Crowley silt loam</u> Al2g IIB21tg IIB23t		6-13 17-32 44-55	S-65-Ark-1-3-2 S-65-Ark-1-3-4 S-65-Ark-1-3-6	4072 4074 4076
Amagon silt loam Al2g B22tg		6-17 30-72	S-65-Ark-1-4-2 S-65-Ark-1-4-4	4079 4081
Crowley silt loam Bltg IIB21tg IIB22tg		9 15 15-30 30-72	S-65-Ark-1-5-3 S-65-Ark-1-5-4 S-65-Ark-1-5-5	4084 4085 4086
<u>Stuttgart silt loa</u> Ap B22t B24tg	<u>.m</u>	0-6 15-24 33-72	S-65-Ark-1-6-1 S-65-Ark-1-6-4 S-65-Ark-1-6-6	408 7 4090 4092
Grenada silt loam Bl B22xt IIC	-	7-20 33-60 60-72	S-65-Ark-1-7-2 S-65-Ark-1-7-5 S-65-Ark-1-7-6	4094 4097 4098
	DESHA COUNTY- TECH	H. RPT. NO.	10	

Commerce silt loam			
B21	14-22	S-66-Ark-21-1-3	4499
Cl	39-55	S-66-Ark-21-1-6	4502
C3g	68-72	S-66-Ark-21-1-8	4504

Horizon	Depth Inches	SCS No.	U. of A. Lab. No.
Newellton silty clay B2 IIE3 IIC2	5-15 15-22 36-86	S-66-Ark-21-3-2 S-66-Ark-21-3-3 S-66-Ark-21-3-5	4511 4512 4514
Tunican silty clay B2g IIC1 IIIC3	5-24 24-38 45-72	S-66-Ark-21-2-2 S-66-Ark-21-2-3 S-66-Ark-21-2-5	4506 4507 4509
OUACHITA COUNTY - 7	CECH. RPT. NO	0. 11	
Alaga loamy sand Cl C2	7-24 24-46	S-67-Ark-52-2-2 S-67-Ark-52-2-3	4713 4714
Norfolk sandy loam A2 B21t B23t	7-21 21-36 49-63	S-67-Ark-52-5-2 S-67-Ark-52-5-3 S-67-Ark-52-5-5	4731 4732 4734
Amy silt loam A2 B21tg B22t	4-18 18-41 41-52	S-67-Ark-52-1-2 S-67-Ark-52-1-3 S-67-Ark-52-1-4	4708 4709 4710
Kirvin fine sandy loam B2t C1 C2	5-18 18-35 35-55	S-67-Ark-52-3-2 S-67-Ark-52-3-3 S-67-Ark-52-3-4	4718 4719 4720
Ouachita very fine sandy loam B21t Bbt	19-34 42-69	S-67-Ark-52-6-3 S-67-Ark-52-6-5	
Kirvin fine sandy loam B2lt B22t B3t	9–24 24–38 38–55	S-67-Ark-52-4-3 S-67-Ark-52-4-4 S-67-Ark-52-4-5	4726
JACKSON COUNTY	- TECH. RPT.	NO. 12	
Amagon silt loam B2ltg Cl Bb	13-21 28-41 41-60	S-67-Ark-34-2-3 S-67-Ark-34-2-5 S-67-Ark-34-2-6	

Horizon	Depth Inches	SCS No.	U. of A. Lab. No.
Hillemann silt loam B21t B23tg B24tg	5-13 18-27 27-46	S-67-Ark-34-1-2 S-67-Ark-34-1-4 S-67-Ark-34-1-5	4785 4787 4788
Tuckerman silt loam B21tg B22tg B23tg	21-41 41-62 62-62	S-67-Ark-34-3-4 S-67-Ark-34-3-5 S-67-Ark-34-3-6	4793 4794 4795
BENTON COUNTY	- TECH. RPT.	NO. 13	
Pembroke silt loam Ap B21t B22t	0-9 9-26 26-42	S-67-Ark-4-9-1 S-67-Ark-4-9-2 S-67-Ark-4-9-3	4796 4797 4798
Clarksville cherty silt loam A2 B2lt	1-10 24-40	S-67-Ark-4-7-1 S-67-Ark-4-7-3	3065 3067
Colbert stony silt loam Al B21t B22t	0-7 7-14 14-31	S-67-Ark-4-6-1 S-67-Ark-4-6-2 S-67-Ark-4-6-3	4756 4757 4758
Nixa cherty silt loam A2 Bx	3-17 17-32	S-67-Ark-4-3-2 S-67-Ark-4-3-3	4704 4705
Razort gravelly silt loam Al B22t B21 B22	0-10 24-44 12-22 22-41	S-67-Ark-4-8-1 S-67-Ark-4-8-3 S-68-Ark-31-7-3 S-68-Ark-31-7-4	4802 4804 4940 4941
HOWARD COUNTY	- TECH. RPT.	NO. 14	
Hartsells fine sandy loam B21t B22t B23t	11-16 16-30 30-36	S-68-Ark-31-3-3 S-68-Ark-31-3-4 S-68-Ark-31-3-5	4916 4917 4918

