THE UNIVERSITY OF ARKANSAS

CIVIL ENGINEERING DEPARTMENT

Development of Design Criteria for Fill Slopes in Eastern Arkansas

NOT FOR PUBLICATION

Highway Research Project No. 28

Development of
Design Criteria for
Fill Slopes in
Eastern Arkansas

THE ARKANSAS
STATE HIGHWAY
DEPARTMENT

PLANNING AND RESEARCH DIVISION

In Cooperation With

THE U.S. DEPARTMENT
OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION,
BUREAU OF PUBLIC ROADS

REVIEW COPY

Interim Technical Report No. 1

February, 1972

DEVELOPMENT OF DESIGN CRITERIA FOR FILL SLOPES IN EASTERN ARKANSAS

BY

E. WALTER LEFEVRE

Principal Investigator

and

FREDERIC C. TUCKER

Graduate Research Assistant

Civil Engineering Department University of Arkansas Fayetteville, Arkansas

INTERIM TECHNICAL REPORT NO. 1

of

HIGHWAY RESEARCH PROJECT NO. 28 "Development of Design Criteria for Fill Slopes in Eastern Arkansas"

for

THE ARKANSAS STATE HIGHWAY DEPARTMENT PLANNING AND RESEARCH DIVISION

• in cooperation with
The U. S. Department of Transportation
Federal Highway Administration
Bureau of Public Roads

February, 1972

ABSTRACT

This thesis contains a summary of the physiography and geology of Eastern Arkansas. Soil areas of particular interest for the research are described. Climatic conditions in Eastern Arkansas are discussed. Preliminary and detailed investigations of four embankment slope failures are presented. The detailed investigation contains an account of the boring and sampling program and laboratory testing program. Tabulations of test results are presented. From the accumulated data the four embankments are generalized into typical sections which are to be used in stability analyses. Two slope stability computer programs are described. The operation and use of the programs are illustrated through use of an example problem. Further considerations for stability analyses of embankment slopes in Northeast Arkansas are discussed.

KEY WORDS: slope stability, computer analysis, embankments, shear strength, triaxial test, clay, silty clay, method of slices, circular failure arcs, Normal Method, Simplified Bishop equation.

TABLE OF CONTENTS

ABSTR	AC.	Г.	• • •			•	•	•	•	•	•	•		•					•				•					PAGE iii
LIST	OF	FI	GURES			•	•	•		•		•	•	•		•	•	•	÷				•		•			vi
LIST	OF	TA	BLES.		٠		•	•		•	•	•	•	•	•			•					•		•	•	•	viii
LIST	OF	PL	ATES.			•	•		•				•	•	•		•	•		•		•	•	•				iz
ACKNO	WLI	EDG	EMENT	S	•	•	•	•	•	•		•	•	•	•	•	•	•	•							•	•	2
CHAPT	ER																											
I.]	ENTI	RODUC	TION		•	•	٠	•		•	•	•	•	•		•		•		•			•	•	•	•	1
¡II.			ERAL MATIC																								•	5
	A	۸.	Phys	iogr	apl	hу,	, G	eo	10	gy	r a	nd	1 5	Soi	.1			•	•	•		•			•			5
	Ε	3.	Clima	ate.	•		•	•	•	•		•			•				•							•	•	8
III.	Ι	PRE	LIMIN	ARY	IN	VES	STI	:GA	ΤI	ON	I C	F	SE	LE	CI	EI) E	ME	BAN	IKN	Γ	T	FA	ΙΙ	LUF	ŒS	3.	10
IV.	Ι	ETA	AILED	INV	ES'	ΓIC	FA	CIC	N	OF	' S	ΕI	ΕC	CTE	ED	EM	1BA	NK	ME	CNI	·	A]	LU	JRE	S			14
	A	١.	Site	No.	1			•	•	•	•		•		•			•		,•								17
	E	3.	Site	No.	2			٠	•	•	•		•		•	٠	•	•	•			•			•			20
	C	3.	Site	No.	3	•	•		•			•	•		•	•	•	•				•			•			28
	Γ).	Site	No.	4	•	•	•	•				•	•	•	•	•	•			•				•			33
;	E	Ξ.	Conc	lusi	on	to	L	ab	or	at	or	У	Te	st	in	g	Pr	og	ra	m			•	•				42
V.	S	LOI	PE STA	ABIL	IT	Y C	COM	IPU	TE	R	PR	.OG	RA	MS		•	•	•		•	•	•		•				51
	A		New '	York	St	at	e	Со	mp	ut	er	P	rc	gr	an	۱.	•	•	•	•		•	•	•	•			52
			1.	The	Nev	7 Y	or	k	St	at	e	Me	th	od	١.		•			•	•	•						52
			2.	The	Sir	n o 1	if	ie	d	Вí	sh	on	E	מוז	at	io	n											5.5

TABLE OF CONTENTS CONTINUED

CHAPTE	R B.	P Lease I Computer Program	AGE 57
	ъ.		
		1. The Normal Method of Slices	58
		2. The Simplified Bishop Equation	60
	С.	Some Comments on the New York State and LEASE I Program	62
	D.	Operation and Use of the New York State and LEASE I Programs	63
		1. Example Analysis by the New York State Program	63
		2. Example Analysis by the LEASE I Program	72
		3. Some Comments on the Example Problem	82
	Ε.	Considerations for the Analysis of Embankment Slopes in Northeast Arkansas	83
REFERE	NCES		88
APPEND	IX A		A -1
	Str	ess-Strain Computer Program Listing	
APPEND	IX B		B -]
	Str	ess-Strain Curves	
APPEND	IX C		C - 1
	Moh:	r Rupture Envelopes	
A DDE MD			D -1
ALLEND			נ – ע
	Mem	York State Computer Program Listing	
APPEND	IX E		E -1
	New	York State Example Output	
APPEND	IX F		F-1
	LEA:	SE I Example Output	

LIST OF FIGURES

FIGURE		PAGE
III-1.	Failure Site Locations	11
IV-1.	Contour Map - Site No. 1	21
IV-2.	Section AA - Site No. 1	22
IV-3.	Contour Map - Site No. 2	26
IV-4.	Section BB - Site No. 2	27
IV-5.	Section CC - Site No. 3	32
IV-6.	Contour Map No. 1 - Site No. 3	34
IV-7.	Contour Map No. 2 - Site No. 3	35
IV-8.	Section DD - Site No. 4	39
IV-9.	Contour Map - Site No. 4	40
IV-10.	Typical Section Description - Site No. 1	45
IV-11.	Typical Section Description - Site No. 2	46
IV-12.	Typical Section Description - Site No. 3	47
IV-13.	Typical Section Description - Site No. 4	48
V-1.	New York State Method	53
V-2.	Simplified Bishop Method by NYS Program	53
V-3.	Normal Method	59
V-4.	Simplified Bishop Method by LEASE I Program	59
V-5.	Submerged Toe of Slope	61
V-6.	Example Cross Section	64
	Caption Description by NVC Program	7 '

LIST OF FIGURES CONTINUED

FIGURE									P	AGE
V-8.	NYS and LEASE I Critical Circles	•	•		•		•		•	74
V-9.	Section Description by LEASE I Program	•	•		•	•	•	•	•	75
V-10.	Comparison of NYS and LEASE I Analyses	•	•	•	•					84
V-11.	Shrinkage Crack Consideration in Analysis.	•	•	•	•					85
V-12.	Further Refinement of Analysis									87

LIST OF TABLES

T ABLE		PAGE
IV-1.	Failure Site No. 1 Log of Boring	. 23
IV-2.	Failure Site No. 1 Laboratory Test Results	. 24
IV-3.	Failure Site No. 2 Log of Boring	. 29
IV-4.	Failure Site No. 2 Laboratory Test Results	. 30
IV-5.	Failure Site No. 3 Log of Boring	. 36
IV-6.	Failure Site No. 3 Laboratory Test Results	. 37
IV-7.	Failure Site No. 4 Log of Boring	. 41
IV-8.	Failure Site No. 4 Laboratory Test Results	. 43
V-1.	Cross Section and Soil Data	. 66
V-2.	NYS Card Input Data for Example Problem	. 70
v -3.	LEASE I Card Input Data for Example Problem	. 80

LIST OF PLATES

PLATE		PAGE
1.	Drilling and Sampling Operation	15
2.	Triaxial Testing	18
3. & 4.	Slope Failure - Site No. 1	19
5. & 6.	Slope Failure - Site No. 2	2 5
7. & 8.	Slope Failure - Site No. 3	31
9. & 10.	Slope Failure - Site No. 4	38

CHAPTER I

INTRODUCTION

Many highway fill slopes constructed in Eastern Arkansas are susceptible to pocket slope failures. Generally, the failures are relatively small in extent and rarely obstruct traffic. However, they are expensive to repair and create an additional workload on the maintenance force, and the highway user is inconvenienced during the repair. In addition, many of the failures occur on the Interstate System where appearance of right of way is important.

Concern by the Arkansas Highway Department prompted the authorization of Highway Research Project 28 (HRP 28) on September 16, 1970, in cooperation with the Department of Transportation, Federal Highway Administration. The project is a joint effort of the Arkansas Highway Department and the University of Arkansas.

The primary objective of this research is the development of guidelines for design, construction, and maintenance that will, when incorporated, reduce the probability of slope failures on newly constructed
embankments in Eastern Arkansas. Furthermore, it is hoped that the
results of this research will aid maintenance foremen in repairing failed
embankment slopes or in initiating remedial measures on slopes of incipient failure.

Contained in this paper is a detailed review of the progress of the research. It includes a brief description of the geologic and environmental conditions; a description and investigation of four selected embankment failures and laboratory test results of bag samples and undisturbed samples taken at the failure sites; a description of

two slope stability computer programs that will be used for the stability analyses and explanation of their use.

Results of the stability analyses and recommendations of design criteria, construction procedures and maintenance practices will be presented when the research is completed.

Most slope failures in Eastern Arkansas occur on the embankment slopes of levees and highway or railway fills. Few instances of cut slope failures occur for the reason that the terrain of Eastern Arkansas is relatively flat and therefore, by comparison, few deep cuts exist except in the area of Crowleys Ridge.

An inspection trip was made in early spring, 1971, for the purpose of selecting failure sites for detailed investigation. With the help and cooperation of Arkansas Highway Department engineers and personnel a successful tour of the problem areas in Crittenden and Mississippi Counties was completed. Many of the failures inspected occur on fill slopes that have no previous history of instability. Other slopes that have failed and have been repaired in the past have failed again or are in the process of failing. Two aspects common to most of the embankment failures are worth mentioning: (1) the embankments are constructed of a fairly homogeneous clay or silty clay; (2) the slope failures are located at or near the bridge ends.

One of the first steps in this research was to study recent literature dealing with the problem of slope instability. This literature was obtained from the various highway departments, government agencies, and universities. Published and non-published information on case histories of slope failures and corresponding corrective measures are plentiful. However, from the information reviewed, very few instances

Arkansas, especially with respect to the two common characteristics mentioned above. That is, each different physiographic province in the United States seems to produce slope failures peculiar to that region, the geology of the region being directly or indirectly responsible as a contributing factor in the slope instability in many cases. For instance, in the Pierre Hills of South Dakota the Pierre Shale formation has been a severe problem in the construction of highway cuts and fills. Failures have occurred frequently during construction where the shale is highly weathered. Furthermore, progressive weathering of the sound shale has brought about slope failures several years after construction (9)*. Failures of this nature have been a problem in Eastern Kansas also. The slopes have failed five to ten years after construction (10).

In Kentucky and West Virginia most embankment failures occur in side hill fill sections where a fill acts as a barrier to prevent the free drainage of seepage water from the hill, or where the fill is constructed over unstable shale formations (12, 13).

The Georgia Highway Department has had problems with cut slopes in cherty clay and weathered shale formations. During the wet season water enters the slopes through cracks and fissures, creating conditions of instability. The shale bedding and jointing parallel to the face of a slope have contributed to failure in many cases (11).

^{*}Numbers in parentheses refer to corresponding items in the list of References.

Landslide topography presents serious slope stability problems in route location, as evidenced by the Pipe Organ Landslide in Beaverhead County, Montana (14).

In all these instances the geology or physiography of the area plays a direct role in the slope stability problem. In Eastern Arkansas the physiography has an indirect influence. The material economically available for embankment construction is largely limited to the soils of the Mississippi Alluvial Plain. These alluvial soils are not always the most desirable for highway fill construction. Consequently, problems of instability have resulted.

In regions of variable geology slope failures are likely to have unique or individual causes. However, in Eastern Arkansas it appears that the causes precipitating most of the failures are similar, if not identical. Therefore, the results of this research should find wide application in this area of the state.

CHAPTER II

GENERAL PHYSIOGRAPHIC, GEOLOGIC, SOIL AND CLIMATIC CONDITIONS IN EASTERN ARKANSAS

A. Physiography, Geology and Soil (3), (5), (6)

Eastern Arkansas physiographically is a part of the Mississippi embayment of the Gulf Coastal Plain. The Mississippi embayment is bordered by Paleozoic sedimentary rocks on the east, north and west. In Arkansas the western border is the Ozark province (Paleozoic highlands). The embayment itself represents a downwarped trough of the Paleozoic rocks; the trough being filled to its present level with mostly unconsolidated deposits ranging in age from Cretaceous to Recent. The depth of the trough along its axis is greater than 2,500 feet and probably reaches a maximum depth of 3,000 feet.

Cretacous age deposits occupy the bottom of the trough and probably have a thickness of 2,000 feet. The Cretaceous outcrops in small belts along the northwestern limit of the embayment in Arkansas.

Eocene age deposits overlie the Cretaceous to a thickness of 1,000 feet or more. Crowleys Ridge in Northeast and East Central Arkansas represents the major highlands of the embayment region in Arkansas. Eocene deposits make up the core of Crowleys Ridge. The Eocene outcrops in South Central Arkansas and in areas along the western margin of the embayment and along Crowleys Ridge. The Eocene deposits of Crowleys Ridge are partly overlain with sands and gravels of the Lafayette formation which is believed to be Pliocene age. Partly overlying the Lafayette and capping Crowleys Ridge is loess of Pleistocene age. Deposits similar to the Lafayette formation and the loess cap the crests of Paleozoic hills on the western margin of the embayment.

The Mississippi and Ohio Rivers have partly removed the older deposits to depths of 100 to 225 feet below the present surface of the lowlands in Eastern Arkansas. Sediments of Quaternary age have refilled the previously eroded areas to the present surface level.

East from Crowleys Ridge to the Mississippi River the area is almost completely covered with Recent age alluvium. Pleistocene sediments generally underlie the Recent deposits. The area comprises the Mississippi lowlands. The Recent and Pleistocene sediments consist of alluvial silts, loams, clays, sands and gravels.

Between Crowleys Ridge and the Ozark province lie the Advance lowlands. Pleistocene deposits lie directly beneath the surface except in the flood plains of the present streams where the sediments are Recent age. It is believed that the upper Pleistocene sediments are deposits laid down by an ancient Mississippi River which flowed west of Crowleys Ridge and joined the ancient Ohio River which followed the present Mississippi drainage path along the eastern border of Arkansas at the southern tip of Crowleys Ridge. The general sequence of Pleistocene alluvium is a gradation from fine surface silts or loams through compact clays (hardpan) and fine sands to coarse sands and gravels at the base.

The specific areas of investigation for HRP 28 are Mississippi, Crittenden, and Prairie Counties. Embankment slope failures in each of these counties are being studied.

Mississippi and Crittenden Counties both lie within the physiographic region of the Mississippi lowlands. The terrain is nearly level to gently rolling alluvial plain. Elevations range from 200 to 260 feet above sea level. Ponds, swamps, abandoned stream channels, bayous and thick forests were common in the area near the turn of the century. Today most of the forests have been cleared and the land is extensively cultivated. Drainage and flood control measures have since been effected.

The thickness of sedimentary material ranges from 100 to 180 feet.

The surface materials are Recent alluvial sands and clays deposited from the waters of the Mississippi River. A typical boring may reveal a gray clay, loam, gumbo, buckshot*, or silty clay underlain with silts, fine sands and gravels which are underlain with coarse sands and gravels.

The embankments selected for investigation are constructed in soil areas characteristic of the Sharkey Series of the Bottomlands and Terraces Soil Associations in Arkansas. Sharkey soil areas are nearly level, poorly drained and consist of dark gray clays which are often called gumbo. The clays often display a blocky structure and have high shrink-swell potential.

Prairie County lies on the Advance lowlands. The topography in general is a gently undulating and rolling plain. Elevations range from 200 to 240 feet above sea level. The interstream areas are immediately underlain with Pleistocene deposits of silty loams and clays. Large and small tracts of prairie separated by wooded lowlands occupy much of the interstream lands.

Recent alluvium occupies the stream flood plains. Swamps, bayous, etc., characterize the bottom lands.

^{*}Buckshot is a ferruginous clay containing numerous limonite concretions ranging in size from a pinhead to a marble in diameter.

The Quaternary (Pleistocene and Recent) alluvial deposits immediately underlie the surface to depths of 125 to 180 feet. A typical boring may reveal a stratification of loam and red clay underlain with blue clay and fine sand which are underlain with sand and gravel.

The prevalent soil type near Hazen, where an embankment slope failure occurs, belongs to the Crowley Series of the Loessial Terraces Soil Associations. Crowley soils occupy nearly level, broad prairie lands. The surface soil is a dark grayish brown silt loam. The subsoil is light brownish gray clay mottled with red and brownish yellow. Crowley soils are less clayey and lighter colored than the Sharkey soils. Drainage of the soil is poor. The more clayey soils have high shrink-swell potential.

B. Climate (4), (5), (7)

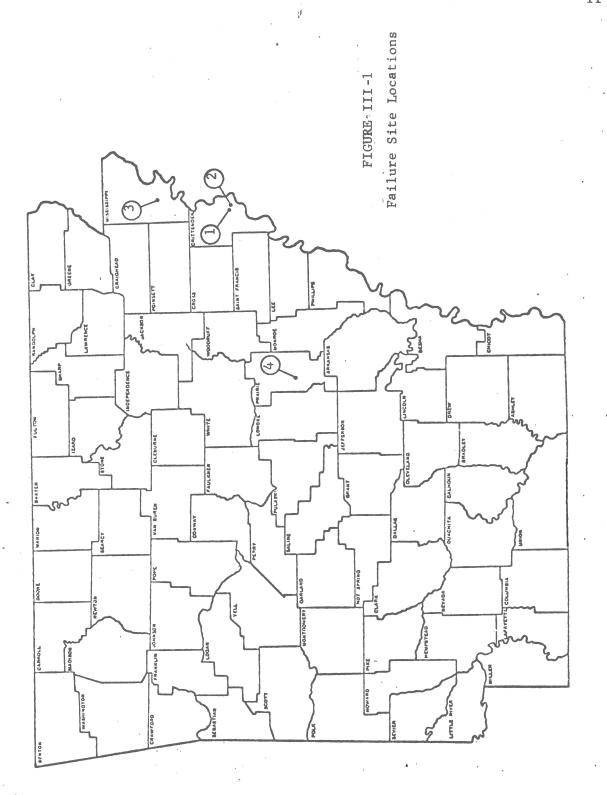
Generally, the climate of Eastern Arkansas is mild. The mean annual temperature ranges from 60° F in Northeast Arkansas to 64° F in Southeast Arkansas. Mean annual precipitation varies from 48 to 52 inches, Northeast to Southeast, respectively.

Winters are short and cool except for brief cold periods when temperatures drop below 0°F. The mean minimum temperature in January ranges from 28°F to 36°F (NE to SE). The average annual snowfall is less than five inches total annual accumulation. Snow accumulations melt quickly and generally last no more than a couple of days. Snow accounts for about one percent of the total annual precipitation. The wet season in Eastern Arkansas occurs in winter, January being the month for greatest amount of rainfall (5 to 6 inches).

The spring and fall seasons are long and mild. Fall is the dry season. Monthly precipitation varies from 2 to 3 inches. Droughts

occasionally occur in local areas. The last moderately severe drought was in 1963. The most severe dry period on record lasted 18 months in 1953-54.

Summers are hot and humid. The mean maximum temperature in July ranges from 92° F to 94° F (NE to SE).


CHAPTER III

PRELIMINARY INVESTIGATION OF SELECTED EMBANKMENT FAILURES

In April of 1971 many failed embankment slopes in Eastern Arkansas were inspected, and four failure sites were chosen for investigation. Figure III-1 shows the location of the sites. Site No. 1 is located at the Club Road and Interstate 55 grade separation in West Memphis; Site No. 2 at the Highway 70 and Interstate 55 grade separation in West Memphis; Site No. 3 at the Highway 181 and Interstate 55 overpass, two miles south of Keiser; and Site No. 4 at the Highway 11 and Interstate 40 grade separation, 3 miles north of Hazen.

The fill approach ramps to the Club Road grade separation were constructed in 1958 under State Job No. 11605 and F.A.P. No. I-55-1(12)4. Foundation soils consisted of moist medium firm brown clay to a depth of 8 feet. The clay was underlain with 10 feet of moist medium loose brown fine sand. The embankments were constructed according to the Standard Specifications adopted by the Arkansas State Highway Commission in 1940. Special provisions were made for embankment material, source of embankment material, embankment surcharge and special compaction of earthwork. The plans called for side slopes of 4:1, front slopes of 2:1, and crown widths of 36 feet. Natural ground elevation was approximately 216 feet above sea level. The maximum height of fill reached an elevation of 234 feet. The select material immediately underlying the pavement was classified as A-2-4(0).

The Highway 70 and I-55 grade separation is the oldest fill being investigated. It was constructed in 1951 as part of State Job No.

11397 and F.A.P. No. U.I.-55-1(5)4. The 1940 Standard Specifications with special provisions for earthwork and borrow pits were followed. The embankments were to be constructed with 3:1 side slopes, 2:1 front slopes, and crown widths of 38 feet. The embankments were raised from a natural ground elevation of 216 feet to a maximum elevation of 233 feet. Foundation soil in the vicinity had the following properties*:

Gray Brown Clay \dots depth = 0-7 feet nat. w. c. = 45%LL = 75%PI = 45%c = 800 psf $\phi = 1 \deg$ Gray Brown Clay depth = 7-10 feet nat. w. c. = 40%LL = 65%PI = 40%c = 600 psf $\phi = 12 \deg$ Gray Brown Clay to Clayey Silt. . . depth = 10-15 feet LL = 60%PI = 35%c = 400 psf $\phi = 13 \deg$

The Highway 181 and I-55 Overpass (Hilton Interchange) was constructed in 1960 under State Job No. 10607 and F.A.P. No. I-55-1(40)43. Plan side slopes were to be 4:1, and the crown widths were to be 44 feet. Natural ground elevation was approximately 229 feet. Maximum

^{*}Properties obtained from the files of the Arkansas Highway Department.

fill elevation was approximately 258 feet. Upgraded embankment material, classified A-2-4(0), was constructed beneath the pavement and shoulders.

The Highway 11 grade separation near Hazen was constructed in 1964-State Job No. 6717 and F.A.P. No. I-40-4(9). The 1959 Standard Specifications with special provisions were used. Borings revealed that the
foundation soil was moist soft brown clay silt (with some fine sand) to
a depth of 15 feet. Underlying the clay silt to a depth of 31 feet were
moist soft reddish brown silt and clay with occasional lenses of fine
sand and silt. Soils in the vicinity had the following properties*:

Borrow Pit No. 2 Soil color: Brown

Classification: A-7-6(35)

% passing no. 200 Sieve = 99%

LL = 77%

PI = 48%

Borrow Pit No. 15. Soil color: Brown-gray

Classification: A-7-6 (39)

% passing no. 200 Sieve = 100%

LL = 94%

PI = 66%

Sta. 1634 on \triangle I-40. Depth = 0-8 feet

Soil Color: Brown-gray

Classification: A-7-6(19)

% passing no. 200 Sieve = 98%

LL = 48%

PI = 28%

The plans called for 3:1 side slopes, 2:1 front slopes and crown widths of 36 feet.