Horizon	Depth Inches	SCS No.	U. of A. Lab. No.
Houston clay C1 C2 C3	5-16 16-29 29-46	S-68-Ark-31-5-2 S-68-Ark-31-5-3 S-68-Ark-31-5-4	4925 4926 4927
Kaufman clay B21 B22	12-22 22-41	S-68-Ark-31-71-3 S-68-Ark-31-71-4	4940 4941
Oktibbeha clay B22t B23t	12-19 19-29	S-68-Ark-31-6-3 S-68-Ark-31-6-4	4932 4933
Sallisaw fine sandy loam B21t B22t	22-37 37-52	S-68-Ark-31-2-4 S-68-Ark-31-2-5	4910 4911
Sumter clay B21 B22	4-9 9-16	S-68-Ark-31-4-2 S-68-Ark-31-4-3	4920 4921
JOHNSON COUNTY	- TECH. RPT	. NO. 15	
Caspiana silt loam B21t B23t Cl	10-24 30-40 40-52	S-68-Ark-36-2-2 S-68-Ark-36-2-4 S-68-Ark-36-2-5	5381 5382 5383
Pickwick silt loam Ap B21t B23t	0-6 12-22 35-52	S-68-Ark-36-6-1 S-68-Ark-36-6-3 S-68-Ark-36-6-5	5384 5385 5386
Muskogee silt loam A2 B22t B2 3 t	4-9 23-39 39-50	S-68-Ark-36-13-2 S-68-Ark-36-13-4 S-68-Ark-36-13-5	5387 5388 5389
Leadvale silt loam A2 B2lt Bxl	5-10 18-23 23-49	S-68-Ark-36-15-2 S-68-Ark-36-15-4 S-68-Ark-36-15-5	5390 5391 5392
Morganfield silt loam A12 Cl C2	7-14 14-30 30-41	S-68-Ark-36-16-2 S-68-Ark-36-16-3 S-68-Ark-36-16-4	5393 5394 5395

	Clay Textured Soils (n=29)	R ²
	a/CL = 0.787 (LL) + 9.151 CEC = 1.234 (GI) + 8.256 M2M = 1.023 (OM) - 0.802 (MD) + 0.499 (PI) + 174.143	<u>b</u> , 0.800** 0.434** 0.446**
	LL = 1.175 (ON) + 0.877 (PI) + 4.694	0.938**
	PI = 0.664 (MD) + 0.858 (LL) + 0.438 (GI) - 94.435	0.949**
	GI = 0.504 (PI) + 5.957	0.592**
	MD = -1.406 (OM) + 130.410 OM = -0.540 (MD) + 77.010	0.759** 0.759**
	PE = 0.788 (CEC) + 1.294	0.316*
/		
	-Cl - % Clay, CEC - cation exchange capacity (me/100g), H	
	<pre>mesh, LL - liquid limit, PI - plasticity index, GI - gro MD - maximum density, OM - optimum moisture, PE - percent</pre>	4 F
/	(**) and (*) denote R ² values are significantly different	nt at 0.01P
	and 0.05P, respectively.	
	Silt and Silt Loam Textured Soils (n=76)	R ²
	CL = 0.866 (PI) + 1.269 (OM) + 0.660 (MD) - 0.579	0.687**
	(GI) - 77.021	0.00/ ***
	CEC = 0.390 (CL) + 0.354 (GI) - 0.380 (MD) + 36.040	0.638**
	M2M = -2.341 (PI) + 5.043 (GI) + 0.597 (LL) + 48.304	0.614**
	LL = 3.310 (OM) - 0.384 (GI) + 1.215 (MD) + 1.892	0.830**
	(PI) - 0.248 (PE) - 171.891 PI = 0.185 (CL) + 0.115 (PE) - 0.285 (MD) + 0.232	0.915**
	(LL) + 0.817 (GI) - 0.177 (MD) - 0.008 (M2M) + 21.250	0.919
	GI = 0.281 (PI) + 0.109 (M2M) - 3.366	0.750**
	MD = -1.990 (OM) + 0.235 (CL) + 136.681	0.799**
	OM = 0.052 (CL) - 0.376 (MD) + 0.045 (LL) + 55.251	0.877**
	PE = 0.992 (CEC) - 2.593	0.362**
		R ²
	Loam and Clay Loam Textured Soils (n=27)	K
	CL = 3.987 (OM) + 1.702 (MD) - 229.098	0.452**
	CL = 3.987 (OM) + 1.702 (MD) - 229.098 CEC = 0.585 (GI) + 6.341	0.452** 0.482**
	CL = 3.987 (OM) + 1.702 (MD) - 229.098 CEC = 0.585 (GI) + 6.341 M2M = 2.396 (GI) + 51.813	0.452** 0.482** 0.538**
	CL = 3.987 (OM) + 1.702 (MD) - 229.098 CEC = 0.585 (GI) + 6.341 M2M = 2.396 (GI) + 51.813 LL = 1.458 (MD) + 3.733 (OM) + 1.085 (PI) - 204.218	0.452** 0.482**
	CL = 3.987 (OM) + 1.702 (MD) - 229.098 CEC = 0.585 (GI) + 6.341 M2M = 2.396 (GI) + 51.813	0.452** 0.482** 0.538** 0.855**
	CL = 3.987 (OM) + 1.702 (MD) - 229.098 CEC = 0.585 (GI) + 6.341 M2M = 2.396 (GI) + 51.813 LL = 1.458 (MD) + 3.733 (OM) + 1.085 (PI) - 204.218 PI = 0.977 (GI) - 0.315 (CEC) + 0.310 (LL) - 2.584	0.452** 0.482** 0.538** 0.855** 0.916**