^{*}Taken from Highway Department files.

CHAPTER IV

DETAILED INVESTIGATION OF SELECTED EMBANKMENT FAILURES

An important phase of HRP 28 was to gather pertinent data from the four existing failed embankment slopes in Eastern Arkansas. The plan involved executing a boring and sampling program and performing a laboratory testing program.

Index properties and soil classification were determined from bag samples which were obtained during the inspection trip.

The boring and sampling operation was carried out in June, 1971, with the assistance of Arkansas Highway Department personnel. One standard auger boring was made through the embankment at each failure site. Plate 1 shows the drilling and sampling operation at Site No. 1. Where possible continuous undisturbed samples were obtained with 24 inch long, 2 inch O. D. Shelby tubes. The tubes were cut to the length of soil sample retained; the ends capped and sealed with paraffin; and the tubes stored in damp sawdust. The length of soil retained in the tubes ranged from 3 to 12 inches.

Original construction drawings of the embankments and cross section notes of the failure areas were obtained. Using the cross section data and the STAMPEDE* computer program available at the University of Arkansas, contour maps of the failures were drawn on a CALCOMP 563 pen plotter.

Two triaxial tests were considered for use in determining the strength parameters of the soil samples. . . the unconsolidated undrained test (UU test) and the consolidated undrained test (CU test). The CU test would

^{*}STAMPEDE is an acronym for Surface Techniques, Annotation and Mapping Programs for Exploration, Development and Engineering.

PLATE 1
Drilling and Sampling Operation

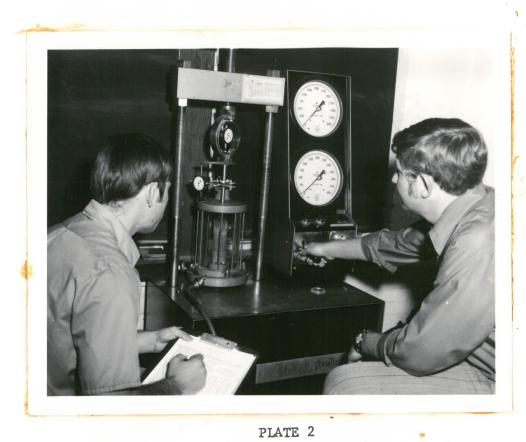
subject the soil specimens to conditions closer to the actual field conditions, i.e., by consolidating a specimen to its in-situ conditions before applying the deviator stress. However, the embankments carry no heavy static loads other than the weight of the fills themselves. The embankments are relatively low. . . three are less than 20 feet high; one is approximately 30 feet high. Therefore, rebound of the soil samples, due to sampling, was considered to be small, and the UU test should give results comparable to those of the CU test. Consequently, the UU test was chosen because it requires less time to perform.

Pore pressure measurements were not made because a total stress analysis will be performed in the slope stability calculations. The state of pore pressures in the field was unknown. For this reason it was decided not to use an effective stress analysis. In addition, many of the soil samples appeared to be only partially saturated, especially at Site No. 2. For an unsaturated soil pore pressure measurements would be difficult to take and would probably be unreliable.

The triaxial test procedure was as follows:

A Shelby tube sample was extruded, and, depending on the length of the sample, from 1 to 3 test specimens were cut from the sample. It was desired to have test specimens of 3 3/4 to 4 inches in length. However, some were as short as 3 inches. After a specimen was carefully trimmed and measured for length, diameter and weight, nonporous plates and top and bottom caps were placed on the ends of the specimen, and a rubber membrane was stretched around the specimen. The test specimen was placed inside a triaxial cell and exposed to an air

confining pressure (σ_3). The range of confining pressure was dependent upon the depth from which the samples were obtained. Soon after the confining pressure was maintained around the specimen, the deviator stress (σ_1 - σ_3) was applied at a 1 to 1.5 percent per minute strain rate. The testing operation is shown in Plate 2. No air or water was allowed to escape the voids. The strain was carried out to well past the peak stress. In most cases the approximate failure angle (α) was recorded. After the test was completed a moisture specimen was obtained.


A computer program was written to facilitate calculations of stress and strain. The program takes the raw test data. . . length, initial area, confining pressure, displacement dial readings, proving ring dial readings, number of test points, sample number, specimen number, location, date of test. . . and calculates the stress-strain values and plots stress vs. strain diagrams on the CALCOMP pen plotter. The program listing is contained in Appendix A. Appendix B presents the resulting stress-strain curves for the test specimens.

The Mohr rupture envelopes which were used to determine the strength parameters, c and ϕ , are obtained in Appendix C.

Failure site descriptions and laboratory test results are presented in the following subsections.

A. Site No. 1

The location is the Club Road and I-55 overpass in West Memphis. Club Road is elevated over the I-55 freeway. The maximum height of the fill approach ramps to the bridge is approximately 18 feet. Two slope failures occur in the north fill near the bridge end, one on the east flank and one on the west flank of the fill. Plate 3 shows the

Triaxial Testing

PLATE 3

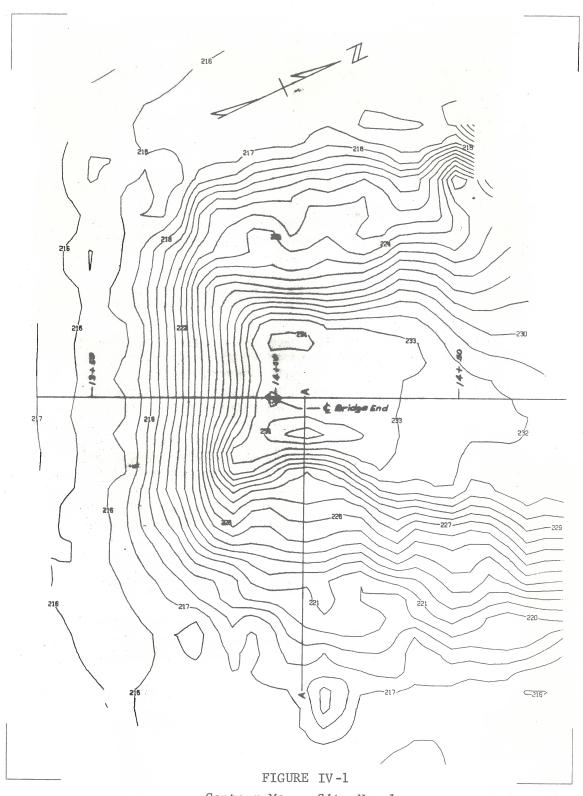
Slope Failure - Site No. 1

PLATE 4

failure on the west side. A closer view of the failure surface is shown in Plate 4.

The failures are relatively small. The length of embankment involved in the movements is approximately 80 feet. The contour map in Figure IV-1 shows the extent of the failures. A typical centerline section of the east flank failure is shown in Figure IV-2.

The embankment is constructed of a brown-gray clay, locally termed gumbo. The dry strength of the clay is very high, i.e., it does not crumble easily under finger pressure. When wet, the clay readily adheres to shoes, tires, etc. Classification tests reveal the soil to be a CH material by the Unified System or an A-7-6 material by the AASHO system.


Boring A was drilled through the pavement in the northbound lane approximately 10 feet from the bridge end. Table IV-1 contains the log of boring.

Laboratory test results of the embankment soils are presented in Table IV-2.

B. Site No. 2

At this site the Highway 70 exit ramp leads from the I-55 NW bound lanes and overpasses the SE connection to Highway 70 in a westerly direction. The failure occurs on the north flank of the approach fill at the east end of the bridge. Plates 5 and 6 are pictures of the failure. The slope appears to have slipped along several failure surfaces, the upper ends of the failure surfaces being almost vertical.

The size of fill, location and extent of slope disturbance are similar to the failures at Site No. 1. Figure IV-3 is a contour map of the failure. A typical cross section is shown in Figure IV-4.

Contour Map - Site No. 1

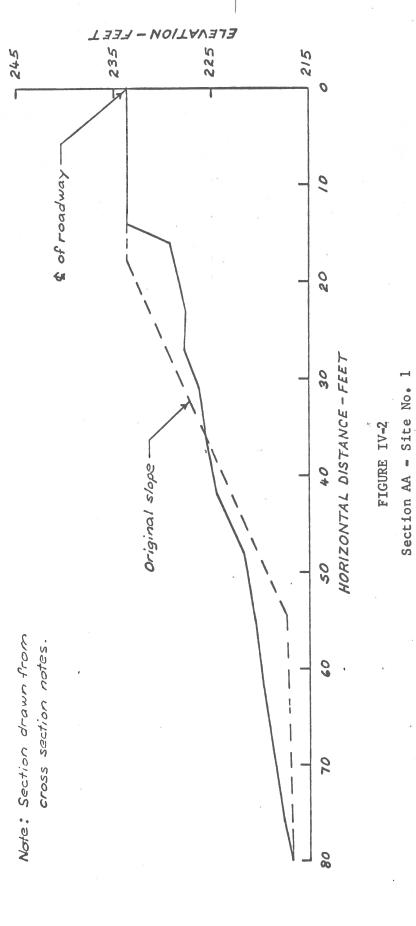


TABLE IV-1

Failure Site No. 1 Log of Boring

Hole A

Club Road and I-55 Overpass

Depth (ft.)	Sample No.	Remarks
0-12	Drilled	Pavement and Selected Material
112-3	A-1	Embankment Material
6-7½	A-2	Embankment Material
8-9½	A-3	Embankment Material
$10-11\frac{1}{2}$	A=4	Embankment Material
12-13½	A-5	Embankment Material (very wet)
14-15½	A-6	Embankment Material and Natural Ground
16-17½	A-7	Natural Ground

NOTE: Pavement Thickness = 7 inches

r3		Υ		· · · · · · · · · · · · · · · · · · ·			
φ (geb)	11.5	6.5	10	12.5	0	13	0
C (psf)	700	750	850	870	1430	1400 2100	2175
$oldsymbol{ ho}_{(\mathrm{psf})}^{\dagger}$	2141 3236	2597 2783 4365	3464 4468	3926 5426	4278 3676	5996 4644	5983 5762
$\rho_{\rm psf}$	288	720 1440 2160	1008 1728	1152 2160	1440 720	1584 720	1872 1152
Degree of Sat.	99	98 91 93	98	100	100 93	100 97	91 98
Dry Unit Wt. (pcf)	81	79 82 83	77 77	80	78 87	87 90	87 90
Wet Unit Wt. (pcf)	114	113 112 113	111 112	114 115	112 116	120 119	115 119
M.C. (%)	41 41	42 36 36	9 † 7	44 43	45 33	38 32	32 33
Specimen No.	1 2	1 2 3	1 2	7	1 2	1 2	1 2
Sample No.	A-1	A-2	A=3	A-4	A-5	A-6	A-7
Depth (ft.)	12-3	6-73	8-92	10-11½	12-13½	14-152	16-17½

TABLE IV-2

Failure Site No. 1 Laboratory Test Results

Gs = 2.77
LL = 71
PI = 3.9
AASHO Class.: A-7-6
Unified Class.: CH

PLATE 5

Slope Failure - Site No. 2

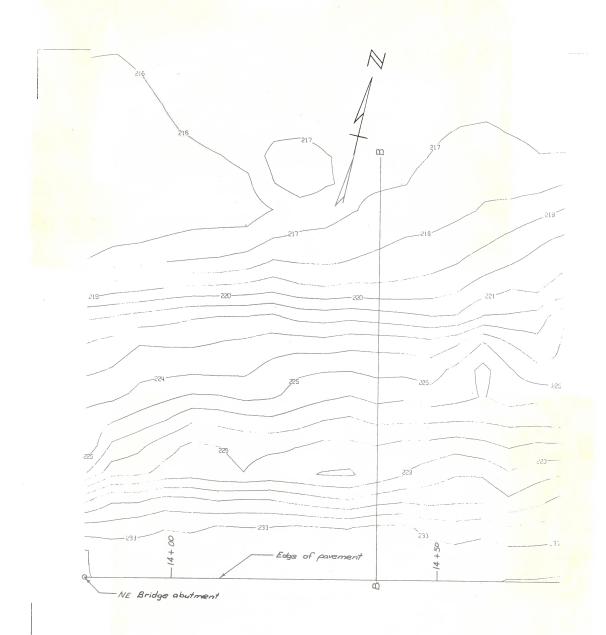
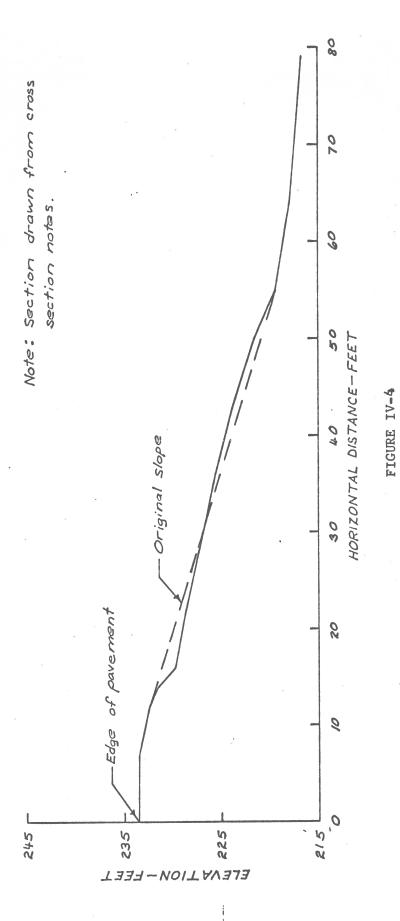



FIGURE IV-3 Contour Map - Site No. 2

Section BB - Site No. 2

The embankment soil is classified as a CH material. Its water content is somewhat lower than the soil at Site No. 1.

Undisturbed samples were obtained from Boring B. See Table IV-3. The boring was drilled on the north shoulder of the roadway, 57 feet from the NE bridge abutment. The estimated water table is at a depth of 16 1/2 feet. Below the water table very little soil would remain in the Shelby tubes.

Many of the triaxial test specimens contained fine sand and/or roots and organic matter. Table IV-4 is a tabulation of the laboratory test results.

C. Site No. 3

The Highway 181 and I-55 grade separation is the location of the largest failure being investigated. I-55 passes over Highway 181. Extensive slope disturbances occur in the NW flank of the fill at the SW end of the bridge in the SW bound lanes. Plates 7 and 8 are two views of the failure surface. The pictures were taken in April, 1971, during the inspection trip. By the time a boring was made in June, 1971, slumping at the top of the slope had advanced the failure surface closer to the highway shoulder. Inspection at the time of drilling revealed further tension crack development at the top of the slope. Figure IV-5 is a typical section of the failure after the later movement.

The maximum height of the fill is approximately 30 feet. The large failure occurs near the bridge end. A smaller disturbance occurs 180 feet SW from the edge of the large failure. The length of embankment involved in the slope distress is approximately 230 feet at the large

TABLE IV-3

Failure Site No. 2 Log of Boring

Hole B

Highway 70 and I=55 Overpass

Depth (ft.)	Sample No.	Remarks
0-2	Drilled	Selected Material
$2-3\frac{1}{2}$	B-1	Embankment Material
4-5½	B-2	Embankment Material
6-7½	B=3	Embankment Material
8-9½	B=4	Embankment Material
$10-11\frac{1}{2}$	B=5	Embankment Material
$12-13\frac{1}{2}$	B-6	Embankment Material
14-15½	B-7	Embankment Material
16-17½	B-8	Embankment Material
$18-19\frac{1}{2}$	B - 9	Embankment Material

NOTE: (a) Estimated Water Table at $16\frac{1}{2}$!

(b) Hole Location: 57' from NE bridge abutment. 3' North of pavement edge.

* Peak shear strength*

			,	,			,			
φ (deg)	12	8	i	1	8	1	8	1	•	8
(jsd)	009	1660*	1433*	1238*	665*	1333**		1150**	1780*	9
(psf)	1649 3715 4775	3896	3587	3484	2482	3389	9079	4051 4859	5431	8
$(\frac{\sigma_3}{\text{psf}})$	432 1440 2160	576	720	1008	1152	1584	2880	1584 2880	1872	9 (1)
Degree of Sat. (%)	96 91 95	83	80	92	87	88	88	66 96	80	8 8
Dry Unit Wt. (pcf)	78 81 81	77	78	84	91	81	84	82 79	76	EE 02
Wet Unit Wt. (pcf)	111 111 112	106	105	113	116	110	112	113 112	104	des des des
M.C. (%)	42 37 38	36	35	35	28	35	33	38	36	35
Specimen No.	3 2 2	1	1	1	-		2	1 2	-	(too short)
Sample No.	B=1	B-2	B-3	B=4	B=5	B=6	B-6	B-7	B=8	B-9
Depth (ft.)	2 = 3 2/2	4-5%	6-73	8-9½	10-113	12-13½	12-13%	14-152	16-17½	18-19½

TABLE IV-4 Failure Site No. 2 Laboratory Test Results

Gs = 2.73 LL = 79 PI = 43 AASHO Glass.: A-7-6 Unified Glass.: CH

Slope Failure - Site No. 3

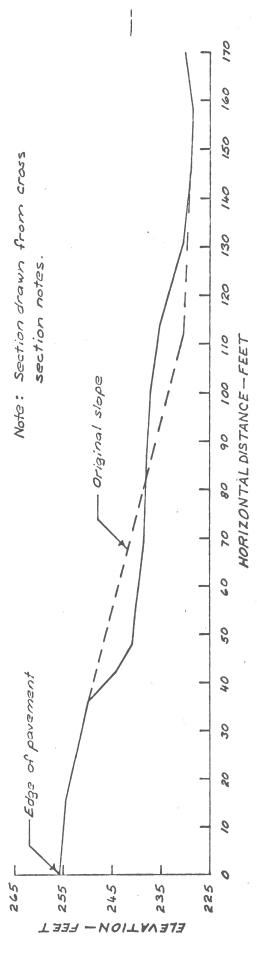


FIGURE IV-5 Section CC - Site No. 3

slide and approximately 160 feet at the small slide. See contour maps in Figures IV-6 and IV-7. The disturbances can be clearly outlined. . . steep failure surface at the top of the slope and bulge at the bottom.

Boring C was drilled on the shoulder of the road near mid length of the large failure. The log of boring is shown in Table IV-5. During the first attempt to drill the hole, water under a pressure head gushed from the hole.

The soil samples taken from the boring were very wet and were at or near 100 percent saturation. See Table IV-6 for tabulation of laboratory test results.

The soil is a CH material. It has characteristics very similar to the soils at Sites 1 and 2. A couple of the Shelby tube samples contained sand seams running the length of the samples.

D. Site No. 4

Highway 11 overpasses the I-40 freeway in a N-S direction. Slope disturbance occurs on the NW "point" of the south fill near the concrete riprap under the bridge. See Plates 9 and 10. The toe of the failure had slipped over the guard rail and onto the shoulder of the road (removed by the time the photograph was taken). The depth of failure is shallow. . . to just below the grass roots. Figure IV-8 is a typical cross section, and Figure IV-9 is a contour map of the disturbance. The maximum height of the slope is approximately 20 feet.

Boring D was drilled 9 1/2 feet from the south end of the bridge, 3 1/2 feet west of the pavement edge. See Log of Boring, Table IV-7.

The embankment soil is a red clay, classified as a CL material. It is not as plastic as the soils at the other sites. Many samples contained

-55+00 Contour Map No. 2 - Site No. 3 -823-

FIGURE IV-7

TABLE IV-5

Failure Site No. 3 Log of Boring

Hole C

Highway 181 and I=55 Overpass

Depth (ft.)	Sample No.	Remarks
0-4	C-1 (Sack)	Wet Sand
5=6½	C-2	Very Wet Embankment Material
7-8½	C=3	Very Wet Embankment Material
9-101/2	C == 4	Very Wet Embankment Material
11-12½	C=5	Very Wet Embankment Material
13-14½	C=6	Very Wet Embankment Material
15-16½	C=7	Very Wet Embankment Material
17-18½	C=8	Very Wet Embankment Material
19-20½	C=9 (Lost Sample)	Very Wet Embankment Material
21-22½	C=10	Wet Embankment Material
23-24½	C-11	Wet Embankment Material
29-30½	C-12	Wet Embankment Material
34-35½	C-13	Wet Embankment Material

(deg)	1	16.5	0	1 1	0	14	6	11.5	2	0	0	10.5
(jsd)	1	450	1454	1720*	1400	850	1450	850	1	2100	2000	700
(psf)	1	1922 3813 5159	3771	5246 3222	3343 4015	3594 4588 5911	4537 5489	4040 5130	2	6218 6624	5921 6640 7292	5475 6531
σ_3	1	720 1440 2160	864	1152 432	576 1296	864 1584 2304	864 1584	1296 2016	1	1728 2448	1872 2592 3312	2592 3312
Degree of Sat.		100 96 97	100	100 100	100 100	96 100 99	100 94	100		100	89 96 94	94 95
Dry Unit Wt.	1	75 83 80	79	83 82	84 80	79 82 80	87 82	83	8	84	8 8 8 8 8 8	81 82
Wet Unit Wt. (pcf)	1	111 115 113	114	118	121 116	112 115 114	119 113	115 116	8 8	117	114 116 116	112 114
M.C. (%)	1	48 38 41	43	43 42	43 45	41 42 42	36 38	44 39	1	39	34 36 35	40 38
Specimen No.	(Sack)	3 2 1		1 2	2	3 2 1	7	2	(lost)	7-7-7	357	1
Sample No.	C=1	C=2	C=3	C=4	C=5	9-0	C=7	0 -8 -8	6 - 0	C-10	C-11	C-12
Depth (ft.)	7- 0	5-63	7-82	9-102	11-122	13-143	15-16½	17-18½	19-20\$	21-222	23-243	29-30½

TABLE IV-6 Failure Site No. 3 Laboratory Test Results

* Average shear strength.