Appendix Table 4 - Multiple linear regression equations for chemical and engineering properties

D.	Sandy Loam, Loamy Sand, Sand, Sandy Clay, and Sandy Clay Loam Textured Soils (n=37)	R ²
	CL = 0.420 (CEC) + 1.964 (OM) + 0.871 (MD) + 0.411 (LL) - 121.044	0.911**
	CEC = 0.532 (OM) + 0.236 (CL) - 2.658	0.649**
	M2M = 7.046 (GI) + 25.932	0.759**
	LL = 2.656 (PI) + 1.517	0.914**
	PI = 0.344 (LL) - 0.210	0.914**
	MD = -2.345 (OM) + 0.311 (CL) + 1.422	0.921**
	GI = 0.150 (PL) + 0.104 (M2M) - 2.686	0.853**
	OM = -0.392 (MD) + 0.129 (CL) + 56.846	0.927**
	PE = 0.768 (CEC) - 0.124	0.336**
5.	Silty Clay and Silty Clay Loam Textured Soils (n=36)	R ²
		0 55044
	CL = -0.830 (OM) + 0.731 (LL) + 22.200	0.558** 0.624**
	CEC = 0.441 (LL) + 0.604	0.024**
	M2M = -0.565 (MD) + 148.349 LL = 1.145 (PI) + 1.369 (OM) - 0.414 (GI) -1.787	0.979**
	PI = 0.665 (LL) - 0.922 (OM) + 0.583 (GI) + 1.891	0.981**
	GI = 0.725 (PI) - 0.071	0.919**
	MD = -1.733 (OM) + 138.459	0.949**
	MD = -0.548 (MD) + 77.001	0.949**
	PE = 1.162 (GI) + 0.547	0.530**
	Horizon A (n=39)	R ²
	CL = 1.549 (CEC) - 2.685	0.717**
	CEC = 0.463 (CL) + 4.355	0.717**
	M2M = 4.742 (GI) + 44.855	0.623**
	LL = 2.248 (OM) + 0.574 (GI) + 0.926 (MD) + 2.795	0.930**
	(PI) - 0.538 (PE) - 132.308 $PI = -0.218 (MD) + 0.194 (PE) - 0.432 (OM) + 0.255$ $(LL) - 0.189 (GI) + 0.112 (CL) + 29.074$	0.948**
	GI = 0.156 (CL) - 0.160 (MD) - 0.276 (OM) + 0.101 (M2M) + 17.962	0.800**
	MD = -1.932 (OM) + 138.231	0.846**
	OM = -0.367 (MD) + 0.136 (PI) + 54.756	0.879**

G.	Horizon B (n=100)	<u>R</u> 2
	CL = 0.595 (CEC) + 2.591 (OM) + 0.987 (MD) + 0.754 (PI) - 0.546 (GI) - 138.019	0.814**
	CEC = -0.468 (OM) - 0.516 (MD) + 0.340 (GI) + 0.219 (CL) + 67.495	0.798**
	M2M = 1.816 (MD) - 4.033 (OM) + 3.144 (GI) - 1.969 (PI) + 0.754 (LL) + 313.620	0.557**
	LL = $1.181 (OM) + 0.945 (PI) + 0.592$	0.934**
	PI = -0.166 (MD) -0.691 (OM) $+0.782$ (GI) $+0.421$ (LL) -0.066 (M2M) $+26.776$	0.945**
	GI = 0.456 (OM) + 0.094 (MD) + 0.671 (PI) - 0.104 (LL) + 0.090 (M2M) - 20.911	0.924**
	MD = -1.731 (OM) + 139.013	0.953**
	OM = 0.077 (LL) - 0.072 (PI) - 0.447 (MD) + 0.045 (CL) + 63.205	0.966**
	PE = 0.802 (CEC) + 1.514	0.356**
н.	Horizons C and R (n=66)	R ²
	CL = 0.922 (PI) + 1.109 (MD) + 3.563 (OM) - 0.421 (GI) - 167.423	0.913**
	CEC = 0.373 (PE) + 0.358 (GI) + 0.230 (CL) + 2.269	0.849**
	M2M = 4.266 (GI) - 1.435 (PI) + 49.301	0.530**
	LL = -0.273 (PE) + 0.231 (CEC) + 2.481 (OM) + 1.742 (PI) - 0.790 (GI) + 0.977 (MD) + 0.143 (M2M) - 1449.66	0.954**
	PI = 0.154 (CL) - 0.170 (CEC) - 0.267 (OM) + 0.270 (LL) + 0.728 (GI) + 0.217 (PE) - 0.073 (M2M) + 4.335) 0.974**
	GI = -0.119 (CL) + 0.216 (CEC) + 0.413 (OM) - 0.110 (LL) + 0.632 (PI) - 0.131 (PE) + 0.086 (M2M) - 8.071	0.938**
	MD = -2.066 (OM) + 0.129 (LL) + 139.780	0.932**
	OM = -0.399 (MD) + 0.105 (CL) + 58.173	0.963**
	PE = 0.786 (PI) + 0.677 (CEC) + 0.894 (OM) - 0.493 (GI) - 0.402 (CL) - 10.448	0.806**
[.	Plastic Soils (n=163)	_R ²
	CL = 1.481 (OM) + 0.756 (MD) + 0.587 (LL) + 0.401 (CEC) - 106.854	0.833**
	CEC = 0.373 (PE) + 0.358 (GI) + 0.230 (CL) + 2.269 M2M = -1.112 (MD) - 2.263 (OM) + 0.854 (LL) - 1.604 (PI)	0.849** 0.511**
	+ 2.848 (GI) - 0.413 (CL) + 212.717 LL = -0.179 (GI) + 1.635 (OM) + 0.281 (MD) + 0.910 (PI)	0.954**
	+ 0.134 (CL) - 38.745 PI = -0.640 (OM) - 0.082 (MD) + 0.681 (GI) + 0.531 (LL) - 0.064 (M2M) + 13.481	0.947**