Gs = 2.83 LL = 87 PI = 55 AASHO Class.: A-7-5 Unified Class.: CH

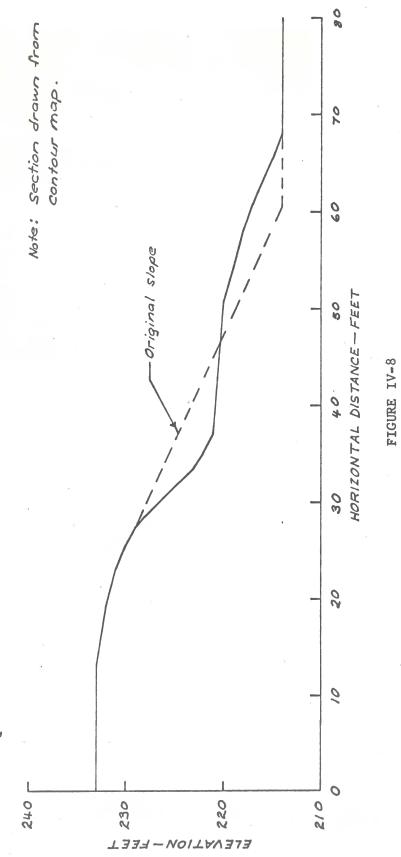


PLATE 9

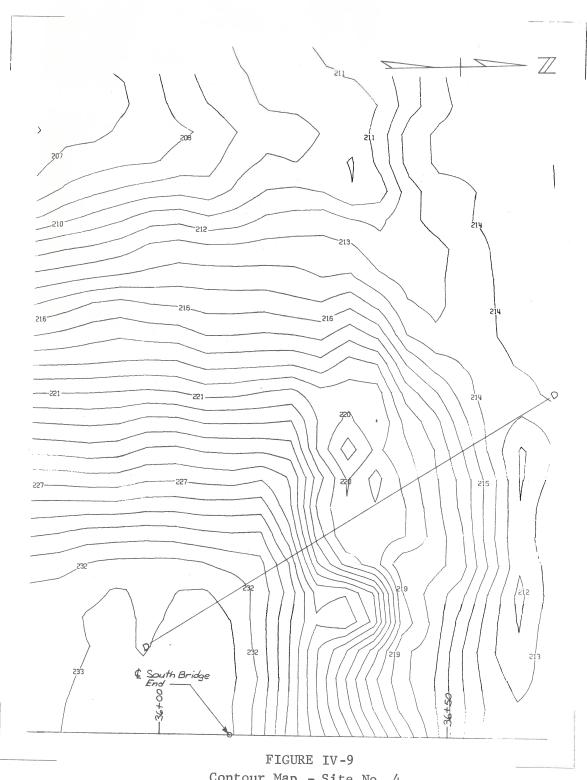

Slope Failure - Site No. 4

PLATE 10

Section DD - Site No. 4

Contour Map - Site No. 4

TABLE IV-7

Failure Site No. 4 Log of Boring

Hole D

Highway 11 and I-40 Overpass

Depth (ft.)	Sample No.	Remarks
0-2	Drilled	Selected Material
2-31/2	D-1	Embankment Material
4-5½	D-2	Embankment Material
6-7½	D-3	Embankment Material
8-9½	D-4	Embankment Material
10-11½	D=5	Embankment Material
12-13½	D=6	Embankment Material
14-15½	D-7	Embankment Material
16-17½	D=8	Embankment Material
18-19½	D=9	Embankment Material
19½-29½	D-10 (Drilled)	Sack Sample taken at 29½ from bit
New hole wa	s located 6 inches	to west of Hole D.
112-3	D-11	Embankment Material

NOTE: Hole Location: $9\frac{1}{2}$ ' from SE bridge abutment. $3\frac{1}{2}$ ' West of pavement edge.

fine sand or silt. The samples ranged from soft at the top of the boring to stiff near the bottom. Slickensides were prevalent in the stiffer clays. Laboratory test results are presented in Table IV-8.

E. Conclusion to Laboratory Testing

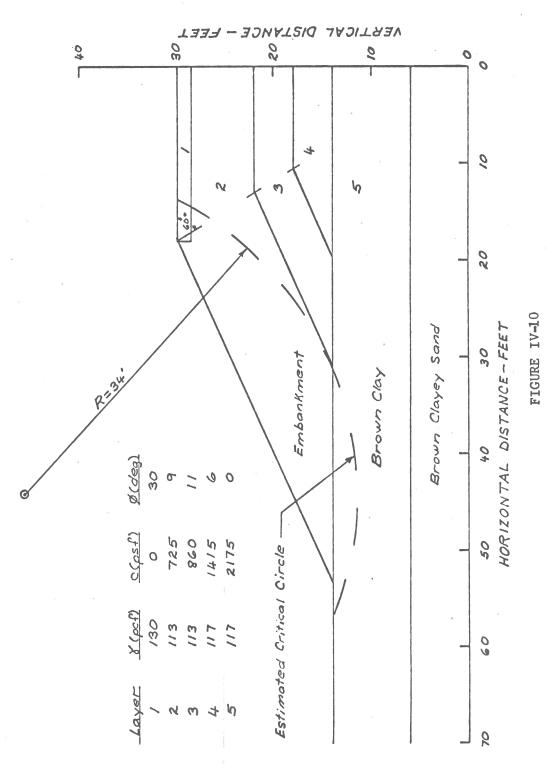
Inspection of the tables of laboratory test results in the preceding subsections reveals somewhat variable results from sample to sample. This can be expected with rolled fill construction because the soil constructed in each lift may have been excavated from several different locations, and each lift may have been compacted to nonuniform densities. Degrees of saturation in particular are inconsistent or unreliable. The problem can be attributed to the specific gravity values used in the calculations. For each site one specific gravity was determined from a bag sample obtained from the exposed failure surface. It is obvious that one specific gravity value is not representative of all the soil in a fill. However, it is useful in determining the range of values for degree of soil saturation in the fills.

Theoretically a fully saturated, purely cohesive, normally consolidated soil has a ϕ angle equal to 0° when tested under unconsolidated undrained conditions. However, many of the test specimens have angles of internal friction greater than 0° , usually on the order of 10-15 degrees. The reason is that many of the test specimens are not 100 percent saturated. Compression of air in the voids of partially saturated soils results in intergranular contact of soil solids and thus increases the ϕ angle from 0° . The magnitude of the ϕ angle is greater than what may be expected for a partially saturated pure clay. The test specimens are not pure clay. Almost all the specimens contain traces of

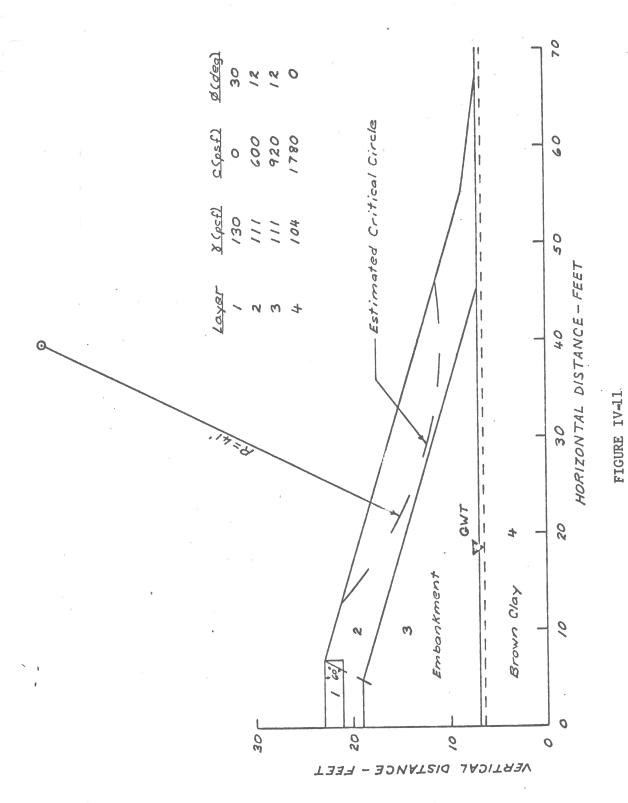
* Average shear strength. ** Peak shear strength.

								T			
φ (deg)	1	4.5	0	9	0	0	0	0	1	8	8
(jsd)	1	300	825	1025	1650	1800	1750	2390	2416*	I I	420**
(psf)	1 1 1	1309 2130	2466 3070	3538 4415	4331 3891	4750 4757	4216 4936	6282 6169 5458	5427 7836	1	1559
(psf)	1 1	576 1296	720 1440	1008 1728	1152 432	1440 720	720 1584	2160 1440 720	1440 2160	1	720
Degree of Sat. (%)	8	88 100	100	100	100	100	100	100 100 100	100	an da	86
Dry Unit Wt. (pcf)	Ou 011	98	95	93 97	88	96 91	97	94 92 96	91 96	99 69	96
Wet Unit Wt. (pcf)	CE CE CE	121 122	123 119	122 123	118 120	125 123	122 126	122 122 124	121 125	20 CE CE	121
M.C. (%)	28	24	30	30	36 36	30	26	30 33 29	33	1	29
Specimen No.	(lost)	1 2	2	1 2	1 2	2	2	1 2 3	1 2	(Sack)	1
Sample No.	D-1	D-2	D=3	D=4	D-5	D=6	D-7	D=8	D=0	D-10	D=11
Depth (ft.)	2=3½	4-5½	6-7½	8-93	10=113	12-132	14-152	16-17½	18-19½	19-29\\ 2	12-3

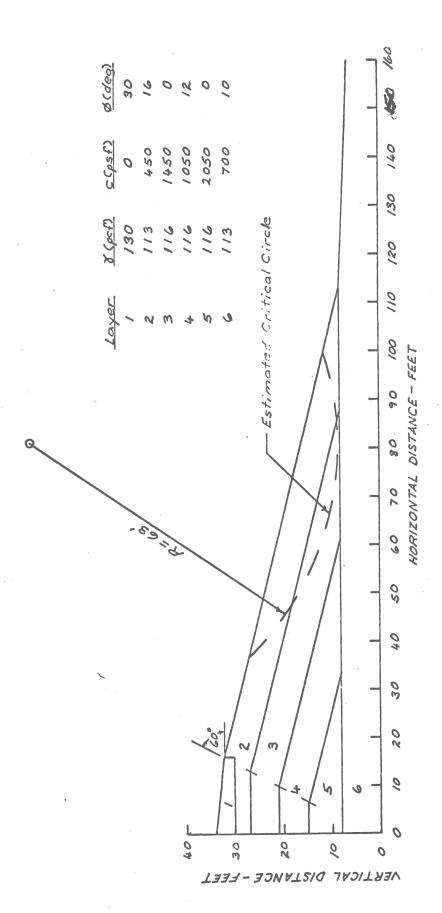
TABLE IV=8


Failure Site No. 4 Laboratory Test Results

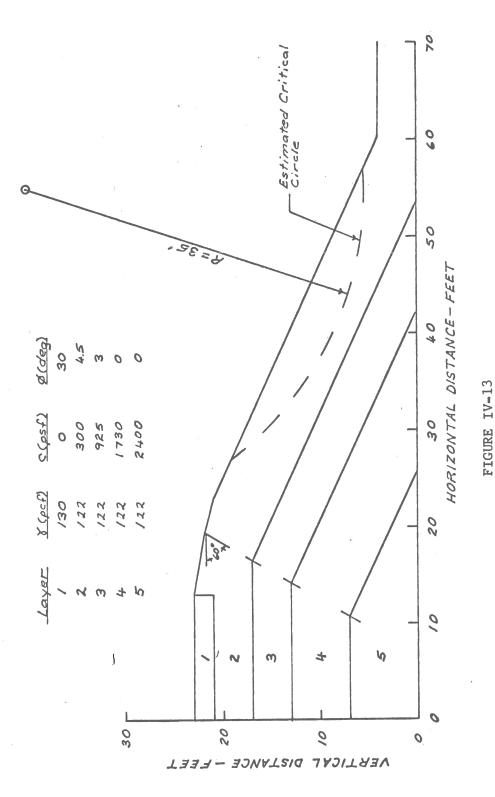
Gs = 2.73 LL = 48 PI = 28 AASHO Class.: A-7-6 Unified Class.: CL silt or fine sand, some being very silty or sandy. Silty and sandy clays may be expected to have ϕ angles ranging from 10 to 15 degrees.


The shear strength of samples taken from each boring shows a definite trend. The strength increases with depth. This can be expected since the basement soils are consolidated under a greater overburden pressure. Furthermore, the near surface soils are exposed to the softening effects of weather.

Figures IV-10, IV-11, IV-12 and IV-13 are generalized cross sections of the four failure sites. Soil property information is generalized and assigned to layers. The problem of determining soil boundaries arose. Soil samples were obtained from a boring made on top of each fill. The soils within a boring can be divided into horizontal layers of representative strength parameters. However, extrapolating the layers horizontally to the surface of the slope would not be representative of the soils beneath the slopes, since those soils are not consolidated to as large an overburden pressure as the soils at an equivalent elevation beneath the top of the fill. Furthermore, the soils directly beneath the slope probably have not been compacted to as great a density during construction. And as previously mentioned the soils underlying the slope are more closely exposed to the effects of weather.


Since no tangible evidence of shear strength is available for the soils that did lie directly beneath the slopes before failure, it is judged that for a more accurate interpretation of the embankment sections the soil boundaries should be positioned as shown in the figures. The soil boundaries within a fill are horizontal to a line which is 60 degrees from the horizontal from the point where the slope begins.

Typical Section Description - Site No. 1



Typical Section Description - Site No. 2

Typical Section Description - Site No. 3

FIGURE IV-12

Typical Section Description - Site No. 4

This line represents the approximate influence of no soil overburden pressure acting above the slope.

The layers underlying the embankments are selected to be horizontal, with the exception of Site No. 4. Comprehensive information for the natural soil strata are not available. However, strength values of samples obtained from the bottoms of the borings are assigned to the foundation soils. The accuracy of the strength values for the basement layers is questionable, especially for the soils underlying the toes of the slopes. In these areas the assigned strength values are probably much higher than the actual in-situ values. However, most of the failures occur within the slopes and do not involve the foundation soils (Site No. 1 is an exception; some adjustments to the cross section shown in Figure IV-10 may need to be considered). Therefore the strengths of the foundation soils will be of no consequence in the stability analyses.

At Site No. 4 the maximum height of the fill from toe of slope to top of slope is approximately 20 feet. However, underlying the toe of the slope is a 4 to 5 feet thick blanket of additional fill material which overlies natural ground. This blanket of fill is considered to be a part of the embankment that rises above it. For this reason the embankment soil boundaries are extended into the fill foundation soils as shown in Figure IV-13.

Layer one in the generalized cross sections is select material.

No test results are available for the material. All that is known is that the select material is sand at each site. The unit weight and angle of internal friction are estimated from this information alone. The accuracy of the estimation is of no consequence since the layer

is not thick, and in most cases the failure surface does not pass through it. In any case the select material does not add any significant shearing resistance in stability calculations because the normal pressure on the failure surface at the shallow depth contributes very little to the " σ_n tan ϕ " term of shear strength (cohesion is very small or equal to zero for the select material).

Estimated critical failure circles are shown in the generalized cross sections. The failure circles are estimated from the exposed failure surfaces.

Slope failure at Site No. 4 in East Central Arkansas may be due to low shearing resistance of the soils underlying the slope. At Site Nos. 1, 2 and 3 in Northeast Arkansas the soil strength appears to be adequate for stability. Conditions other than soil shear strength must be considered. See Chapter V, Section E.

CHAPTER V

SLOPE STABILITY COMPUTER PROGRAMS

Two computer programs are available for use in the stability analyses of the embankment slope failures. The New York State Program, "Computerized Analysis of the Stability of Earth Slopes", is a development of the Bureau of Soil Mechanics, New York State Department of Transportation. The program is a revised and expanded version of two programs currently being used by the Bureau of Soil Mechanics. The other program, LEASE I (Limiting Equilibrium Analysis in Soil Engineering), "A Problem-Oriented Language for Slope Stability Analsis", is one which was developed at the M.I.T. Civil Engineering Systems Laboratory (CESL) and the M.I.T. Soil Mechanics Division. This program is a result of one of the advances made by the Integrated Civil Engineering Systems (ICES) Project being carried out at M.I.T.

Both the New York State and LEASE I programs are adaptable to the IBM System/360 computer. A program listing for the New York State program is contained in Appendix D. LEASE I is written in ICETRAN.

Circular failure surfaces are assumed in the methods of analyses performed by these computer programs. The free bodies above the circular failure surfaces are divided into vertical slices. In accordance with simplifying assumptions driving and resisting moments are determined for each slice. Factors of safety are calculated by determining the ratios of the sums of the resisting moments to the sums of the driving moments, all about trial circle centers.

Where failure occurs within a thin lense or a thin weak layer confined by more competent soils, the computer programs are of little value. Only circular failure surfaces can be analyzed.

For the problem under investigation, where the soils are fairly homogeneous, the New York State and LEASE I programs are satisfactory. Furthermore, these programs can prove to be valuable aids in many problems of highway cut slope and embankment design, if the capabilities and limitations of the programs are understood and if a knowledge of the field conditions is available.

A. New York State Computer Program

The New York State program computes factors of safety against sliding by two methods:

- 1) The New York State Method which is based on the Normal (Fellenius) Method of Slices where the interslice forces are not taken into consideration.
- 2) The Simplified Bishop Equation where only the vertical shear forces acting on the sides of the slices are neglected.

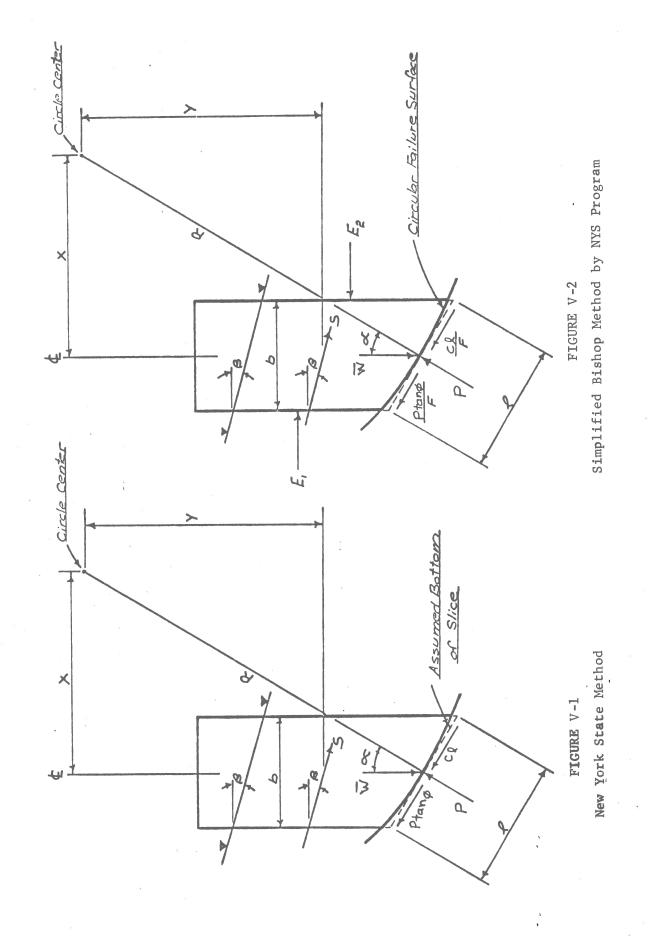

1. The New York State Method (2)

Figure V-1 shows a typical slice with all the assumed forces acting on it. The factor of safety by the New York State Method is derived from:

$$FSNYS = \frac{\Sigma \text{ RESISTING MOMENTS}}{\Sigma \text{ DRIVING MOMENTS}}$$
1

The effective weight $(\overline{\mathbf{W}})$ is assumed to act through the centerline of the slice.

The normal force (P) acting perpendicular to the bottom of the slice is resolved as:

$$P = \overline{W} \cos \alpha$$
 2

where α is the angle that the radius (R) makes with the slice centerline.

The resisting moment due to friction is determined as:

$$PHIMOM = P(tan\phi) R$$
 3

where ϕ is the angle of internal friction at the bottom of the slice.

Slice widths (b) are chosen to be sufficiently thin that a straight line tangent to the bottom of the slice will approximate the failure surface.

The length (ℓ) of the bottom of the slice is then found to be:

$$\ell = \frac{b}{\cos \alpha}$$

And the resisting moment due to cohesion (c) is:

$$CHSMOM = c \ell R$$

The water table makes an angle (β) with the horizontal. The seepage force (S) is assumed to act through the centroid of the submerged part of the slice and parallel to the surface of the water table:

$$S = \sin \beta \gamma_{W} V_{S}$$
 6

where $\sin\beta$ is the hydraulic gradient, γ_w is the unit weight of water, V_s is the volume of the submerged portion of the slice.

The seepage force is resolved into horizontal and vertical components. The driving moment due to the seepage force is found as:

$$SEPMOM = S(sin\beta)x + S(cos\beta)y$$
 7

where x is the horizontal distance from the circle center to the centerline of the slice, and y is the vertical distance from the circle center to the centroid of the submerged portion of the slice.

The small effect of the seepage force on the normal force is neglected.

The driving moment due to the effective weight of the soil is determined as:

$$DRVMOM = \overline{W}x$$

The driving moment due to the weight of the soil becomes negative when the slice is beyond the circle center on the downslope side.

The equation for the New York State factor of safety now becomes:

$$FSNYS = \frac{\Sigma \text{ PHIMOM } + \Sigma \text{ CHSMOM}}{\Sigma \text{ SEPMOM } + \Sigma \text{ DRVMOM}}$$

when equations 3, 5, 7 and 8 are substituted into equation 1.

2. The Simplified Bishop Equation (2)

Figure V-2 is a typical slice used in the derivation of the Simplified Bishop Equation. The side forces, $\frac{E}{1}$ and $\frac{E}{2}$, are assumed to be horizontal, i.e., having no vertical shearing components.

Summing moments about the circle center yields:

$$\Sigma \left[(\overline{W} + S \sin \beta) x + (S \cos \beta) y \right] = \Sigma (T \ell R)$$
 10

T is the mobilized shearing resistance and is expressed by:

$$T = \frac{c}{F} + \frac{P \tan \phi}{\ell F}$$

where F is the Bishop factor of safety.

Substituting equation 11 into equation 10 and solving for F results in:

$$F = \frac{R \Sigma \left[c\ell + P tan \phi \right]}{\Sigma \left[(W + sin\beta) x + (S cos\beta) y \right]}$$
12

The normal force (P) is found by summing forces on the slice in a vertical direction and solving for P:

$$P = \frac{\overline{W} + S \sin\beta - \frac{c \ell}{F} \sin\alpha}{\cos\alpha + \frac{\tan\phi}{F} \sin\alpha}$$
13

From the geometry of the slice:

$$x = R \sin \alpha$$
 14

and
$$\ell = \frac{b}{\cos \alpha}$$

Substituting equations 13, 14, and 15 into equation 12 yields:

$$F-F = \begin{cases} \frac{\sum \left[\frac{cb + (\overline{W} + S \sin \beta) \tan \phi}{F \cos \alpha + \tan \phi \sin \alpha}\right]}{\sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta)\frac{y}{R}\right]} = 0 \end{cases}$$
16

An iterative approach is used to solve the equation since the factor of safety (F) appears both inside and outside the summation.

The Newton-Raphson iterative technique is used and is expressed by:

$$F_1 = F_0 - \frac{f(F_0)}{f'(F_0)}$$

where F_0 is the assumed factor of safety, F_1 is the computed factor of safety, $f(F_0)$ is a function of F_0 that is equal to zero, and $f'(F_0)$ is the partial derivative of $f(F_0)$ with respect to F_0 .

Therefore from equation 16:

$$f(F_{o}) = F_{o} - F_{o} \underbrace{\begin{cases} \frac{cb + (W + S \sin \beta) \tan \phi}{F_{o} \cos \alpha + \tan \phi \sin \alpha} \\ \frac{(\overline{W} + S \sin \beta) \sin \alpha}{\sqrt{\overline{W} + S \sin \beta} \sin \alpha} \end{cases}}_{18}$$

Differentiating equation 18 with respect to F_0 gives:

$$f'(F_{o}) = 1 - \frac{\sum \left[\frac{cb + (\overline{W} + S \sin \beta) \tan \phi}{F_{o} \cos \alpha + \tan \phi \sin \alpha} \right]^{2}}{\sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \right]^{y}}$$
19

Substituting equations 18 and 19 into equation 17 yields:

$$F_{1} = F_{0} \begin{cases} \frac{\sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{cb + (\overline{W} + S \sin \beta) \tan \phi}{F_{0} \cos \alpha + \tan \phi \sin \alpha} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi \sin \alpha}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[(\overline{W} + S \sin \beta) \sin \alpha + (S \cos \beta) \frac{y}{R} \right] - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right] - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi\} \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \sin \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \sin \beta) \tan \phi}{\{F_{0} \cos \alpha + \tan \phi \cos \alpha\}^{2}} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \cos \alpha + \tan \phi \cos \alpha\}^{2} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \cos \alpha + \tan \phi \cos \alpha\}^{2} \right]} - \frac{1}{1 - \sum \left[\frac{\{cb + (\overline{W} + S \cos \alpha$$

Equation 20 is the form of the Bishop Equation used by the computer program.