I. (Co	ontinued)	R ²
GI	[■ 0.387 (OM) + 0.652 (PI) - 0.169 (LL) + 0.101 (M2M) - 7.923	0.897**
МС		0.939**
OM		0.963**
PE		0.511**
J. <u>No</u>	on-Plastic Soils (n=42)	R ²
CE M2 LI P1 G1 ME	f = -6.233 (PI) + 2.061 (LL) -0.332 (MD) + 51.274	0.724** 0.577** 0.811** 0.999** 0.999** 0.855** 0.819** 0.838** 0.339**
K. <u>A</u>]	lluvial Soils (n=65)	R ²
CF M2 LI PI GI MI	(LL) + 0.592 (GI) - 0.079 (M2M) - 1.269 $I = 0.631 (PI) + 0.319 (OM) - 0.151 (LL) + 0.104$ $(M2M) - 7.158$ $O = -1.903 (OM) + 0.176 (PE) + 137.149$ $A = -0.455 (MD) + 0.120 (PE) + 64.447$	0.862** 0.852** 0.649** 0.938** 0.975** 0.914** 0.914** 0.944** 0.782**

L.	Alluvium - Loess Soils (n=98)	R ²
	CL = 0.769 (PI) + 0.711 (CEC) + 2.088	0.863**
	CEC = 0.245 (CL) + 0.491 (OM) + 0.194 (PE) - 2.099	0.856**
	M2M = -3.183 (PI) + 3.418 (GI) + 1.254 (LL) + 48.932	0.573**
	LL = -1.013 (GI) + 0.547 (OM) + 1.859 (PI) + 0.223	0.932**
	(M2M) - 11.169	
	PI = 0.111 (CL) + 0.100 (PE) + 0.699 (GI) + 0.265	0.968**
	(LL) - 0.082 (M2M) + 0.029	
	GI = -0.101 (MD) + 0.140 (OM) + 0.648 (PI) - 0.158	0.912**
	(LL) + 0.099 (M2M) + 6.831	
	MD = -1.899 (OM) + 0.161 (PE) + 137.641	0.920**
	OM = -0.407 (MD) + 0.100 (GI) + 0.083 (PE) + 59.051	0.953**
	PE = 1.157 (MD) + 2.665 (OM) + 0.676 (CEC) - 166.926	0.735**
Μ.	Coastal Plains Soils (n=27)	R2
	$\alpha = 0.061.(0) + 0.404.(11) = 7.022$	0.966**
	CL = 0.961 (OM) + 0.494 (LL) - 7.932 CEC = 0.548 (GI) + 0.310 (CL) + 2.261	0.897**
	M2M = 3.506 (GI) + 32.451	0.662**
	LL = 0.941 (PI) + 0.784 (CL) + 0.201	0.955**
	PI = 0.705 (GI) - 0.584 (OM) + 0.366 (LL) + 5.952	0.944**
	GI = -0.135 (CL) + 0.105 (CEC) + 0.326 (OM) - 0.085	0.960**
	(LL) + 0.557 (PI) - 0.115 (MD) + 0.074 (M2M) + 7.279	0.900
	MD = -1.478 (OM) + 133.958	0.906**
	MD = -0.397 (MD) + 0.165 (CL) + 56.790	0.958**
	PE = No significant terms appears at 0.05 P or 0.01 P	0.990
		····
N.	Sandstone and Siltstone Soils (n=54)	R ²
	α_{1} = 1,005 (DT) = 0,770 (QU) = 1,011 (MD) = 140,044	0 002**
	CL = 1.025 (PI) + 2.772 (OM) + 1.011 (MD) - 142.244 CEC = 0.646 (OM) + 0.352 (GI) - 1.368	0.903** 0.803**
	M2M = -3.584 (MD) - 6.551 (OM) + 2.280 (GI) - 1.590	0.667**
	M2M = -3.584 (MD) - 8.551 (OM) + 2.280 (GI) - 1.590 (PI) + 0.955 (LL) + 545.533	0.00/~~
	LL = 1.769 (MD) + 3.642 (OM) - 0.773 (GI) + 1.674 (PI)	0.929**
	+ 0.247 (M2M) - 256.269	~ • <i>J & J</i>
	PI = 0.208 (CL) + 0.368 + 0.205 (LL) - 3.480	0.946**
	GI = -0.103 (CL) + 0.398 (CEC) + 0.129 (M2M) - 0.152	0.877**
	(LL) + 0.656 (PI) + 0.259 (MD) + 0.617 (OM) -	
	0.148 (PE) - 43.646	0 05244
	MD = 0.085 (CL) - 2.145 (OM) + 0.157 (GI) + 0.151 (LL)	0.953**
	-0.122 (PI) -0.084 (M2M) $+145.095$	0.969**
	OM = 0.051 (CL) + 0.075 (CEC) - 0.373 (MD) + 0.041	0.909**
	(LL) + 54.234 PE = 0.590 (OM) - 2.223	0.142**
	PE = 0.590 (OM) - 2.223	V+176