The procedure followed by the computer is to calculate the factor of safety by the New York State Method first. 0.20 is added to this factor of safety and set equal to F_0 , the assumed factor of safety used in the Bishop Equation. F_1 is calculated by equation 20. If F_1 is not approximately equal to F_0 , the computed F_1 is used as F_0 in the equation and a new factor of safety is computed. This procedure is followed until the new factor of safety is within 0.001 of the previous factor of safety.

α becomes negative for all slices on the downslope side of the circle center. For α between 0 and -90° , $\sin\alpha$ is negative and $\cos\alpha$ is positive. If F_0 is equal to $\tan\phi$ and $\alpha=-45^\circ$, the term $\left[F_0\cos\alpha+\tan\phi\sin\alpha\right]$ becomes zero and renders equation 20 invalid. To eliminate the problem in most cases, the program does not continue when a New York State safety factor of less than 0.6 is encountered (FSNYS + 0.2 = F_0 in the Bishop Equation). Therefore the lower limit for F_0 is 0.8.

B. LEASE I Computer Program

The LEASE I program computes factors of safety by essentially the same methods as the New York State program, i.e., by the Normal Method of Slices and by the Simplified Bishop Equation.

The main differences in the derivations are that seepage forces are not considered, and total weight (W) rather than effective weight (\overline{W}) of a slice is used. Therefore pore pressures at the failure surface are introduced into the derivations.

1. The Normal Method of Slices (1)

Figure V-3 shows a typical slice from which the factor of safety for the Normal Method of Slices is derived.

As before the general equation is:

F.S. =
$$\frac{\Sigma \text{ RESISTING MOMENTS}}{\Sigma \text{ DRIVING MOMENTS}}$$
 21

The resisting moment is given by:

RESIST MOM =
$$R(c_{\ell} + \overline{P}tan\phi)$$
 22

where \overline{P} is the effective normal force on the bottom of the slice and ℓ is $\frac{b}{\cos \hat{\alpha}} = b \sec \alpha$.

The total normal force (P) on the bottom of the slice is:

$$P = \overline{P} + U = W\cos\alpha$$
 24

where U is the pore water force normal to the bottom of the slice and W is the total weight of the slice.

$$U = ubsec \alpha$$
 25

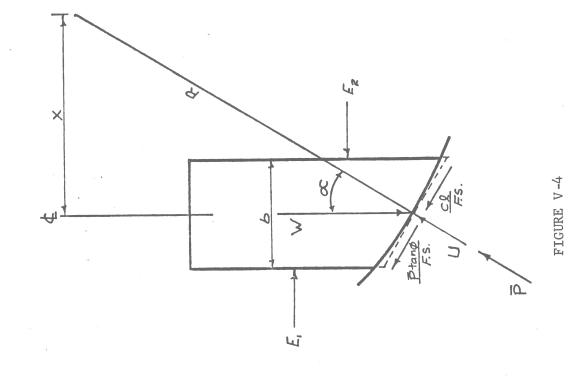
where u is the pore pressure at the bottom of the slice.

Therefore from equations 24 and 25:

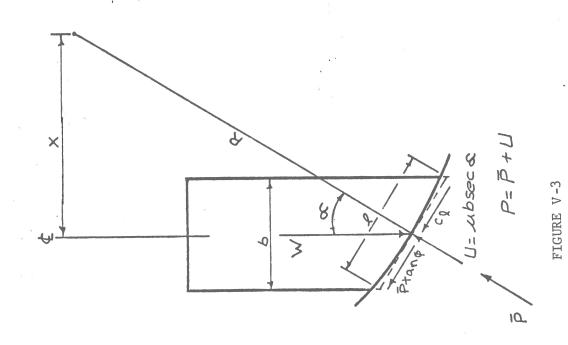
$$P = W\cos\alpha - ub\sec\alpha$$
 26

The resisting moment now becomes:

RESIST MOM =
$$R[cbsec \alpha + (Wcos \alpha - ubsec \alpha)tan \phi]$$
 27


The driving moment is:

DRIV MOM =
$$Wx = WRsin\alpha$$
 28


Substituting equations 27 and 28 into equation 21 gives the factor of safety by the Normal Method of Slices:

F.S. =
$$\frac{\Sigma \left[\text{cbsec} \alpha + (\text{Wcos} \alpha - \text{ubsec} \alpha) \tan \phi \right]}{\Sigma \text{Wsin} \alpha}$$
 29

The radius (R) cancels.

Simplified Bishop Method by LEASE I Program

Normal Method

When water submerges the toe of a slope as shown in Figure V-5, equation 29 must be altered to take into consideration the resisting moment contributed by the standing water. For this case the safety factor becomes:

F.S. =
$$\frac{\sum \left[\text{cbsec}_{\alpha} + (\text{Wcos}_{\alpha} - \text{ubsec}_{\alpha}) \tan \phi\right]}{\sum \left(\text{Wsin}_{\alpha}\right) - F \frac{d}{R}}$$
 30

The weight of standing water on the slope should be included in the total weight of the submerged slices.

2. The Simplified Bishop Equation (1)

Figure V-4 shows a typical slice for the Simplified Bishop Method. The difference in this derivation from the foregoing one is in the evaluation of the effective normal force (\overline{P}) . \overline{P} is found from the vertical equilibrium of the forces on the slice.

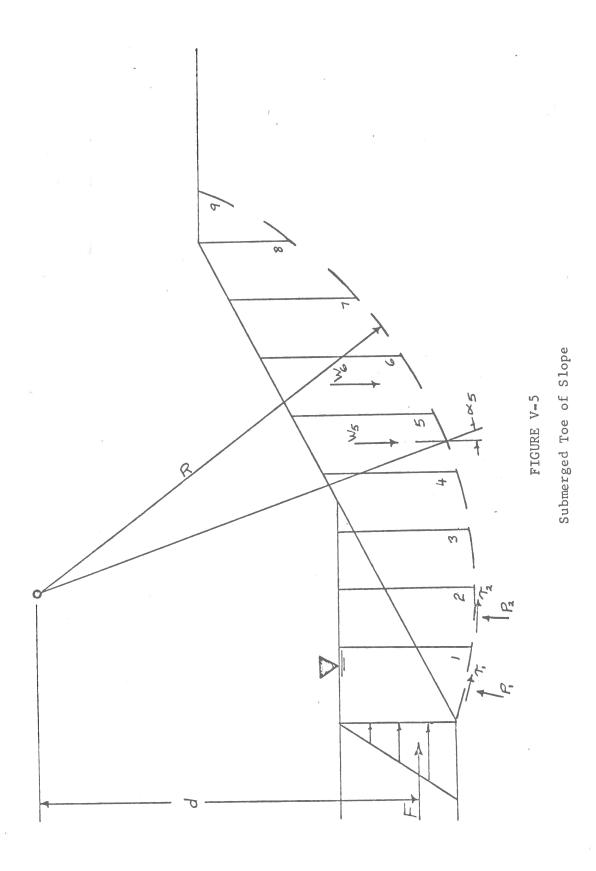
Summing forces vertically yields:

$$W = P\cos\alpha + \left(\frac{c\ell}{F.S.} + \frac{\overline{P}\tan\phi}{F.S.}\right) \sin\alpha$$
 31

Substituting equations 23, 24, and 25 into equation 31 gives:

$$W = ub + \overline{P}\cos\alpha + \frac{1}{F.S.} (cbsec_{\alpha} + \overline{P}tan\phi) \sin\alpha$$
 32

and solving for Presults in:


$$P = \frac{W - ub - cbtan_{\alpha}/F.S.}{\cos \alpha + tan\phi \sin \alpha/F.S.}$$
33

By substituting equation 33 into equation 22 the resisting moment becomes:

RESIST MOM = R
$$\left[cb + (W - ub) tan \phi \right] \frac{1}{cos\alpha + \frac{tan\phi sin\alpha}{F.S.}}$$
 34

From equations 28 and 34 the Bishop factor of safety results:

F.S. =
$$\frac{\sum [cb + (W - ub) tan \phi] \frac{1}{cos\alpha + \frac{tan \phi sin \alpha}{F.S.}}}{\sum W sin \alpha}$$
 35

C. Some Comments on the New York State and LEASE I Programs (1), (8)

In addition to the assumptions stated in the derivations several other assumptions are inherent. These are:

- 1) The shearing resistance is fully mobilized along the circular failure arc.
- 2) The factors of safety of the cohesive components of strength are equal to those of the frictional components of strength.
 - 3) The factor of safety is the same for all slices.

Either total stress or effective stress analysis may be used with either program by inputting the appropriate strength parameters, i.e., \overline{c} and $\overline{\phi}$ for effective stress analysis and c and ϕ for total stress analsis.

The methods of analyses used are simplified methods and therefore the computed factors of safety contain some error. The error is introduced because the statics of the slices is not completely satisfied. The greatest source of error arises from the method of evaluating the normal force at the bottom of the slice. In the Simplified Bishop Method where the vertical shear forces on the slice are ignored, the error introduced in most cases ranges from less than 2 percent (usually) to 7 percent of the most accurate solution. However, the error is much greater in the Normal Method of Slices where all side forces are ignored. In extreme cases it can be as little as 40 percent of the most correct solution. The large errors usually occur where the slopes are submerged and the total weight of a slice is used together with pore pressures on the failure surface. In this case the error can be minimized by using buoyant weights. However, a significant amount of error remains due to the approximate method for computing the normal force.

D. Operation and Use of the New York State and LEASE I Programs

An example problem is used to illustrate the operation and use of the New York State and LEASE I programs. See Figure V-6. The example is analogous to the embankment slopes under investigation. The embankment is 20 feet high and has a slope of 2.5 horizontal to 1 vertical. The ground water table is one foot below the original ground surface. After a boring, sampling and testing program, the embankment soil properties are evaluated. The embankment section is divided into layers or zones of characteristic soil properties. These properties are shown in Figure V-6.

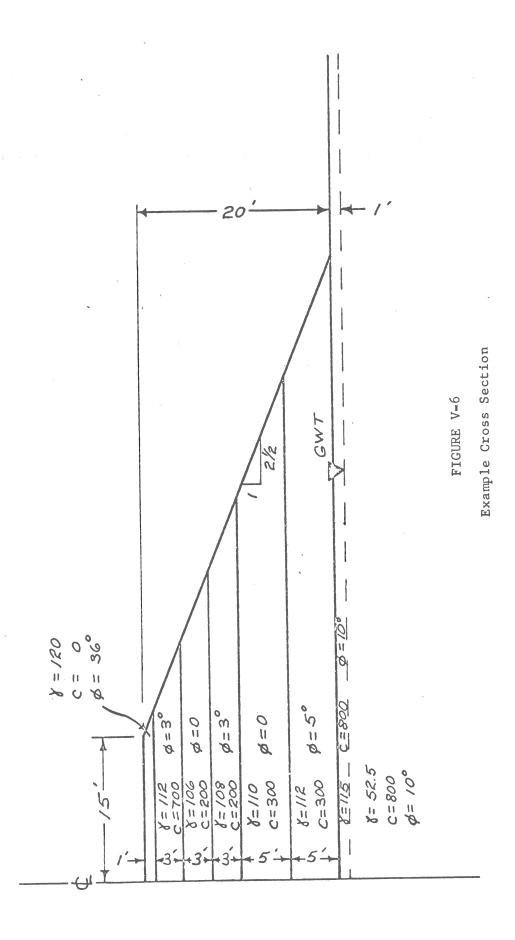

1. Example Analysis by the New York State Program (2)

Figure V-7 shows the cross sectional and soil property information that must be considered in the New York State Program. The soil boundary and water table lines are described by a series of numbered straight lines. The soil boundary lines are denoted by the circled numbers (e.g., 1) and the water tables lines by the squared numbers (e.g., 1).

The number of soil boundary lines is limited to 50. The number of water table lines is limited to 10.

The straight line segments must be numbered in specific order, i.e., no soil line should have a lower number than the soil line directly above it, and all soil and water table lines should be numbered from left to right.

The straight line segments are defined by a coordinate system with the highest point on the embankment section designated as the origin (see Figure V-7). Therefore, the horizontal coordinate increases in a down-slope direction. The vertical coordinates are zero or negative.

Soil materials are described by assigning soil properties to the soil lines that lie directly above the soil. The soil properties that must be assigned to each soil line are the effective unit weight (buoyant unit weight when below water table) in pounds per cubic foot, the unit cohesion in pounds per square foot, and the angle of internal friction in degrees.

To prevent the program from analyzing trial circles to an infinite depth a soil of great strength beneath the embankment must be input (soil underlying soil line 16 in Figure V-7).

Table V-1 defines the variables used to describe the cross section and soil properties in the computer program.

An initial circle center of the failure surface must be described before a search for minimum factor of safety can be made. This initial circle center should be a reasonable estimate of the critical circle center. Its coordinates are referenced to the same origin as the soil lines and water lines. The initial circle center is described by HORZON, the horizontal coordinate of the circle center in feet (25 feet in example, see Table V-2), VERTCL, the vertical coordinate in feet (0 feet in example), and RADIUS, the radius of the circle in feet (20 feet in example). No part of the failure surface can be higher than the circle center. Therefore, in most cases the vertical coordinate is zero or positive.

The New York State Program searches for the minimum factor of safety by varying the circle radius and the location of the circle center. (The program determines slice widths from the geometry of the cross section and the radius of the trial circle. See Reference 2.) After the factor of safety has been found for the initial radius,

TABLE V-1
Cross Section and Soil Data

Name	Explanation
SOILHL(I)	Leftmost horizontal coordinate of soil line I, in feet.
SOILVL(I)	Leftmost vertical coordinate of soil line I, in feet.
SOILHR(I)	Rightmost horizontal coordinate of soil line I, in feet.
SOILVR(I)	Rightmost vertical coordinate of soil line I, in feet.
WEIGHT(I)	Effective unit weight of soil beneath soil line I, in pounds per cubic foot.
PHI(I)	Angle of internal friction of soil beneath soil line I, in degrees.
COHES(I)	Cohesion of soil beneath soil line I, in pounds per square foot.
WATRHL(I)	Leftmost horizontal coordinate of water table line I, in feet.
WATRVL(I)	Leftmost vertical coordinate of water table line I, in feet.
WATRHR(I)	Rightmost horizontal coordinate of water table line I, in feet.
WATRVR(I)	Rightmost vertical coordinate of water table line I, in feet.

the initial radius is increased by RADINC, the radius increment in feet (2 feet in example), and a new factor of safety is computed. This process is continued until a safety factor greater than the previous one is computed (note reason for underlying soil of great strength). The previous safety factor, which is the minimum, is stored.

The horizontal coordinate (HORZON) of the initial circle center is then increased by GRID, the grid system increment in feet (2 feet in example), and the minimum safety factor at the new circle center location is computed by increasing the radius as described above. The horizontal coordinate is again increased by GRID until the computed minimum factor of safety at the new circle center is greater than the previous minimum factor of safety.

The search now goes back to the original circle center and proceeds similarly in the opposite direction, i.e., decreasing the horizontal coordinate by GRID and calculating the minimum safety factors at the new circle centers.

After a minimum factor of safety is located on the horizontal line, the vertical coordinate is increased by GRID, and a search for minimum safety factor is made on the new horizontal line, starting at a horizontal coordinate equal to that of the critical circle previously located. The procedure continues until the minimum safety factor on a horizontal line is greater than the minimum on the horizontal line one grid increment below. The initial vertical coordinate is not decreased during the search to prevent the program from analyzing circles which are inconsistent with actual failure circles. Therefore, the initial

vertical coordinate should be somewhat less than that of the anticipated critical circle center.

The search pattern is complete when a minimum safety factor is less than all the minimums at the 8 grid points surrounding it. If the critical circle center happens to be at the elevation of the initial circle center, the program will search only five surrounding locations since the search never proceeds in a downward direction from the original circle center.

The area of the search pattern is limited to 20 grid increments in the horizontal direction and 10 grid increments in the vertical direction.

It is possible for the critical circle center to lie outside the search area of the initial circle center. However, more than one initial circle center may be input. In the initialization data NUMCEN defines the number of starting centers (one in the example).

Other initialization data required are:

NSL the number of soil boundary lines. (16 in the example)

NWL the number of water lines. (one in the example)

INPUT option to print out input data, 0 - No input data will be output. 1 - All input data will be output. (one in the example)

IALLES option to print out all safety factors,

0 - Only minimum safety factors will be output.

1 - All computed safety factors will be output.

(one in the example)

ITER option to search for minimum safety factor,
0 - Search on New York State safety factor.
1 - Search on Bishop safety factor.
(one in the example)

Table V-2 summarizes all the input data required for analyzing the Example Problem with the New York State Program. The table explains where the data is to be punched on the computer cards. The correct order of data is as shown in the table, i.e., initialization data-first, cross section and soil data--second, etc.

If NUMCEN had been two, an additional Initial Circle Data card would have been required to describe the second initial circle center.

Appendix E contains the output for the Example Problem by the New York State Program.

The first information listed is a reprint of the input data.

This information could have been omitted by inputting a "0" for

INPUT on the Initialization Data card.

Below the input data all computed factors of safety by both the New York State and the Bishop methods are printed. The coordinates and radius of all the trial circles analyzed are noted also. The option not to print this information could have been made by inputting "O" for IALLES in the Initialization Data.

Finally, the minimum factor of safety (1.258) and the coordinates and radius of the critical circle are printed. The search was by the Bishop Factor of Safety. Had a search by the New York State Factor of Safety been desired, a "O" could have been punched for ITER on the Initialization Data card.

Looking closer at the final results of the program, it can be seen that the minimum factor of safety equal to 1.258 is erroneous. The critical circle center coordinates (HORZON = 25', VERTCL = 38') and radius (RADIUS = 58') describes a circular arc which does not intersect the described embankment surface twice, i.e., a portion of the

TABLE V-2

NYS Card Input Data for Example Problem

Initialization Data (Each term occupies two columns - FORMAT 612)

\leftarrow																		
cards ==	7F10.4)	COHES	0	0	700	700	200.	200	200.	200.	300	300	300	300	800	800	800	5000
No.	- FORMAT	PHI	36.	36.	3.	ů,	•0	•0	°°		•0	•0	5.	5.	10.	10.	10.	*07
NUMCE N	. columns	Æ IGHT	20.	20.	112.	.12.	• 90:	.06	.08	.08	.10.	10.	.12.	112.	115.	115.	52.5	• 06
ITER 1	s ten	WE		-	П		1		1		_		1		,			
IALLFS 1	(Each term occupies ten columns	SOILVR	0	.1.	-1-	• 4-	-4-	- 7 -	-7-	-10.	-10.	-15.	= 15.	-20.	-20.	-20-	-21.	 35.
INPUT 1		SOILHR	•	2.5	2.5			7.5	7.5	5.	5.	7.5	7.5	.0	•0	0		70.
NWL 1	Data	S01				1(1(-	.—I	2	2		'n	2	2	7	7	7
NST 16	on And Soil	SOILVL	0	0	110	-1.	-4-	-4-	-7-	7	-10.	-10.	15.	-15	-20.	-20-	-21	35
	Cross Section And Soil	SOILHL	-15.	•0	-15.	2.5	-15.	10.	-15.	17.5	-15.	25.		37.5	1 5.	50.	15.	-15.

No. cards = No. soil lines

continued next page

TABLE V-2 (continued)

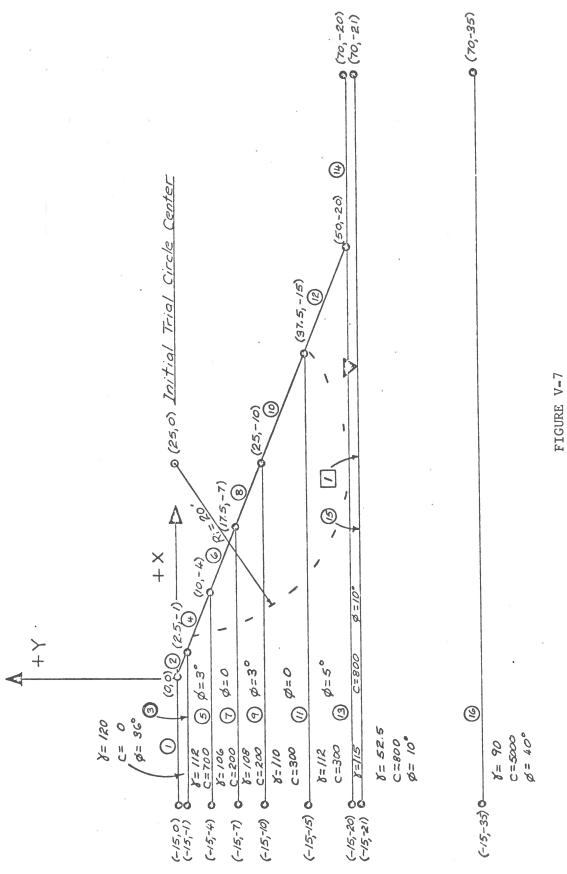
NYS Card Input Data for Example Problem

Water Table Description (Each term occupies ten columns - FORMAT 4F10.4)

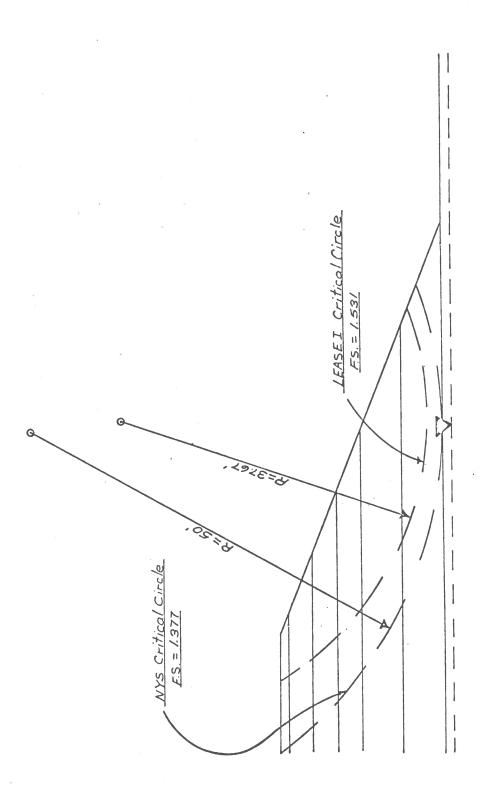
	No. cards = No. water lines		
	No. card	RMAT 5F10.4	GRID 2.
WATRVR	-21.	columns - FO	RADINC 2.
WATRHR	70•	le Data (Each term occupies ten columns - FORMAT 5F10.4)	RADIUS 20.
WATRVL	-21.	(Each term	VERTCL 0.
WATRHL	≈15•	Initial Circle Data	HORZON 25.