. Soils containing 61% or more Clay (n=12)	R ²
CL = 0.855 (CEC) + 2.000 (M2M) - 0.829 (LL) + 11.459 (OM) + 6.817 (MD) - 0.363 (PE) - 1016.501	0.913*
CEC = -4.260 (MD) - 1.659 (M2M) + 568.952	0.579**
M2M = 0.406 (CL) - 0.405 (CEC) + 0.435 (LL) - 5.522 (OM) - 3.308 (MD) + 0.172 (PE) - 497.570	0.969**
LL = 4.136 (OM) - 48.765	0.587**
PI = 0.959 (LL) - 33.164	0.920**
GI = No significant terms appear at 0.05 P or 0.01 P	
MD = -1.387 (OM) + 129.059	0.675**
OM = -0.487 (MD) + 72.611	0.675**
PE = -2.198 (CL) + 30.009 (OM) + 5.144 (M2M) - 2.382 (LL) + 17.500 (MD) + 2.147 (CEC) - 2629.857	0.928*
Soils Containing 36 to 60% Clay (n=43)	R ²
CL = 0.518 (GI) + 36.921	0.200*
CEC = 0.482 (LL) + 0.004	0.312**
M2M = 0.817 (PI) - 66.722	0.374**
LL = 0.731 (PI) + 0.609 (OM) - 0.494 (MD) + 68.276	0.937**
PI = 0.745 (GI) - 0.441 (OM) + 0.575 (LL) + 0.315	0.951**
(MD) - 39.157	
GI = 0.746 (PI) - 0.360	0.884**
MD = -1.479 (OM) + 132.705	0.806**
OM = −0.545 (MD) + 77.097	0.806**
PE = 0.913 (PI) - 1.756	0.330**
Soils containing 18 to 35% Clay (n=80)	R ²
CL = 2.044 (OM) + 0.763 (MD) - 92.688	0.264**
CEC = -0.435 (MD) + 0.321 (PI) + 57.103	0.680**
M2M = 4.822 (GI) - 1.845 (PI) + 58.445	0.646**
LL = 0.943 (PI) + 0.894 (OM) + 6.001	0.834**
PI = -0.560 (OM) + 0.129 (CEC) - 0.145 (MD) + 0.432	0.883**
(LL) + 0.763 (GI) - 0.094 (M2M) + 22.403	
GI = 0.200 (MD) + 0.491 (OM) + 0.600 (PI) - 0.130 (LL) + 0.128 (M2M) - 34.655	0.860**
MD = -2.055 (M) + 0.168 (CL) + 139.910	0.926**
M = -0.397 (MD) + 0.081 (LL) + 57.807	0.943**

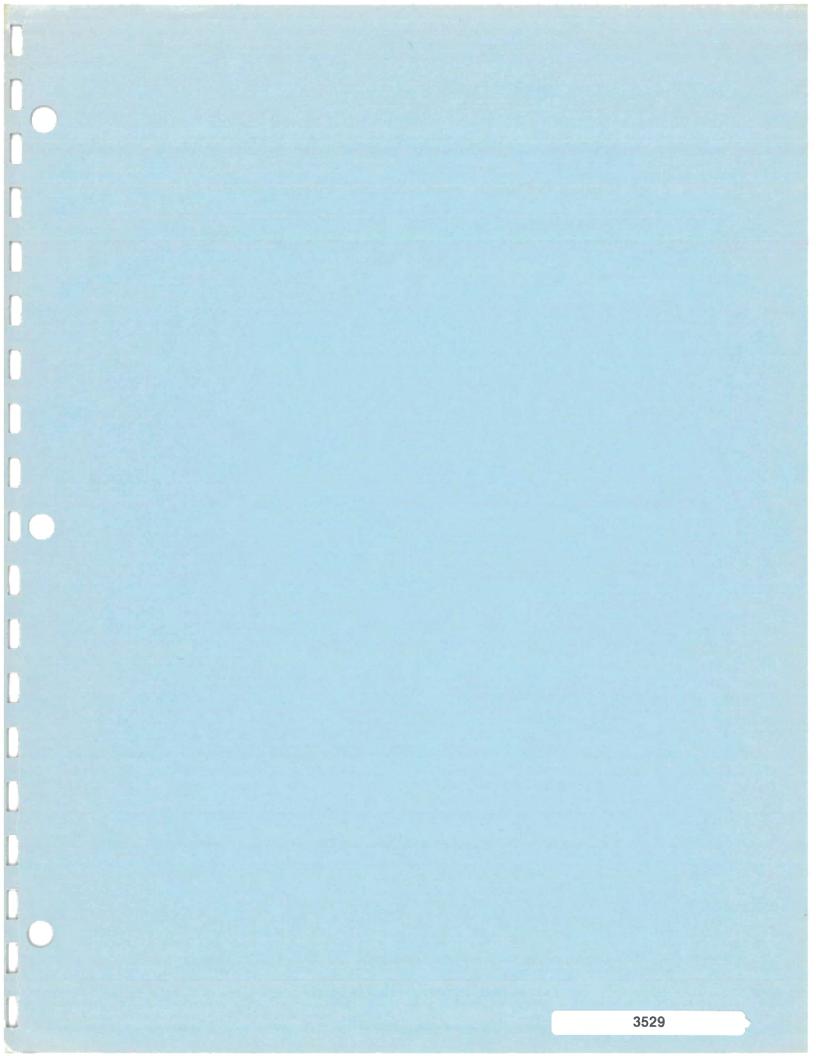
R.	Soil	ls	Containing Less Than 18% Clay (n=70)	R ²
			0.795 (CEC) + 1.347 (OM) + 0.724 (MD) - 96.661	0.647**
	CEC	=	0.542 (OM) + 0.450 (CL) - 3.936	0.593**
	M2M	82	7.609 (GI) + 29.599	0.841**
	LL		3.360 (PI) + 1.571	0.880**
			0.262 (LL) - 0.087	0.880**
	GI	82	0.126 (PI) + 0.104 (M2M) - 2.437	0.858**
	MD	-	-2.326 (OM) + 0.391 (CL) + 140.880	0.874**
	OM	=	0.374 (MD) + 0.155 (CL) + 54.572	0.872**
			0.697 (CEC) - 0.080	0.223**

Appendix Table 5 - Multiple Linear regression equations for mineralogy.

....

Α.	Clay Textured Soils (n=29)	²
	$\frac{a}{K} = -0.015 (V) + 0.014 (I) + 0.009 (CEC) + 0.039$ CEC = 40.864 (K) + 15.494 I = 14.561 (K) + 1.154 (Q) + 0.813 (V) - 5.155	0.748** 0.403** 0.768**
	A = No significant terms appear at 0.05P Or 0.01P. Q = -4.354 (K) + 0.529 (I) - 0.441 (V) + 3.557 V = -13.347 (K) - 0.718 (Q) + 0.607 (I) + 6.364 M = -1.630 (V) + 29.503 Ka = -31.965 (K) - 1.038 (Q) + 0.932 (I) + 21.426	0.672** 0.564** 0.172** 0.528**
a/	K - total potassium (%), CEC - cation exchange capacity I - illite, A - amorphous material, Q - quartz, V - verm M - montmorillonite, Ka - kaolinite. (**) and (*) denote R ² values are significantly differen 0.01P and 0.05P, respectively.	aiculite,
	Silt and Silt Loam Textured Soils (n=75)	R2
	K = 0.014 (CEC) + 0.024 (I) -0.012 (Ka) - 0.025 CEC = 14.451 (K) + 0.330 (M) + 7.447 I = 7.705 (K) + 0.332 (V) + 1.729 A = No significant terms appear at 0.05P or 0.01P. Q = No significant terms appear at 0.05P or 0.01P. V = -5.248 (K) + 0.793 (I) + 0.420	0.458** 0.604** 0.438** 0.266**
•	K = 0.014 (CEC) + 0.024 (I) -0.012 (Ka) - 0.025 CEC = 14.451 (K) + 0.330 (M) + 7.447 I = 7.705 (K) + 0.332 (V) + 1.729 A = No significant terms appear at 0.05P or 0.01P. Q = No significant terms appear at 0.05P or 0.01P.	0.458** 0.604** 0.438**
	K = 0.014 (CEC) + 0.024 (I) -0.012 (Ka) - 0.025 CEC = 14.451 (K) + 0.330 (M) + 7.447 I = 7.705 (K) + 0.332 (V) + 1.729 A = No significant terms appear at 0.05P or 0.01P. Q = No significant terms appear at 0.05P or 0.01P. V = -5.248 (K) + 0.793 (I) + 0.420 M = -12.927 (K) + 1.208 (CEC) - 5.655	0.458** 0.604** 0.438** 0.266** 0.416**