No. cards = No. initial circle

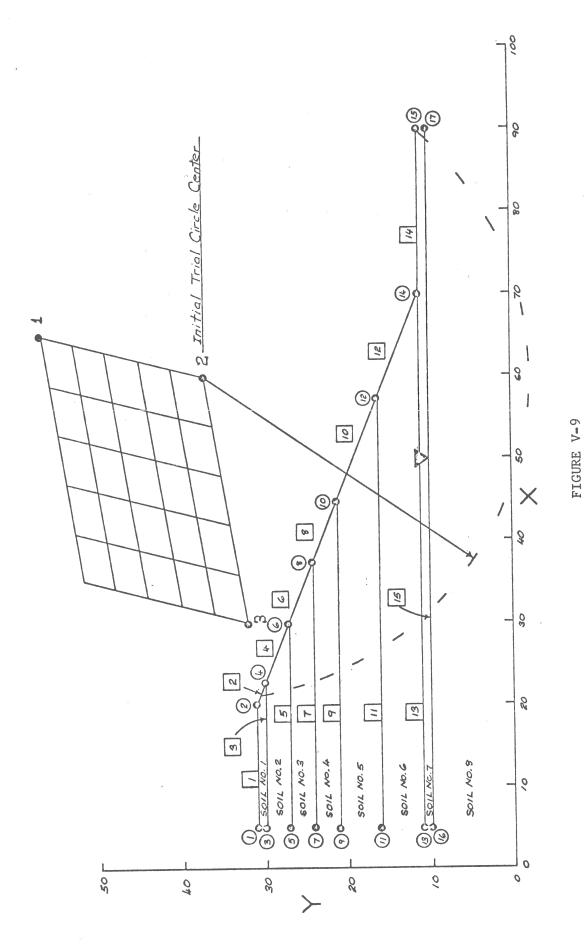
centers


circular arc lies to the left of the embankment section that was input. (The problem cannot occur in the LEASE I Program.) This portion of the circular arc lies in an area which offers no weight or shearing resistance because no soil was input in this area. The problem could be remedied by extending the soil lines farther horizontally to the left. However, the correct minimum safety factor and critical circle can be found by searching through the printed factors of safety in the output. (This is one advantage of having all computed factors of safety output.) The lowest factor of safety for which the critical circle intersects the described embankment surface twice is 1.377. The critical circle is shown in Figure V-8.

2. Example Analysis by the LEASE I Program (1)


Figure V-9 illustrates the example embankment section as described for the LEASE I program. The problem is defined by an X-Y coordinate plane. The X-direction must be horizontal and positive. The Y-direction must be positive upward.

The cross **se**ction is described by arbitrarily selected points connected by straight line segments representing the embankment surface and soil boundaries.


Each point is assigned a unique identifying number (Circled number, see Figure V-9) and must have X and Y coordinates. There are no restrictions on the set of identifying point numbers except that none may exceed 17258 in magnitude. Each identifying point and its coordinates must be input on a separate card. The Point Data may be input as follows:

Section Description by NYS Program

NYS And LEASE I Critical Circles FIGURE V-8

Section Description by LEASE I Program

POINT DATA (See Table V-3)

where a_i is the identifying number of the point and X_i , Y_i are the coordinates of the point.

Each line segment must be assigned an identifying number (squared number in Figure V-9). Line identifying numbers may duplicate point identifying numbers.

Line Data may be input as follows:

LINE DATA

where a_i is the identifying number of the line, b_i is the identifying number of the point at either end of the line, c_i is the identifying number of the point at the other end of the line, and d_i is the identifying number of the soil lying directly beneath the line (e.g., soil No. 2 beneath line 4 in Figure V-9).

One restriction to the Line Data is that no line should be input that is not immediately underlain by soil. This problem occurs with overhanging slopes. A remedy is to treat the void beneath the overhang as a soil with no weight or strength.

Vertical lines that are segments of the embankment surface must be input. The fourth item of information on the Line Data cards (d_i), designating the soil underlying the line, is left blank in this case. Vertical lines that represent only soil boundaries (not surface boundaries) within the embankment should not be input since this information is unnecessary for proper analysis.

Another limitation is that the line having the highest Y-coordinate must be a segment of the embankment surface.

"Soil" is defined as the material underlying the line segments.

This material is normally soil but may be concrete, air, etc.

Soil Data input required are unit weight and the strength parameters, ϕ and c. If effective stress analysis is used, pore pressure information is also required. See Reference 1 for discussion of how pore pressures are handled.

For total stress analysis the Soil Data input is:

SOIL DATA

where i_i is the identifying number for the soil used on the Line Data cards, a_i is the unit weight in force per distance cubed, b_i is the cohesion in force per distance squared, and c_i is the friction angle in degrees.

Two options are available for controlling the trial circle centers.

In the first a grid for centers of trial circles is specified. The grid is described by the following input:

GRID $1 \times_1 \times_1 2 \times_2 \times_2 3 \times_3 \times_3 a$ b

where 1, 2 and 3 are the defining points of the grid shown on Figure V-9, X_i , Y_i are the coordinates of the labeled points 1, 2 and 3, "a" is the number of increments from point 2 to point 1, and "b" is the number of increments from point 2 to point 3.

The initial center where factors of safety are computed is at point 2. The grid is covered by rows parallel to line 2-1 with the first center in each row on line 2-3.

The second option makes use of a search outline. A search is made for the factor of safety that has a smaller value than at any adjacent trial center.

The card input is:

BEGIN AT X Y a b

where X, Y are the coordinates of the initial center and "a", "b" are the size of step in the X-direction and the Y-direction, respectively.

The search is identical to that described in the New York State Program. The step sizes "a" and "b" are equivalent to GRID in the New York State Program. However, in the LEASE I search when a safety factor is found which is smaller than at the adjacent trial centers, the step sizes "a" and "b" are divided by four and the search repeated using the smaller step sizes. It should be mentioned that this search procedure may locate a relative minimum rather than an absolute minimum factor of safety. Therefore, a grid should be used in the initial analysis to locate the approximate area of the critical circle center. The search routine should then be used to refine the analysis.

Individual circles may be analyzed by using the Do Only command:

DO ONLY X Y r

where X, Y are the coordinates of the circle center and r is the radius of the circle. Any number of these commands may be input consecutively.

Stored slice data are used in the computations of factors of safety for each trial circle. See Reference 1.

At each trial circle center the first circle analyzed has a maximum radius. This maximum radius is the largest radius that will intersect the described embankment surface twice. The radius is successively
shortened by:

$$R = 0.06(R_{max} - R_{tan})$$
 36

where R_{max} is the largest radius, and R_{tan} is the radius that will just touch the slope surface.

The smallest circle analyzed is slightly larger than necessary to just touch the slope because of the magnitude of the decrements to the radius.

Options are available for restricting the maximum or minimum radius. See Reference 1.

The total input required to analyze the Example Problem is shown in Table V-3. Note in Figure V-9 and in Table V-3 that the water table is treated as soil boundary and the buoyant unit weight of the soil underlying the water table is used. Also note that a grid is specified for trial circle centers.

The first card of the data deck must contain the statement, LEASE, punched in columns one through five. The last card must contain FINISH, punched in columns one through six.

TABLE V-3

LEASE I Card Input Data for Example Problem

LEASE POINT DATA	٠.	• •	•					•	•		card. Statement begins col. 1. card. Statement begins col. 7.
1 5 2 20 3 5 4 22.5 5 5 6 30 7 5 8 37.5 9 5 10 45 11 5 12 57.5 13 5 14 70 15 90 16 5 17 90	31 30 30 30 27 27 24 24 21 16 16 11 11 10 10		•	•	•	•	•	•	•	1st 2nd	cards = No. points term occupies cols. 7-10. term occupies cols. 11-15. term occupies cols. 16-20.
LINE DATA		•		•				•		One	card. Statement begins col. 7.
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 16	4 4 6 8 8 10 10 12 12 14 14 15	1	٠	•	•			•	•	1st 2nd 3 rd	cards = No. soil lines term occupies cols. 7-10. term occupies cols. 11-15. term occupies cols. 16-20. term occupies cols. 21-25.

(continued on next page)

TABLE V-3 (continued)
LEASE I Card Input Data for Example Problem

SOIL	DATA		•			One card. Statement begins col. 7.
2 3 4 5 6	120 112 106 108 110 112 115 52.5	0 700 200 200 300 300 800 800	36 . 3 0 3 0 5 10	• •		No. cards = No. soils. 1st term occupies cols. 7-10. 2nd term occupies cols. 11-15. 3rd term occupies cols. 16-20. 4th term occupies cols. 21-25.
GRID	1 65	57	2 60	37	3 30	32 5 5 One card. Statement begins col. 7. Each term spaced by two blank cols.
FINI	SH					One card. Statement begins col. 1.

All cross section and soil data input prior to GRID, BEGIN AT, or DO ONLY may be input in any order.

The LEASE I output for the Example Problem is contained in Appendix F.

The input data is printed out first. The second information printed is the ORDERED LINE ARRAY and the BNDS ARRAY. This information has to do with the organization of cross section data that may have been input out of order. The operation is necessary before factors of safety can be computed. See Reference 1.

Computed factors of safety at each trial center are printed next.

The factors of safety by both the Normal and Bishop Methods are recorded.

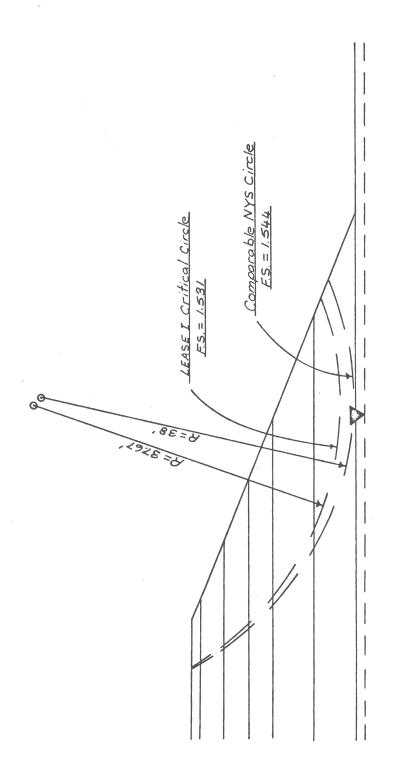
The minimum factor of safety by the Bishop Method (1.531) and the coordinates and radius of the critical circle are reported at the end of the print out. The critical circle is shown in Figure V-8.

3. Some Comments on the Example Problem

The minimum factors of safety and critical circles computed by the two programs appear not to compare favorably. See Figure V-8. However, the discrepancy arises from the different search methods used by the programs. The NYS Program used a search routine whereas the LEASE I Program used an explicitly described grid. The LEASE I search analyzed circles at trial centers which were more widely spaced. The trial circle centers were located at the grid intersections which were spaced four feet parallel to line 2-3 and six feet parallel to line 2-1. The NYS search covered a larger area, and the spacing of trial circle centers was much closer. . . two feet. It should be noted that the NYS critical circle center lies outside the LEASE I grid search area. This is the reason a lower factor of safety was computed by the NYS program.

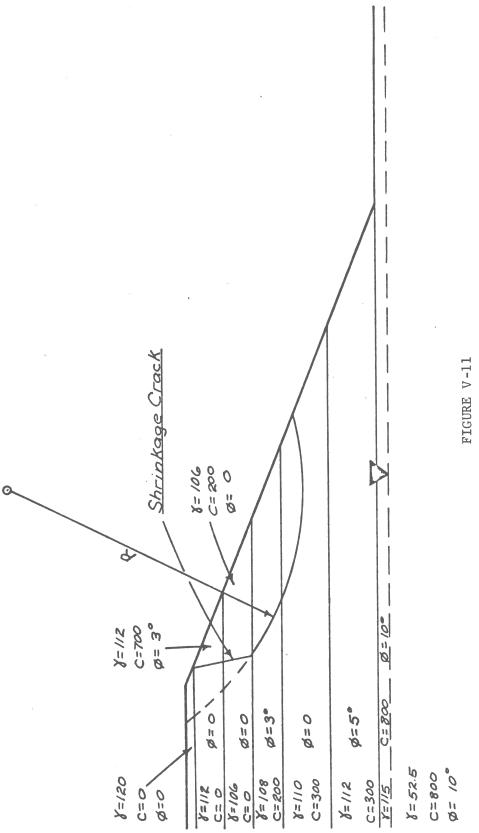
A better comparison of the two programs results if a NYS trial circle is made to almost match the LEASE I critical circle. A comparable circle is contained in the printed output of the NYS Program.

See Appendix E. Figure V-10 shows the comparison. The NYS safety factor (1.544) compares well with the LEASE I safety factor (1.531).


If the circles were made to exactly match, the computed factors of safety would be almost identical.

Further explanation of the development and use of the slope stability computer programs may be consulted in References 1 and 2.

E. Considerations for the Analysis of Embankment Slopes in Northeast Arkansas


An interesting result of the computer analyses of the Example Problem is that both programs found the slope to be "safe" even though low strength values were input for the embankment soils. The strength values for the embankments under investigation are considerably higher than those in the Example. . . yet these embankment slopes failed. The evidence suggests that something more entered into the mechanics of failure, other than low strength soils.

Observations indicate that the soil in Northeast Arkansas is not volumetrically stable, i.e., the soil undergoes shrinkage and cracking during the dry season. Crack development at the top of an embankment slope is the probable first step in the mechanism of failure. During the wet season the cracks fill with water. The shearing resistance along the lengths of the cracks is very small or zero. The water in the cracks exerts a hydraulic pressure against a potential failure plane. The soil at the base of the cracks becomes saturated and softens. If the crack development is deep, the hydraulic force great, and the

Comparison of NYS and LEASE I Analyses

FIGURE V-10

Shrinkage Crack Consideration in Analysis

soil softened enough, failure ensues. For a reasonable stability analysis to be made on the embankment slopes of Northeast Arkansas, this failure mechanism should be kept in mind.

Figure V-11 shows a possible way of considering the problem for analysis with the computer programs. A crack is input as a soil boundary in the cross section, the depth of crack being estimated from cross sections of the failed slope. The soil lying behind the crack is assigned unit weight but no strength values. Figure V-11 shows the critical circle that may result. The strengthless soil within the dashed portion of the critical circle would act as a driving force in the computation of the minimum safety factor. This would partially compensate for the lack of a hydraulic force. The actual failure surface would follow the crack down to the solid portion of the critical circle. To prevent circles from being analyzed which are inconsistent with actual failure surfaces, a zone of strengthless soil of specified width behind the crack may need to be input. See Figure V-12. The width of this zone may be the estimated width of crack development at the top of the slope.

The considerations outlined above should result in computed factors of safety which more closely represent the conditions at the times of failure. The procedure and results of the stability analyses on the failures being studied will be presented in a subsequent paper.

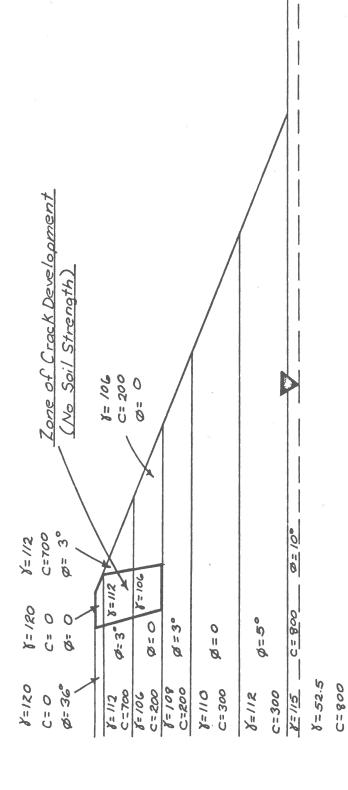


FIGURE V-12 Further Refinement of Analysis

00/ =Ø

REFERENCES

- 1. Bailey, William A., and Christian, John T., "A Problem-Oriented Language for Slope Stability Analysis", Soil Mechanics Division and Civil Engineering Systems Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, 56 pages, April, 1969.
- 2. Leary, Robert M., "Computerized Analysis of the Stability of Earth Slopes", New York State Department of Transportation, Bureau of Soil Mechanics, in cooperation with the Bureau of Electronic Data Processing, 119 pages, October, 1970.
- 3. Stephenson, Lloyd W., and Crider, Albert F., "Geology and Ground Waters of Northeastern Arkansas", Department of the Interior, U.S.G.S. Water-Supply Paper 399, pages 13-14, 22-29, 100-122, 129-132, 174-178, 224-228, 250-253, 1916.
- 4. "Climates of the States: Arkansas", U.S. Environmental Data Service, U.S. Department of the Commerce, June, 1969.
- 5. "Soil Survey of Mississippi County, Arkansas", U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the Arkansas Agricultural Experiment Station, June, 1971.
- 6. "Soil Association Map, State of Arkansas", U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the University of Arkansas Agricultural Experiment Station, April, 1959.
- 7. "Climatic Summary of the United States. Arkansas, North of the Arkansas River", U.S. Department of Agriculture, Weather Bureau, 1930.
- 8. Whitman, Robert V., and Bailey, William A., Stability and Performance of Slopes and Embankments, Soil Mechanics and Foundations Division, American Society of Civil Engineers, pages 529-536, August, 1969.
- 9. Bruce, Richard L., and Scully, John, "Manual of Landslide Recognition in Pierre Shale, South Dakota", in cooperation with U.S. Department of Transportation, Bureau of Public Roads, South Dakota Department of Highways, South Dakota Geological Survey, December, 1966.
- 10. "Design Considerations for Slopes in Clay Shales", Kansas Highway Commission, unpublished study, 1970.
- 11. "Slope Study, Gordon Whitfield Counties", Division of Materials and Tests, State Highway Department of Georgia, Interdepartment Correspondence, 1963-64.

- 12. Deen, Robert C., and Havens, James H., "Landslides in Kentucky", Division of Research, Kentucky Department of Highways, September, 1968.
- 13. Long, Donald C., and Stinnett, Barney C., "Landslide Recognition and Control on West Virginia Highways", West Virginia State Road Commission, paper, February, 1969.
- 14. Williams, Dennis A., and Clark, Charlie H., "Landslide Research",
 Materials Division, Montana Highway Commission, in cooperation with U.S. Department of Transportation, Federal Highway
 Administration, Bureau of Public Roads.

APPENDIX A

Stress-Strain Computer Program Listing

NOTATION

XLO = length of test specimen in inches.

A0 = initial area of test specimen in inches squared.

SIGMA3 = confining pressure in pounds per square inch.

NPTS = number of test points.

SAMP = sample number.

SPEC = specimen number.

LOC = location of test site.

DATE = date of test.

DIALST = displacement dial readings in 0.001 inches.

DIALPR = proving ring dial readings in 0.0001 inches.

DELTAL = change in specimen length in inches.

E = vertical strain in inch per inch.

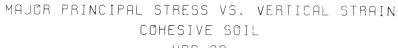
A = corrected area in inches squared.

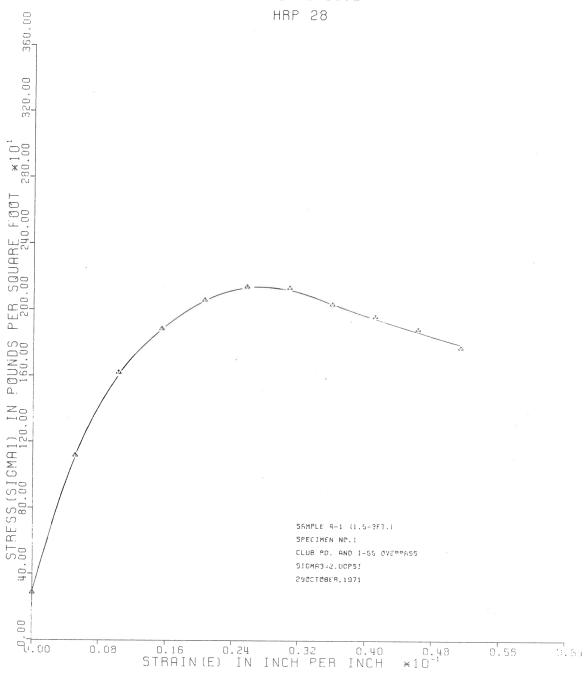
P = axial load in pounds.

DEVSTR = deviator stress in pounds per square inch.

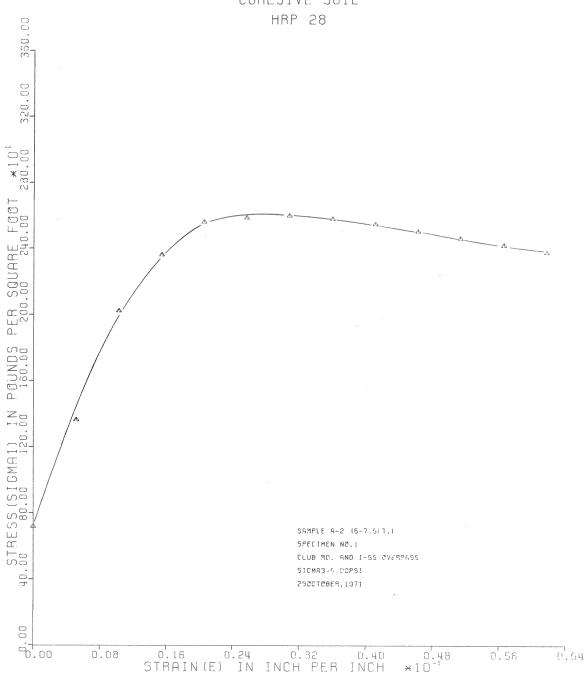
SIGMAl = major principal stress in pounds per square foot.