D.	Sandy loam, Loamy Sand, Sand, Sandy Clay, and Sandy Clay Loam Textured Soils. (n=36)	R ²
	K = 0.016 (A) + 0.135	0.262*
	CEC = 19.417 (K) + 4.869	0.149**
	I = -2.354 (K) + 0.355 (V) + 2.256	0.135*
	A = 15.979 (K) - 0.723	0.262**
	Q = -2.002 (K) + 0.589 (V) + 1.543	0.325*
	V = 2.476 (K) + 0.550 (Q) - 0.059	0.329**
	M = -11.590 (K) + 1.115 (A) + 1.048 (I) + 1.803	0.360**
	Ka = No significant terms appear at 0.05P or 0.01P.	
	Silty Clay and Silty Clay Loam Textured Soils (n=37)	R ²
	K = -0.027 (V) + 0.017 (I) + 0.016 (CEC) - 0.105	0.622**
	CEC = 22.842 (K) - 0.444 (I) + 0.929 (V) + 0.317 (M) + 10.665	0.719**
	I = 14.036 (K) + 1.349 (V) + 0.853	0.612**
	A = No significant terms appear at 0.05P or 0.01P, Q = " " " " " " " " " " " "	
	V = -9.733 (K) + 0.254 (CEC) + 0.425 (I) + 0.140 (A) - 0.136 (M) - 1.638	0.726**
	M = -9.657 (K) + 1.311 (CEC) - 0.976 (V) - 5.195	0.513**
	<pre>Ka = No significant terms appear at 5 or 1 percent level of probability.</pre>	
•	Horizon A (n=39)	R2
	K = 0.029 (I) + 0.095	0.443**
	CEC = 7.640 (K) + 0.483 (I) + 0.519 (V) + 0.438 (M) + 4.609	0.814**
	I = 5.395 (K) + 0.487 (CEC) - 2.449	0.672**
	A = No significant terms appear at $0.05P$ or $0.01P$. 0 = """""""""""""""""""""""""""""""""""	
	$V = U \qquad U$	
	M = -3.451 (K) + 0.827 (CEC) - 4.397 Ka = No significant terms appear at 0.05P or 0.01P.	0.548**
1 7 æ	Horizon B (n=99)	R ²
	K = 0.011 (CEC) + 0.043	0.474*
	CEC = 31.002 (K) + 0.282 (M) + 6.650	0.598**
	I = 12.840 (K) + 0.642 (V) + 0.271 (A) - 0.383	0.417**
	A = 1.059 (K) - 0.341 (V) + 0.317 (I) + 2.582	0.145**


 R^2 G. (Continued) = -10.375 (K) - 0.221 (A) + 0.528 (I) - 0.121V 0.402** (0) + 4.403= 0.813 (CEC) - 0.745 (V) + 0.313Μ 0.455** Ka = -2.433 (K) + 0.369 (V) + 5.773 0.095* R^2 H. Horizon C and R (n=66) = 0.015 (Q) + 0.010 (I) - 0.010 (V) + 0.009 (CEC)K 0.776** + 0.028CEC = 29.052 (K) + 0.642 (M) + 0.997 (V) - 0.604 (I) +0.840** 2.931 = 11.802 (K) - 0.194 (CEC) + 0.867 (V) + 0.595 (Q)Ι 0.704** + 0.192 (M) + 0.012= 3.472 (K) + 1.348A 0.089* = 5.665 (K) + 0.280 (I) + 0.372Q 0.575** = -4.054 (K) + 0.248 (I) + 1.391V 0.202** M = -9.314 (K) + 0.888 (CEC) - 1.379 (V) + 0.753 (I) 0.805** - 2.060 Ka = 3.099 (K) + 0.917 (V) + 2.6110.144** _R2 I. Plastic Soils (n=163) K = -0.011 (V) + 0.013 (I) + 0.009 (CEC) + 0.0700.580** CEC = 23.048 (K) + 0.417 (M) + 6.786 0.671** T = 13.433 (K) + 0.651 (V) + 0.157 (Ka) + 0.2130.514** (Q) + 0.094 (M) - 2.898А = -2.376 (K) + 0.141 (CEC) + 1.1720.101** = 0.243 (I) + 4.6390.058** Q = -5.894 (K) - 0.123 (Q) + 0.411 (I) - 0.096 (M) 0.369** V + 4.019M = -7.736 (K) + 0.876 (CEC) + 0.486 (I) - 0.844 (V) 0.633** -0.395 (Ka) +0.668Ka = -7.948 (K) + 0.179 (CEC) + 0.321 (I) - 0.178 (M) 0.158** + 5.543R² J. Non-Plastic Soils (n=41) K = No significant terms appear at 0.05P or 0.01P, CEC = 15.545 (K) + 5.654 0.149* = 3.781 (K) + 0.740 (V) + 0.280 (M) + 0.5560.606** T = No significant terms appear at 0.05P or 0.01P. Α 🚍 11 - FF - 11 11 11 11 ET . 11 Q V = 1.821 (K) + 0.296 (I) + 0.1570.0227** = -8.289 (K) + 1.316 (I) + 0.6600.350** Μ Ka = No significant terms appear at 0.05P or 0.01P.