UPIIJVS IN EFFECT NOID, ERCDIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP *OPIIJVS IN EFFECT* NAME = MAIN , LINECNT = 50 *STATISTICS* SJURCE STATEMENTS = 34, PROGRAM SIZE = 8040 *STATISTICS* NO DIAGNOSTICS GENERATED

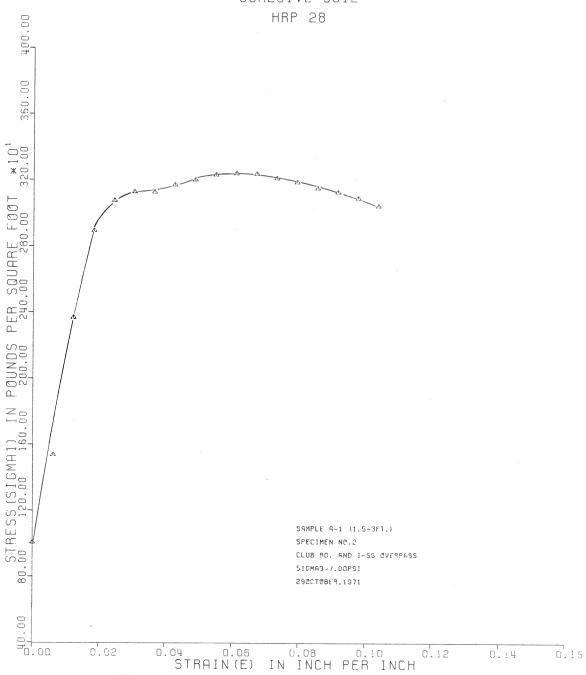

AGE

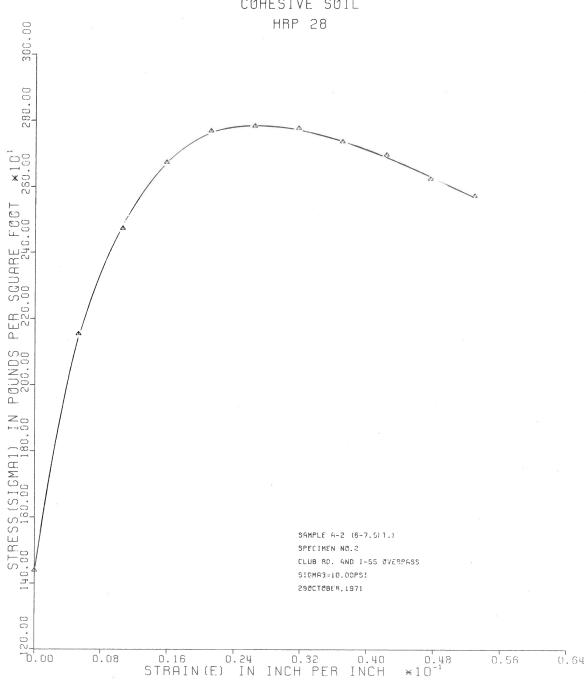

72033 20/25/40	SUBROUTINE GRAPH(XARRAY, YARRAY, NPTS, IBUF, LOC, SAMP, SPEC, SIGMA3, DATE	DIMENSION IBUF(1500), XARRAY(102), YARRAY(102), LOC(8), DATE(5), SAMP(6), SPEC(6)			CALL SCALETIARRATY SOUNTISELY CALL ASSISTANCE SOUNTISELY (NDTC1) VABBAVIOROSCALY (NDTC1) VABBAVIOROSCALY	O CO O CARBANNING CONTROL OF CONT		STRESS VS. VERTICAL	,0,13)										AAP
H DATE = 72033	YARRAY, NPTS, IBUF, LOC,	RAY(102), YARRAY(102),		TS+1)	AIN(E) IN INCH PER IN	ESS(SIGMAI) IN POUNDS	NPTS, 1,-1,2)	SYMBOL(1.06,10.0,0.14,42HMAJOR PRINCIPAL STRESS VS.	YMB0L(3.09,9.7,0.14,13HC0HESIVE SOIL,0.0,13)	++0HHKF 28+U-U+67	SAMP, 0.0, 24)	,SPEC,0.3,24)	07. SIGMA3.0.0.2	07,3HPSI,0.0,3)	, DATE, 0.0,20)				NOID, EBCUIC, SOURCE, NOLIST, NODECK, LOAD, NOMAP
СААРН	OUTINE GRAPH(XARRAY,	DIMENSION IBUF(1500), XAR	= 500	SCALE(XARRAY, 8.0, NPTS, 1)	CALL AXIS(0.0,0.0,26HSTR	CALL AXIS(0.00,0.00,040HSIRESS(SIGMAI) IN P	CALL LINE(XARRAY, YARRAY, NPTS, 1,-1,2)	CALL SYMBOL(1.06,10.0,00.	•							PLUT(12.0,0.0,-3)	~		CT* NOID, EBCDIC, SOURCE, NOLIS
FORTRAN IV G LEVEL 20	SUBR	DIME	LDEV=50	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALL	RETURN	END	EFFECT* EFFECT*
FORTRAN	1000	0002	0003	0004	9000	1000	8000	6000	0010	0012	0013	0014	0016	0017	0018	0019	0700	0021	NI SNOILAD*