,

ĸ.	Alluvial Soils (n=66)	R ²
	K = 0.015 (I) + 0.011 (CEC) + 0.033 CEC = 17.133 (K) + 0.418 (M) + 0.507 (V) + 0.385 (Ka)	0.684** 0.879**
	+ 3.959 I = 19.655 (K) + 0.432 (Ka) - 0.754	0.671*
	A = 2.911 (K) + 0.762	0.092**
	Q = 9.732 (K) + 0.751 (A) + 0.659	0.379**
	V = No significant terms appear at $0.05P$ or $0.01P$.	0.7/0.64
	M = -13.756 (K) + 1.409 (CEC) - 0.989 (V) - 4.442 Ka = -3.219 (K) + 0.418 (I) + 1.503	0.743** 0.265**
	Alluvium - Loess Soils (n=99)	R ²
	K = 0.020 (CEC) + 0.018 (I) - 0.011 (Ka) - 0.011 (V) - 0.007 (M) - 0.005	0.779**
	CEC = 19.930 (K) + 0.610 (V) + 0.409 (M) + 0.329 (Ka) + 3.251	0.873**
	I = 14.074 (K) + 0.283 (Ka) - 0.237 (A) + 0.282 (Q) + 0.096 (M) - 1.286	0.705**
	A = 0.606 (K) + 0.125 (Ka) - 0.137 (I) + 0.149 (Q) + 0.084 (M) + 0.322	0.231**
	Q = 0.433 (I) + 2.523	0.306**
	V = -2.912 (K) + 0.185 (CEC) - 0.096 (M) + 1.087 M = -21.860 (K) + 1.292 (CEC) - 1.166 (V) + 0.560	0.140* 0.759**
	(A) + 0.414 (I) - 3.540	0.199
	Ka = -8.086 (K) + 0.174 (A) + 0.297 (I) + 0.163 (CEC) + 1.375	0.261**
	Coastal Plains Soil (n=28)	R ²
	K = -0.062 (V) + 0.029 (I) + 0.171	0.235*
	CEC = 5.725 (K) + 1.868 (I) - 0.825 (Q) + 0.635 (M) + 7.107	0.714**
	I = 5.375 (K) + 0.887 (V) + 0.457	0.254**
	A = No significant terms appear at 0.05P or 0.01P	·
	Q = -11.707 (K) + 0.924 (V) + 0.399 (I) + 0.219 (M) + 2.595	0.542**
	V = -2.909 (K) + 0.227 (I) + 0.759	0.274*
	M = 14.743 (K) + 1.630 (Q) - 1.309 (I) - 1.826 (V) + 0.698 (CEC) - 5.834	0.751**
	Ka = No significant terms appear at 0.05P or 0.01P.	

N.	Sandstone and Siltstone Soils (n=52)				
	<pre>K = 0.008 (I) + 0.122 CEC = 17.792 (K) + 0.344 (Ka) + 6.482 I = 12.537 (K) + 0.505 (Ka) + 0.098 A = No significant terms appear at 0.05P or 0.01P Q = No significant terms appear at 0.05P or 0.01P.</pre>	0.167** 0.364** 0.642**			
	V = -7.891 (K) + 0.745 (I) + 1.602 M = 0.851 (K) + 0.800 (A) + 1.032 Ka = -15.230 (K) + 1.019 (I) + 0.436 (CEC) - 1.280	0.348** 0.186** 0.681**			
0.	Soils containing 61% or more Clay (n=12)	R ²			
	K = -0.017 (V) + 0.017 (I) - 0.012 (A) + 0.009 (CEC) + 0.059	0.990**			
	CEC = 48.610 (K) - 1.376 (I) + 32.257 I = 57.347 (K) + 0.950 (V) + 0.669 (A) - 0.547 (CEC) - 2.237	0.816** 0.978**			
	A = -65.654 (K) - 1.101 (V) + 1.091 (I) + 0.623 (CEC) + 4.191	0.804*			
	Q = No significant terms appear at 0.05P or 0.01P. V = -30.087 (K) + 20.835	0.674**			
	M = No significant terms appear at 0.05P or 0.01P. Ka = No significant terms appear at 0.05P or 0.01P.	8 <u>8</u> <u>8</u> - <u>8</u>			
2.	Soils containing 36 to 60% Clay (n=43)	²			
	K = -0.020 (V) + 0.013 (I) + 0.011 (CEC) + 0.030 CEC = 28.354 (K) + 0.461 (A) - 0.376 (Q) + 15.709 I = 16.607 (K) + 1.395 (V) - 0.176 A = No significant terms appear at 0.05P or 0.01P.	0.484** 0.466** 0.539**			
	Q = 8.359 (K) + 4.167 V = -7.380 (K) + 0.348 (I) + 1.792 M = 1.054 (CEC) - 7.468 Ka = -17.346 (K) + 15.546	0.113* 0.500** 0.428** 0.177*			
Q.	Soils Containing 18 to 35% Clay (n=78)	2			
	K = 0.013 (I) + 0.011 (CEC) - 0.011 CEC = 9.151 (K) + 0.444 (M) + 8.632 I = 11.803 (K) + 0.321 (V) + 1.283	0.362** 0.635** 0.340**			
	A = No significant terms appears at 0.05P or 0.01P. Q = No significant terms appears at 0.05P or 0.01P.				

} •	(Continued)	R ²
	<pre>V = -7.940 (K) + 0.511 (I) + 2.756 M = 1.138 (CEC) - 8.072 Ka = -4.176 (K) + 0.2411 (A) + 0.315 (I) - 0.208 (M) + 5.795</pre>	0.170** 0.582** 0.276**
	Soils Containing Less than 18% Clay (n=71)	R ²
	K = 0.014 (CEC) + 0.039	0.192**
	CEC = 13.501 (K) + 0.635 (V) + 0.292 (M) + 4.423	0.516**
	I = 2.789 (K) + 0.361 (V) + 2.069	0.155**
	A = 3.109((K) - 0.167 (CEC) + 0.133 (M) + 1.796 Q = No significant terms appear as 0.05P or 0.01P.	0.136*
	V = -2.933 (K) + 0.218 (CEC) + 0.341 (I) - 0.136 (M) - 0.299	0.321**
	M = -17.744 (K) - 1.255 (V) + 1.250 (CEC) - 1.475	0.391**