STATISTICS NO DIAGNOSTICS THIS STEP O

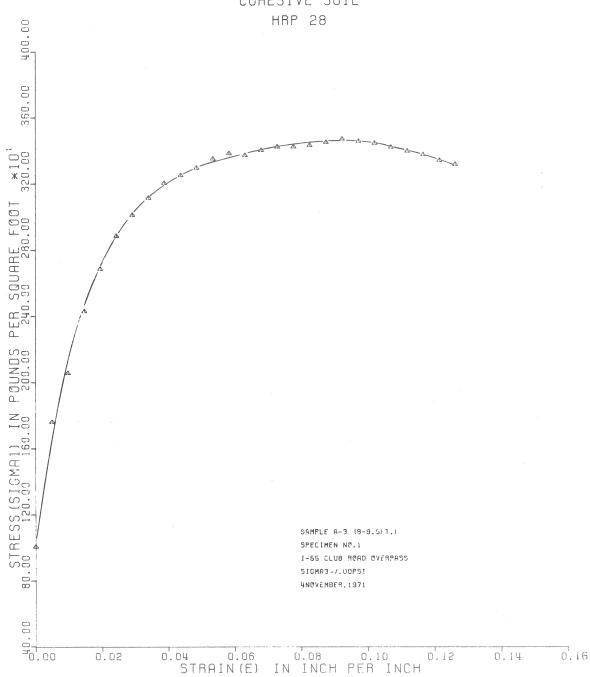

APPENDIX B

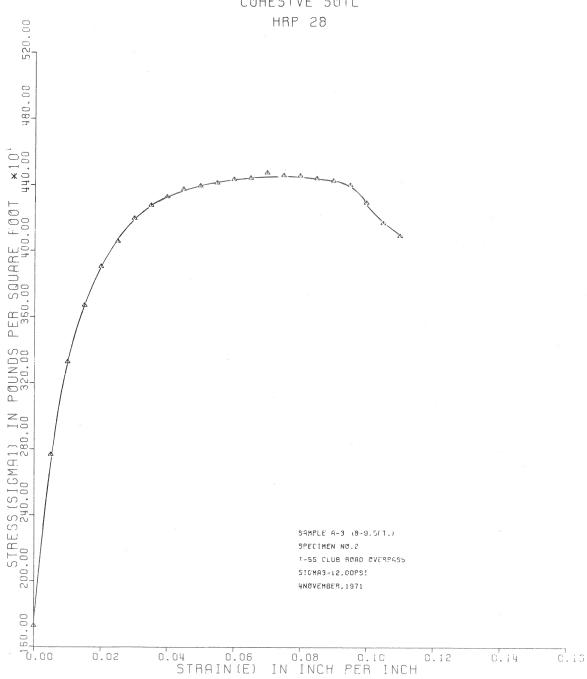
Stress-Strain Curves

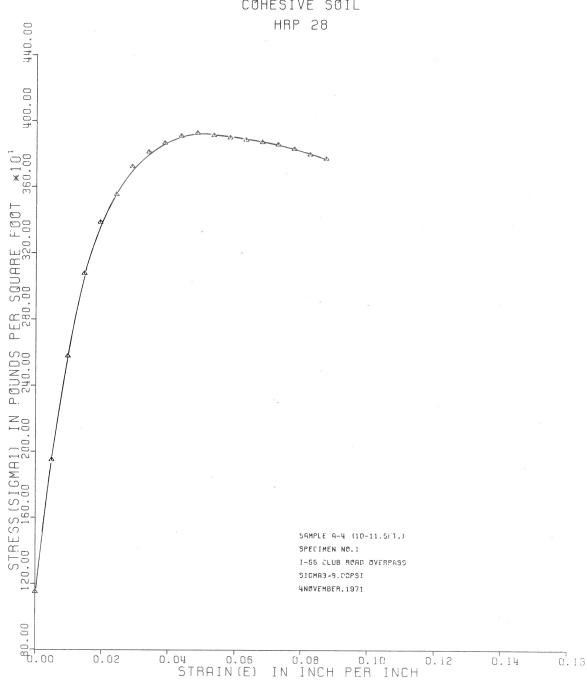


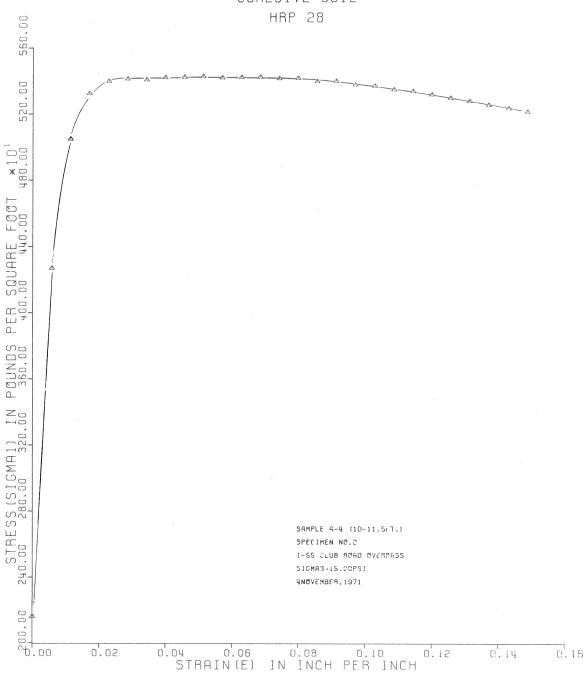

MAJOR PRINCIPAL STRESS VS. VERTICAL STRAIN
COHESIVE SOIL

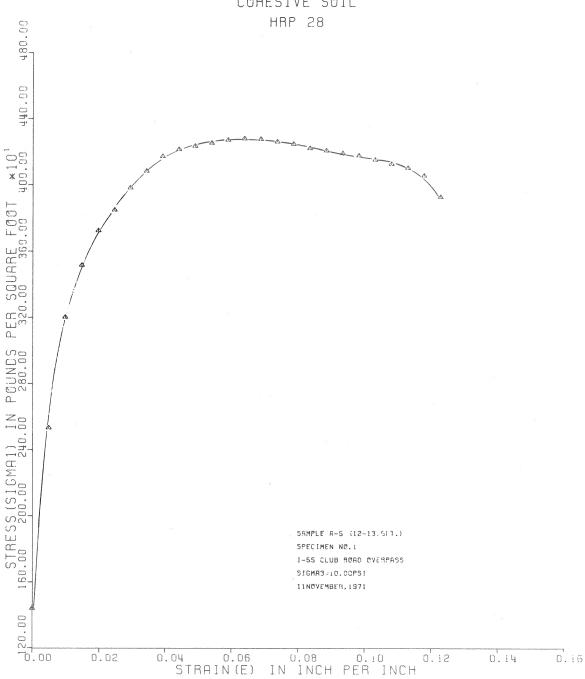

MAJOR PRINCIPAL STRESS VS. VERTICAL STRAIN
COHESIVE SOIL

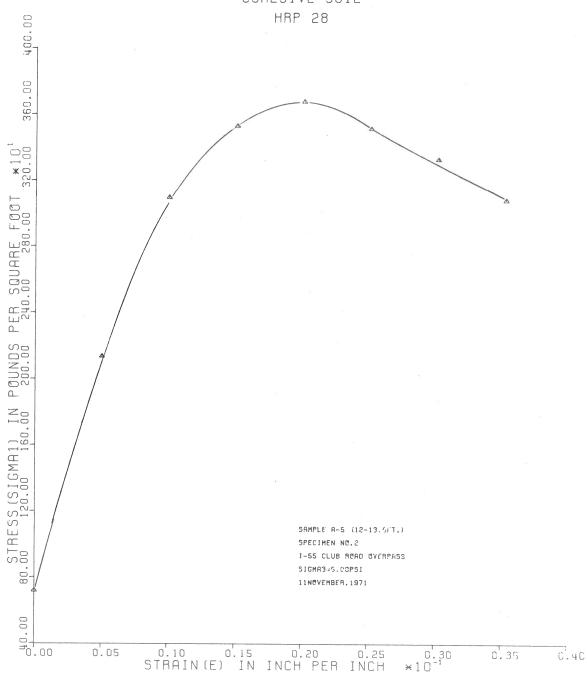


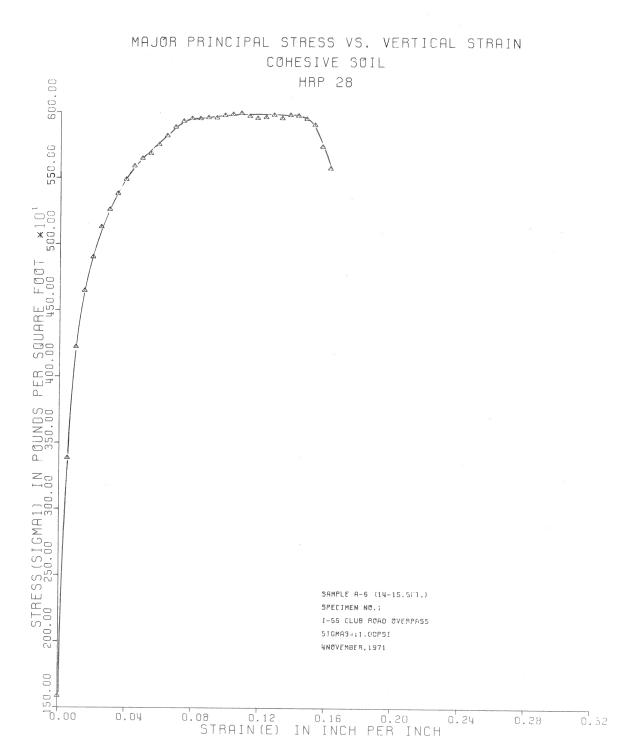


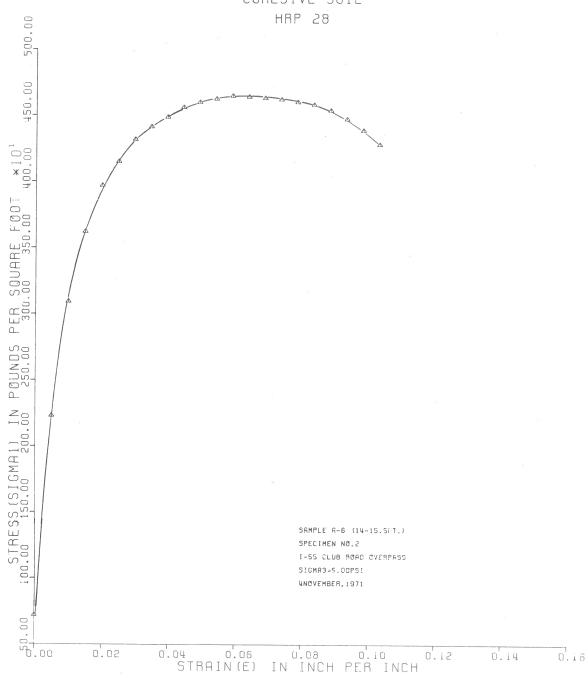


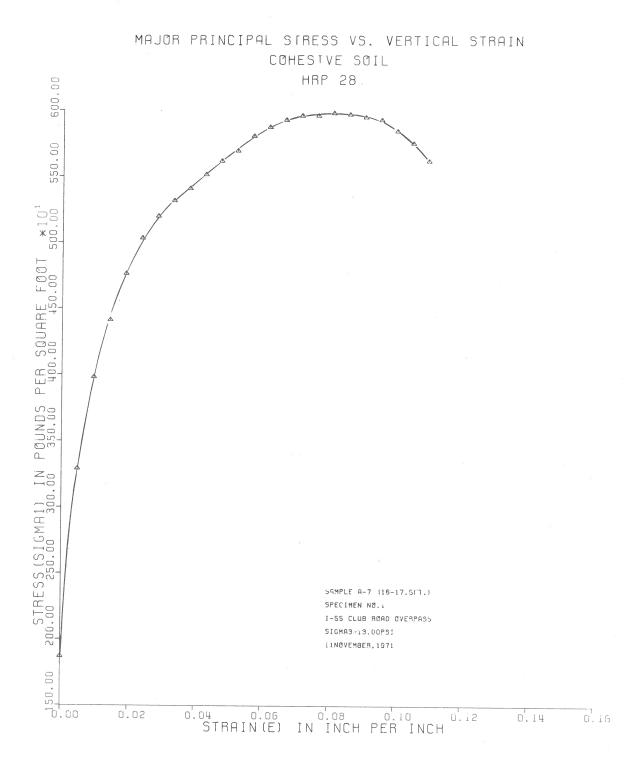


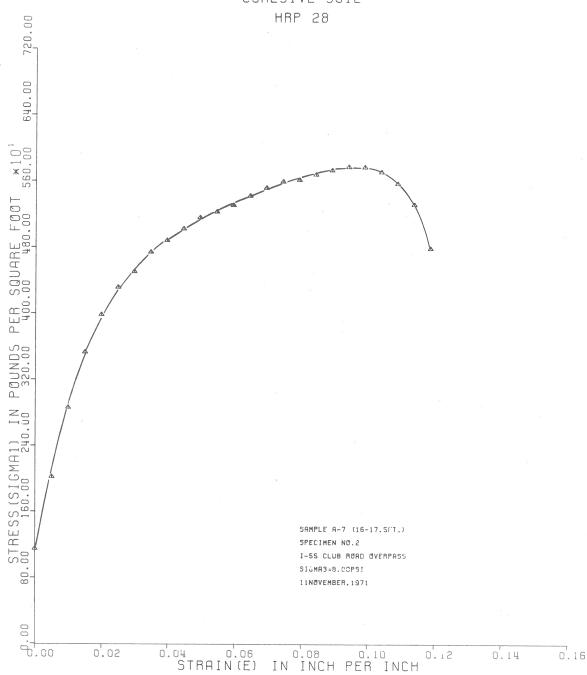


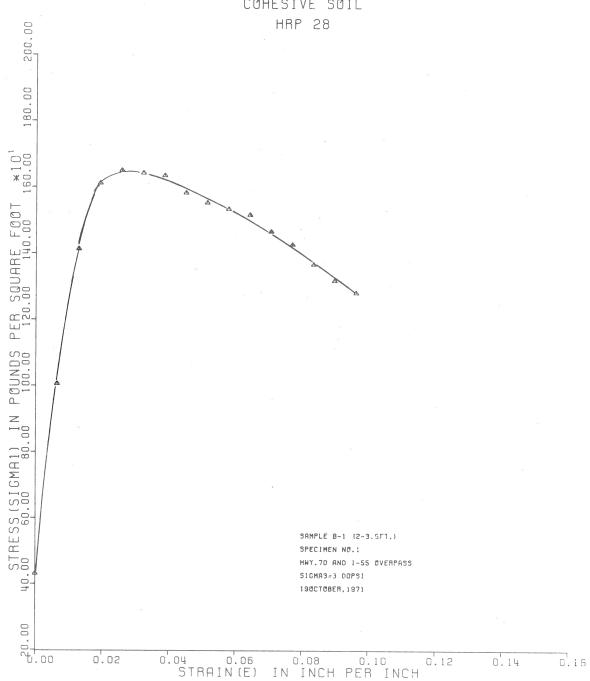


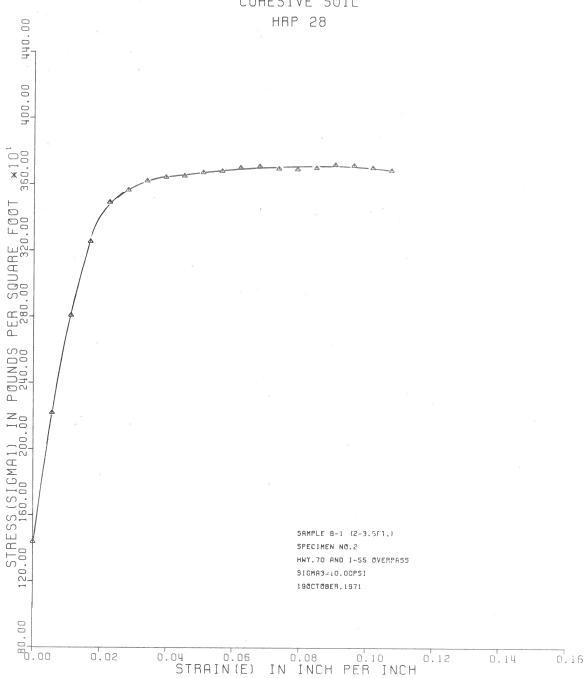


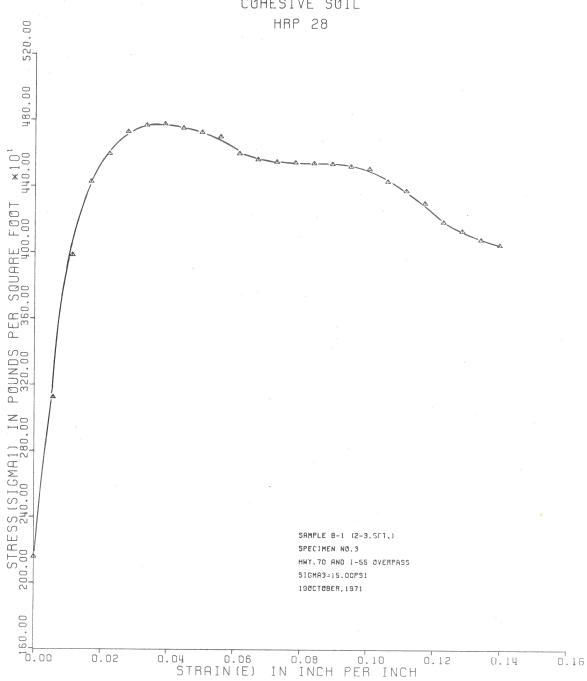


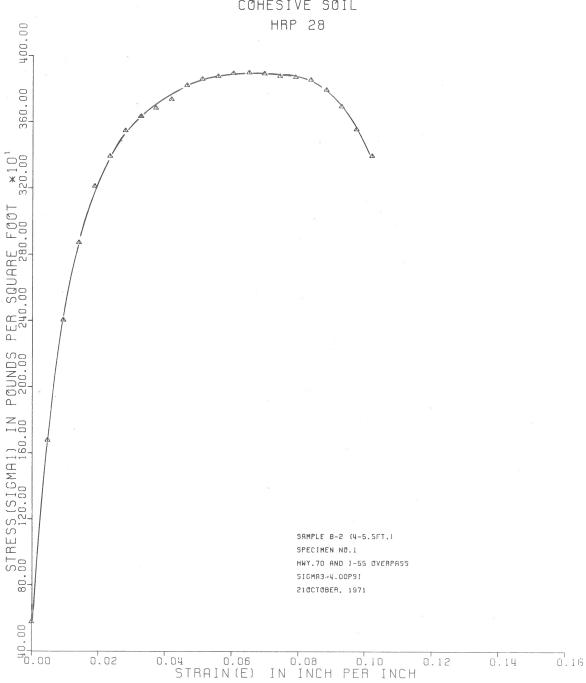


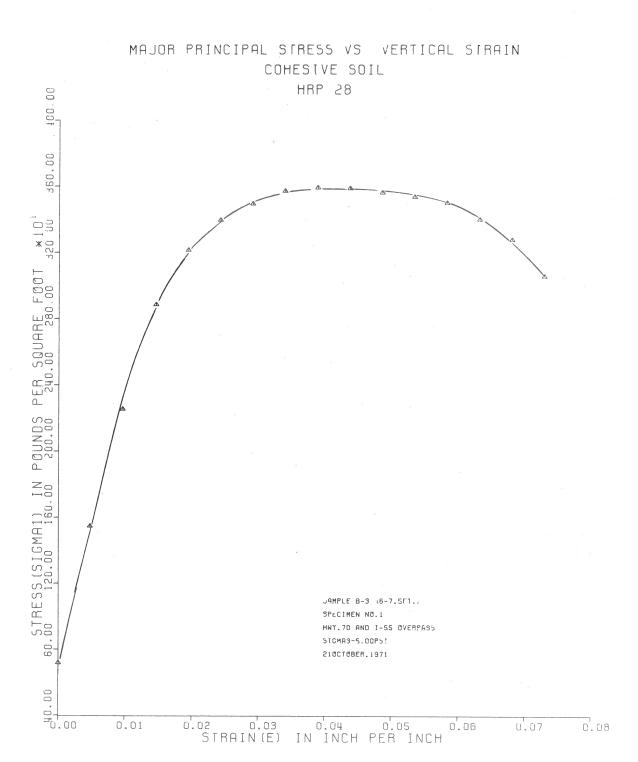


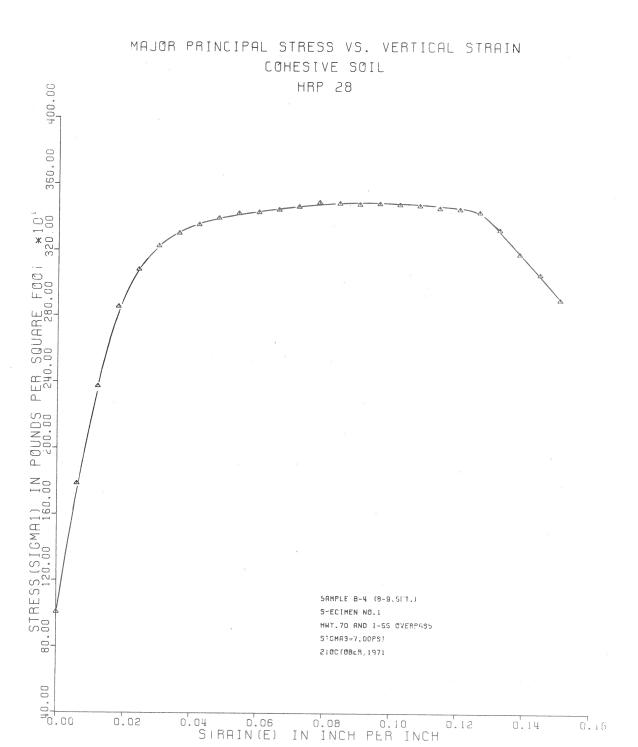




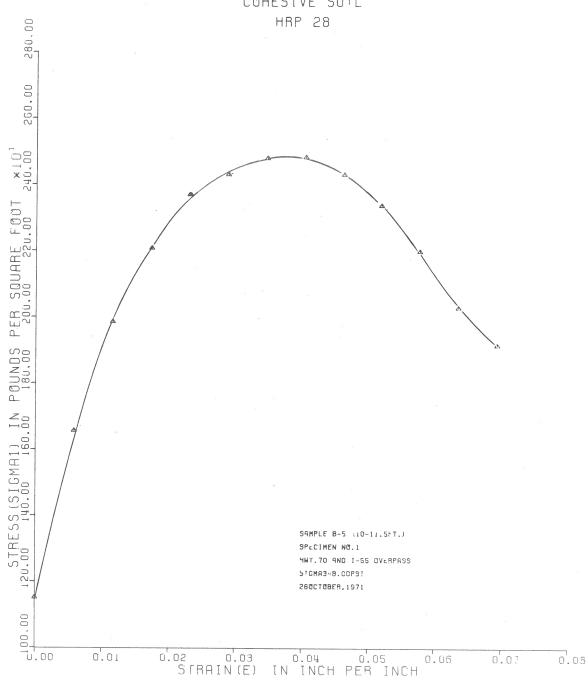


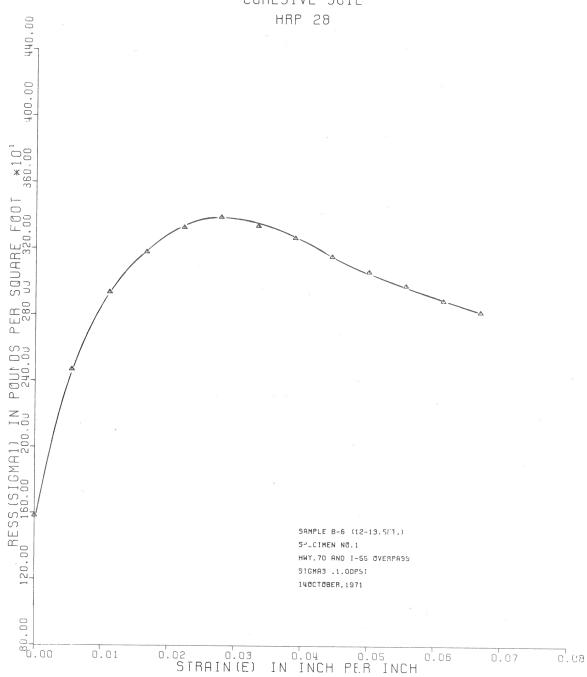


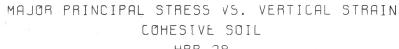


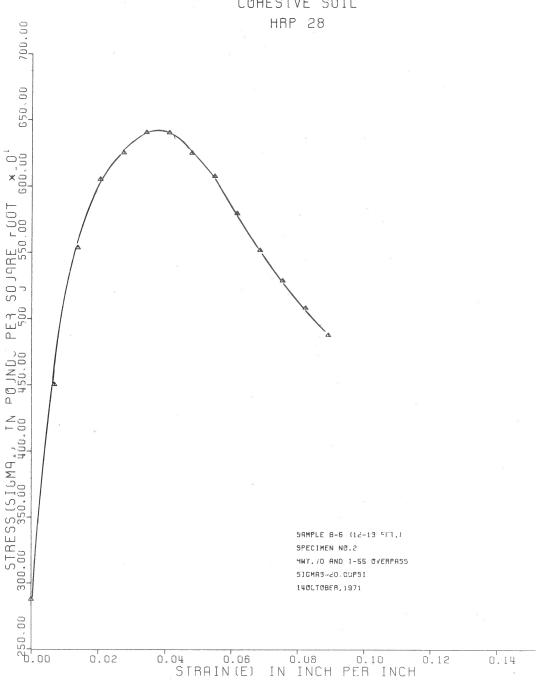


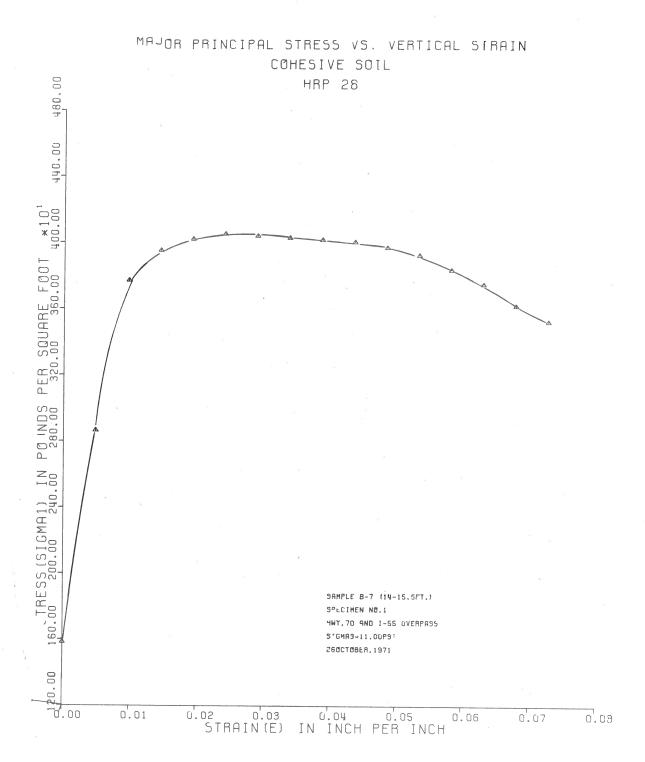


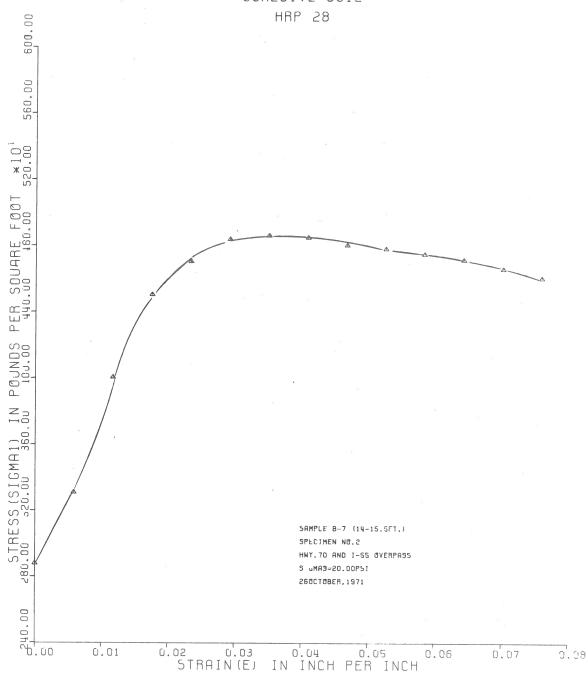


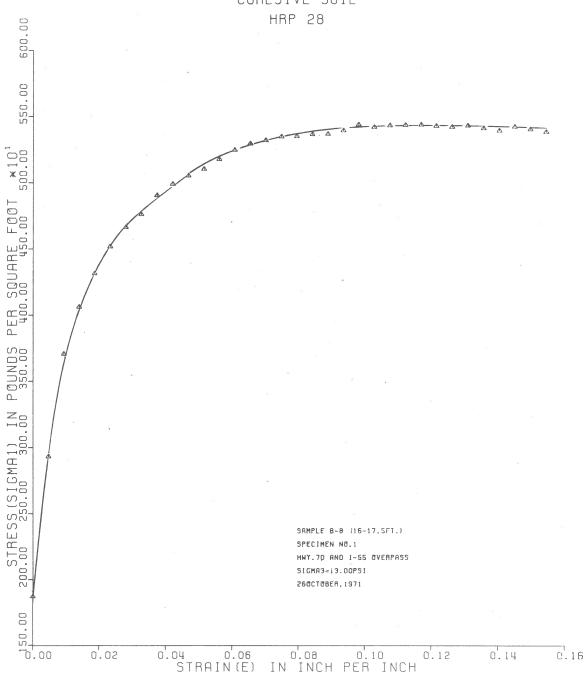




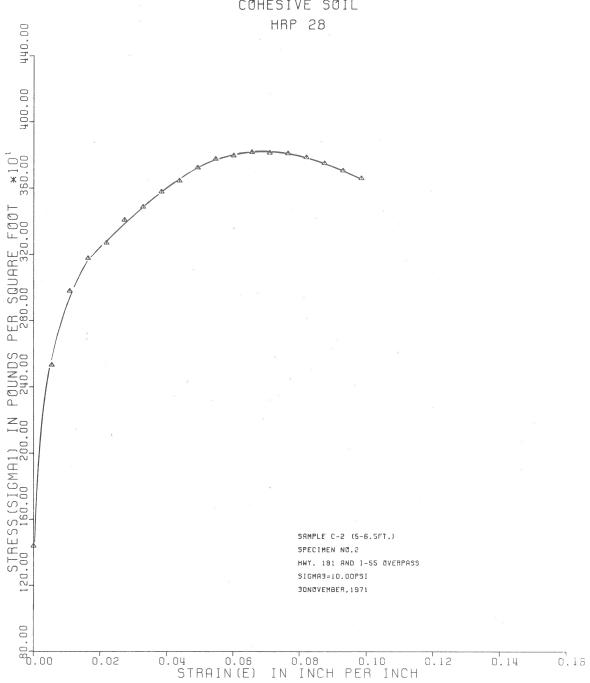


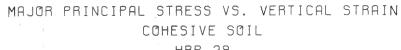


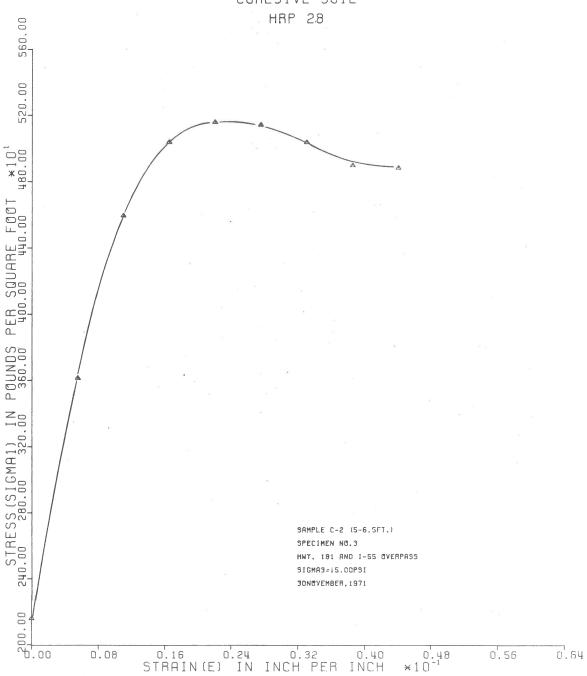


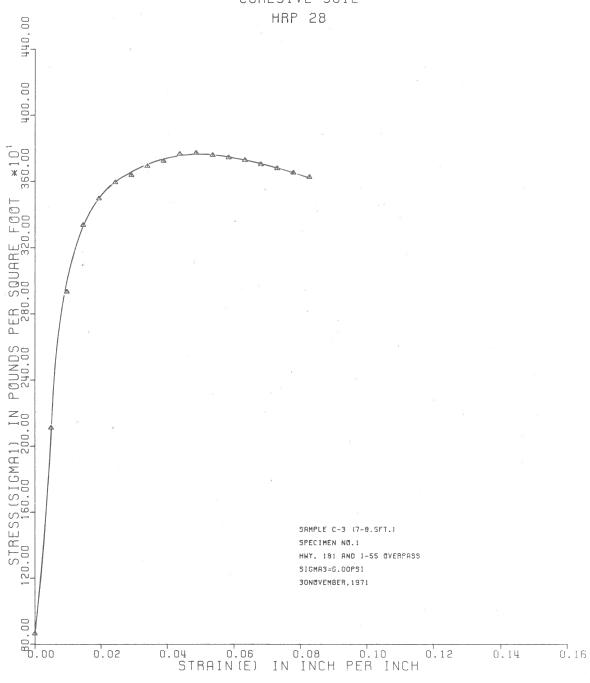


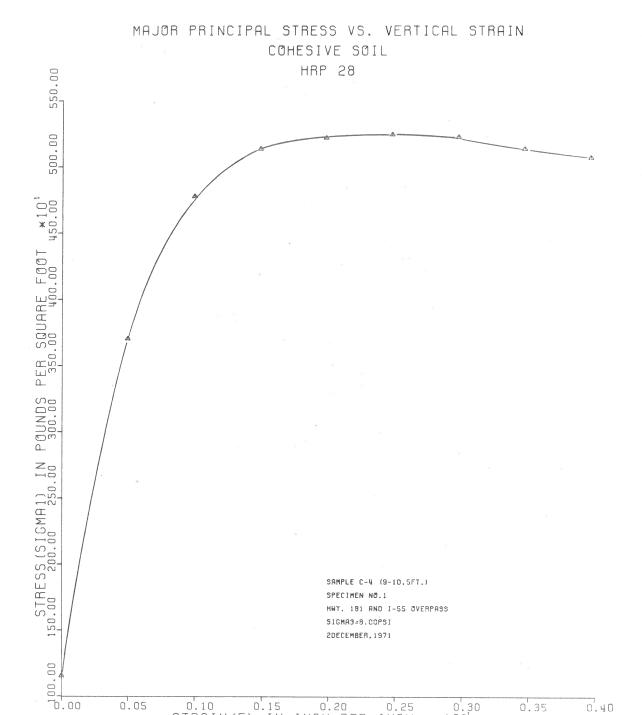


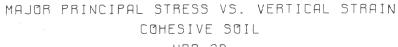


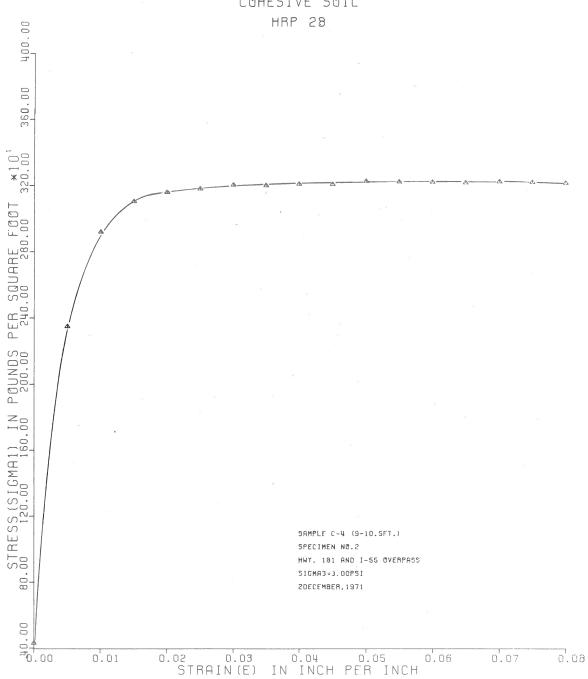


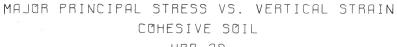


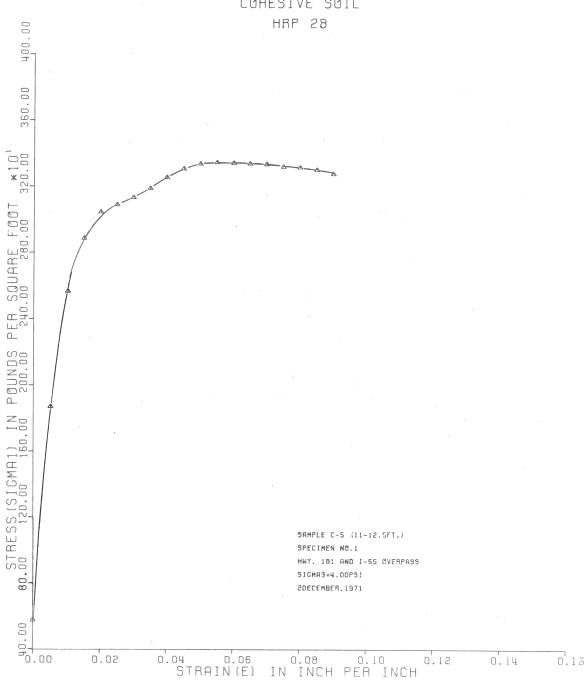


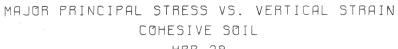



0.10 0.15 0.20 0.25 STRAIN(E) IN INCH PER INCH

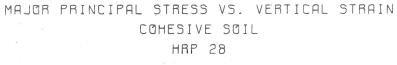

0.30 ×10⁻¹

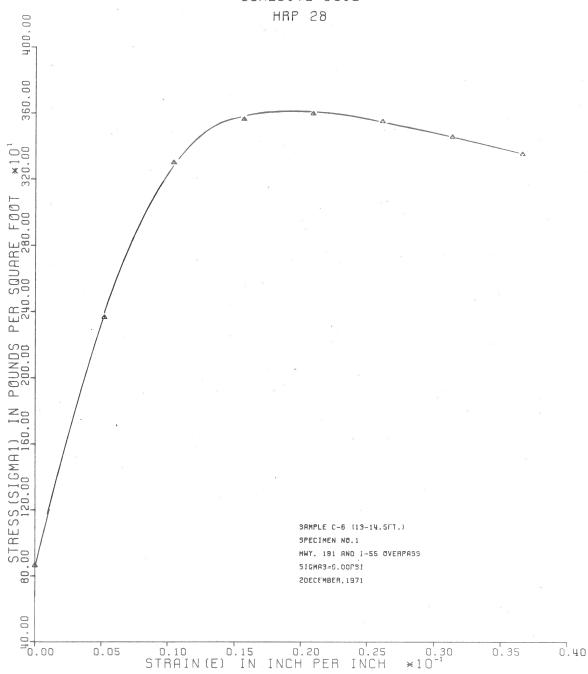

0.35

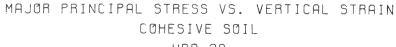

0.40

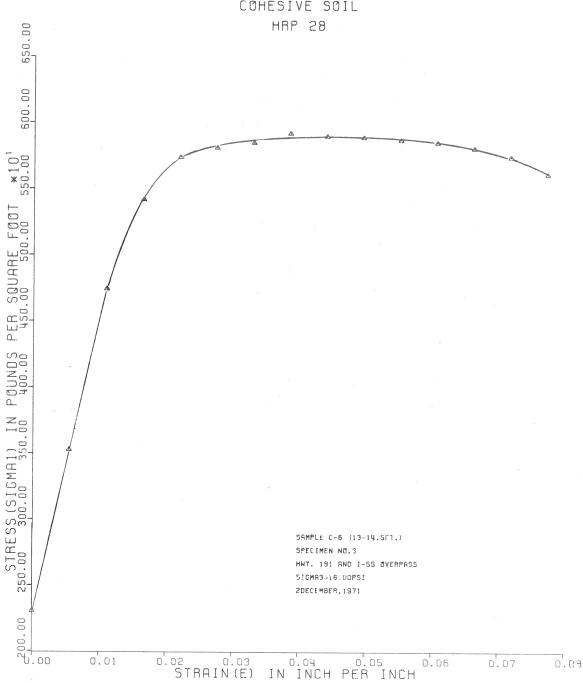

0.05

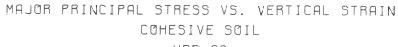


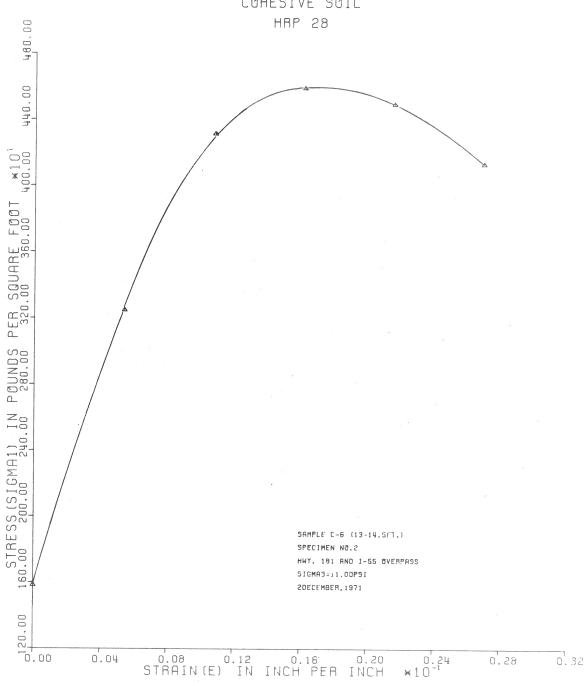


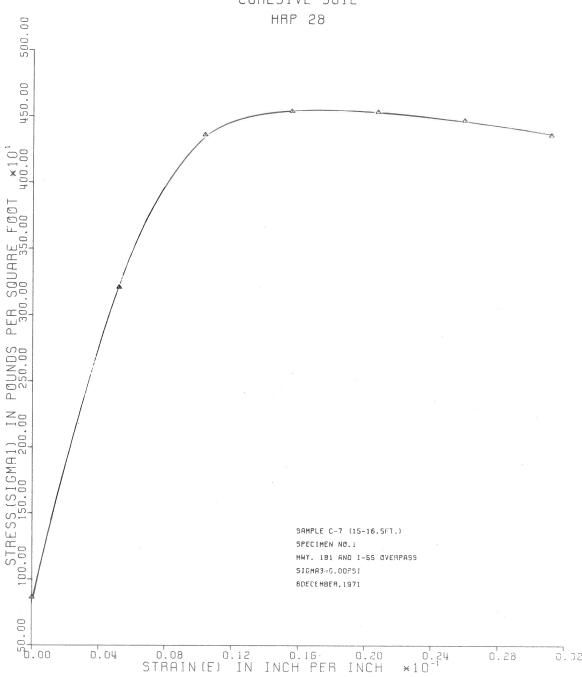


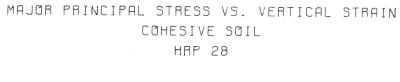


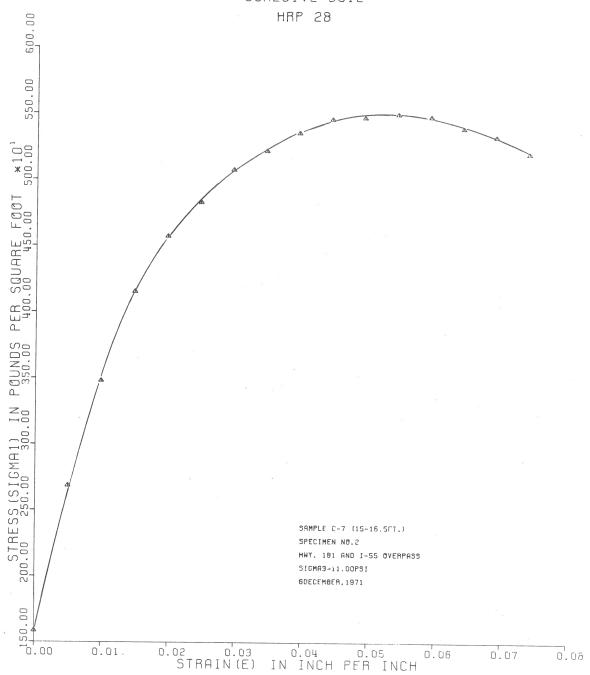


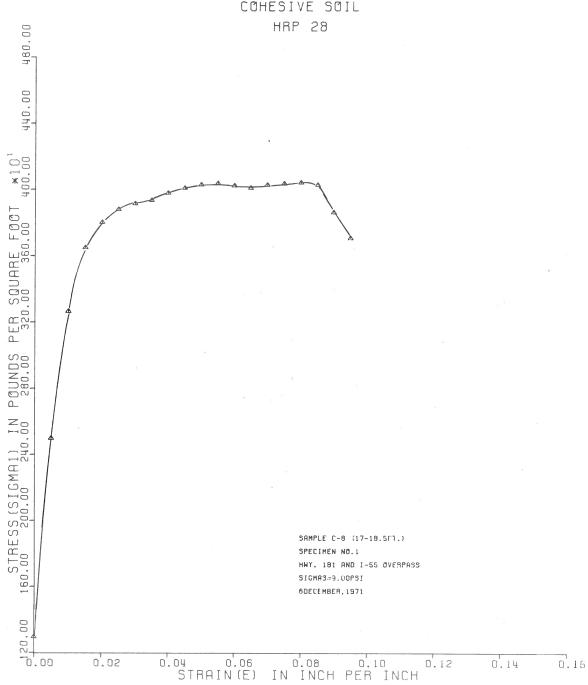




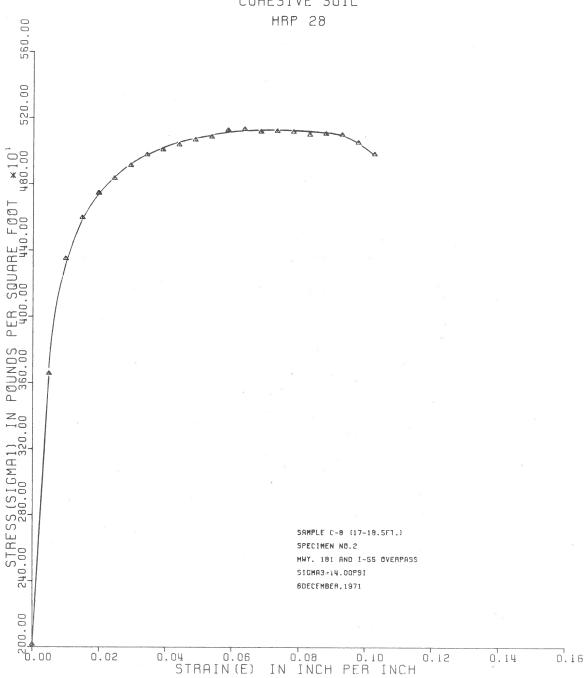


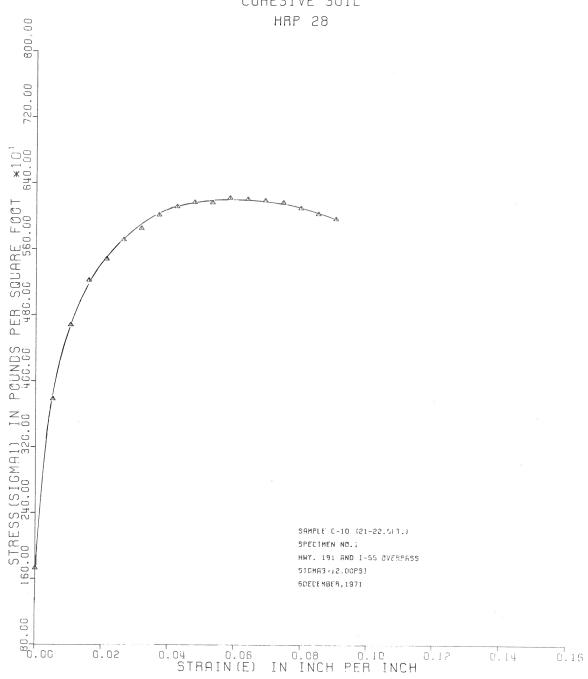


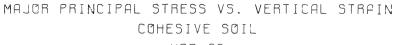


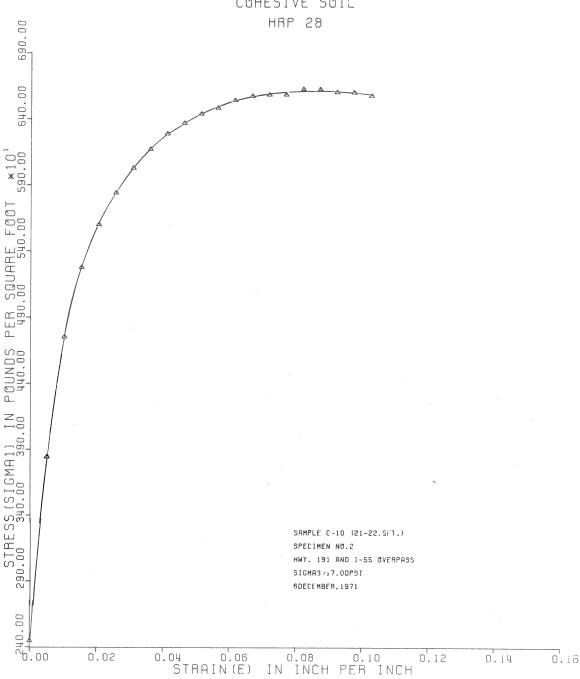


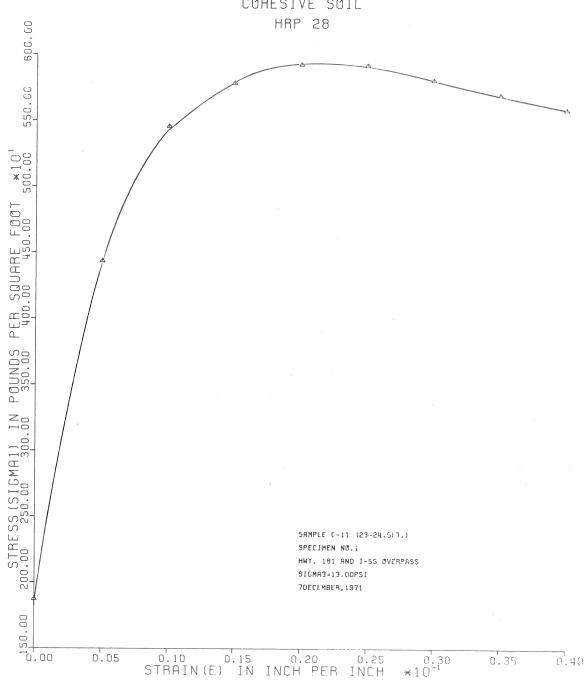


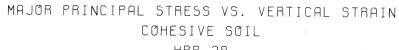


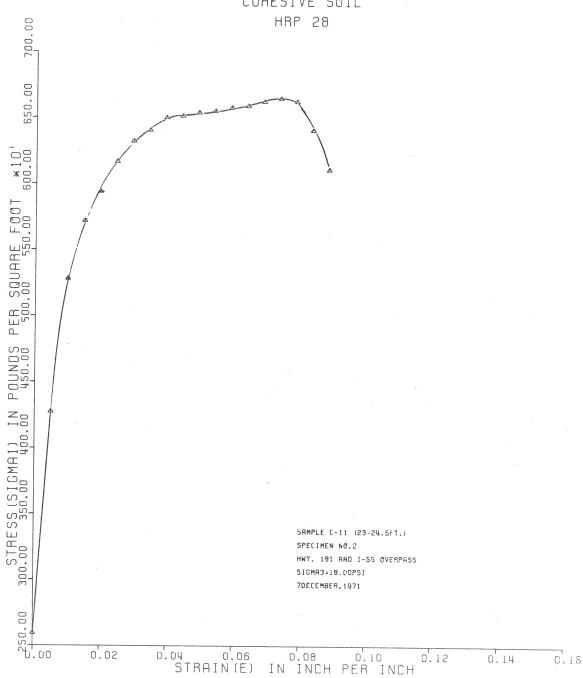


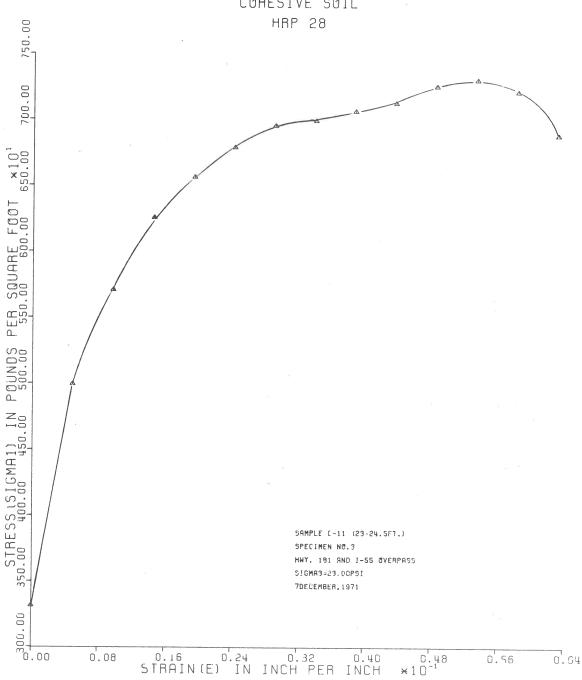


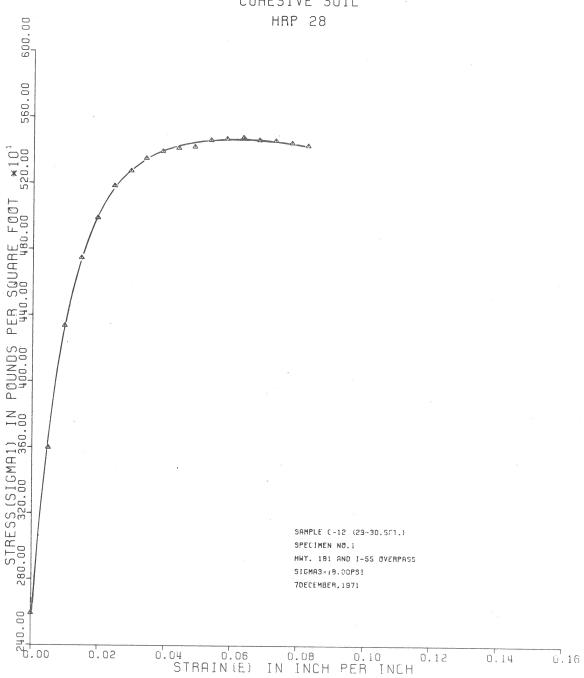


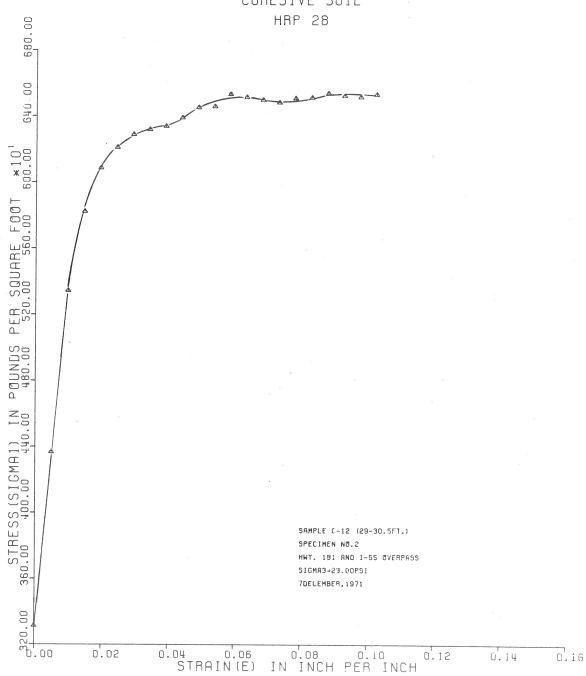


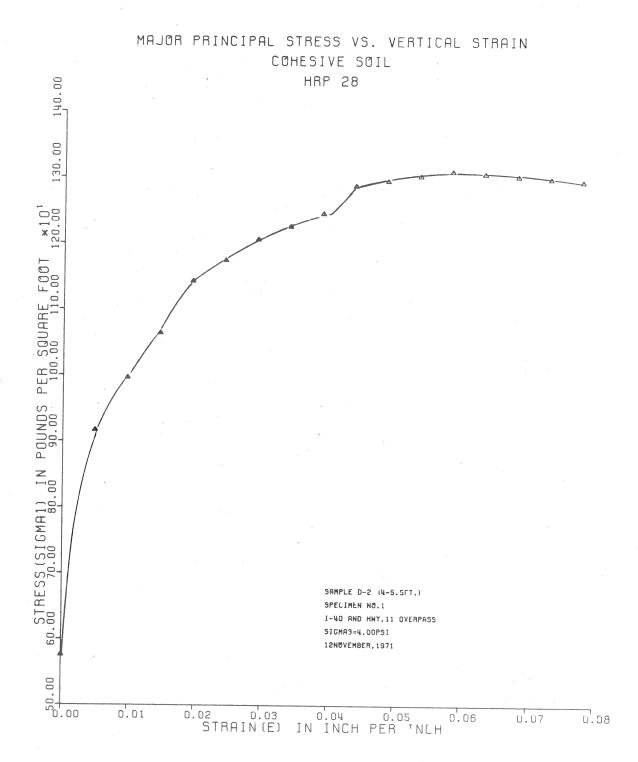


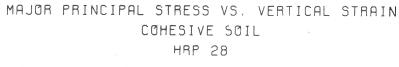


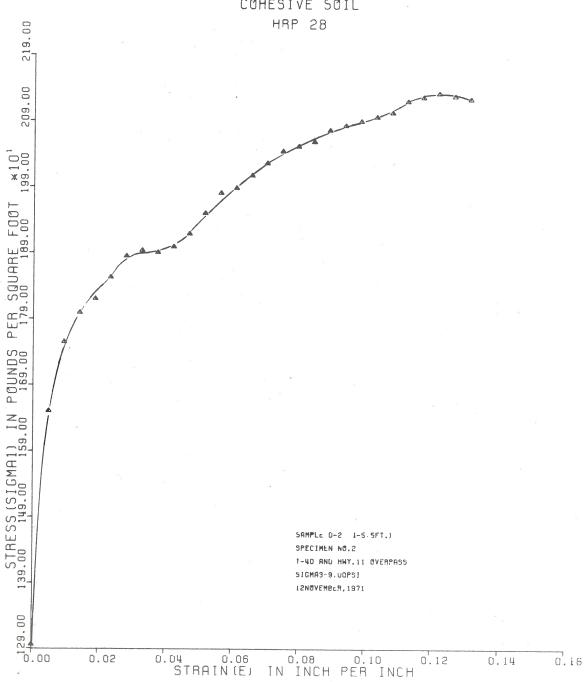




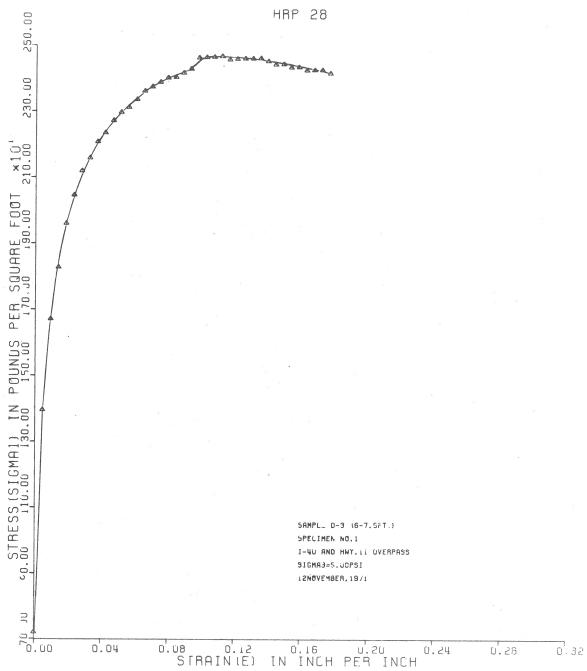


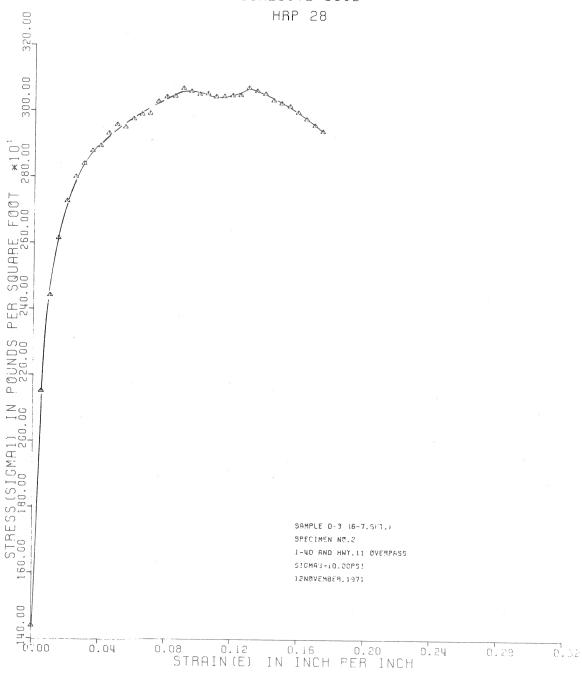


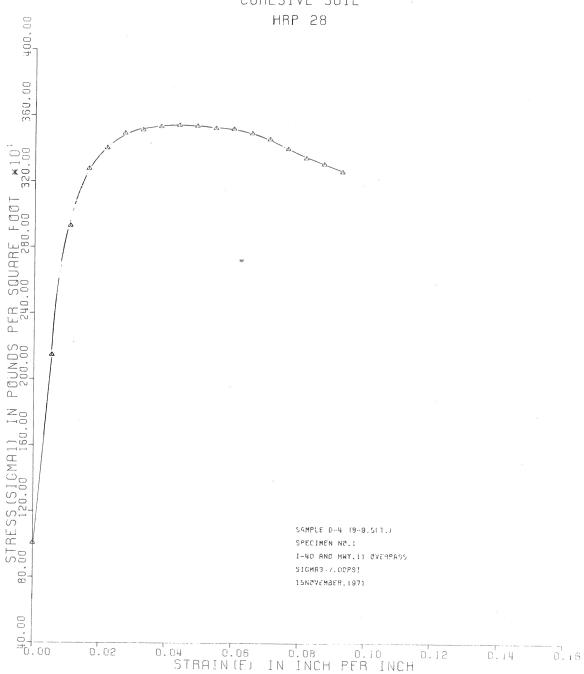


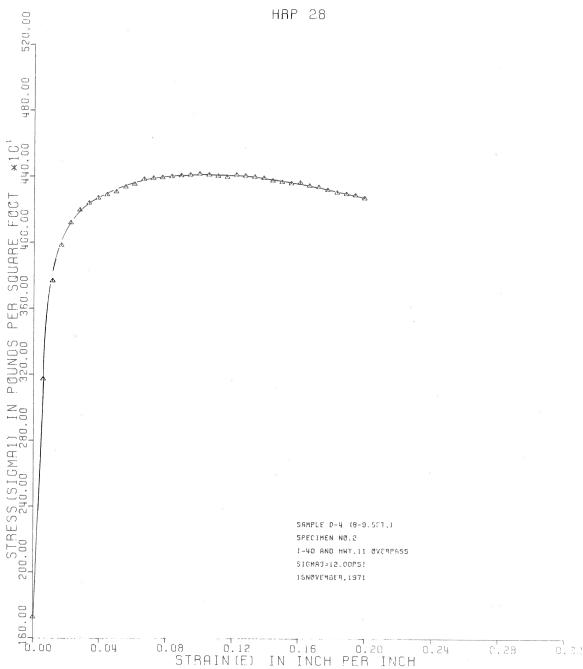




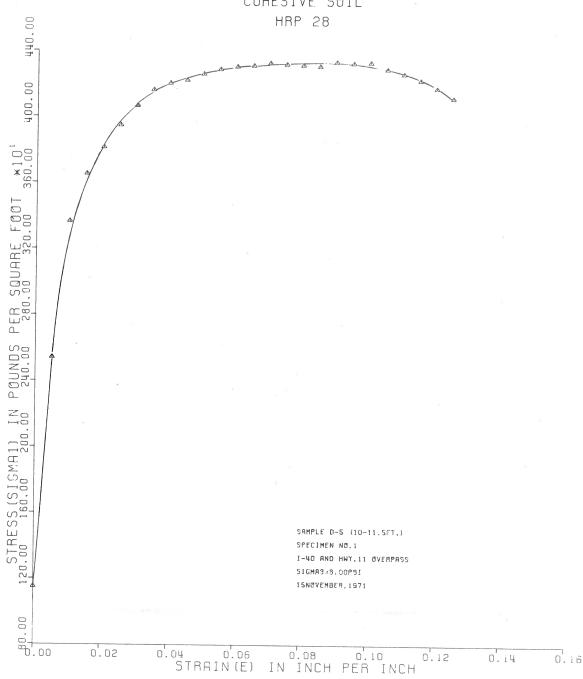


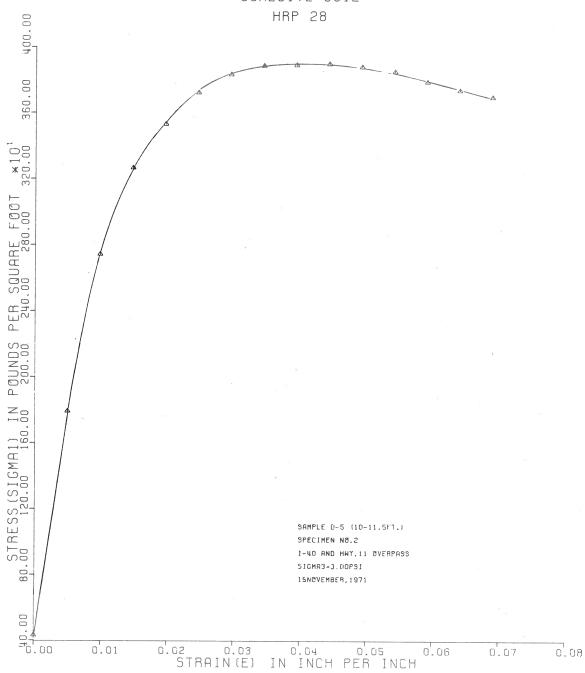


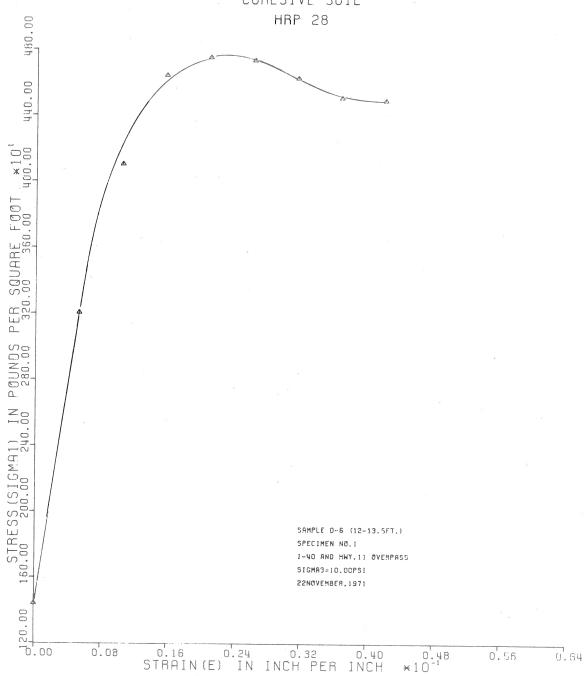


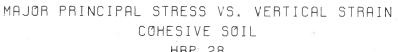


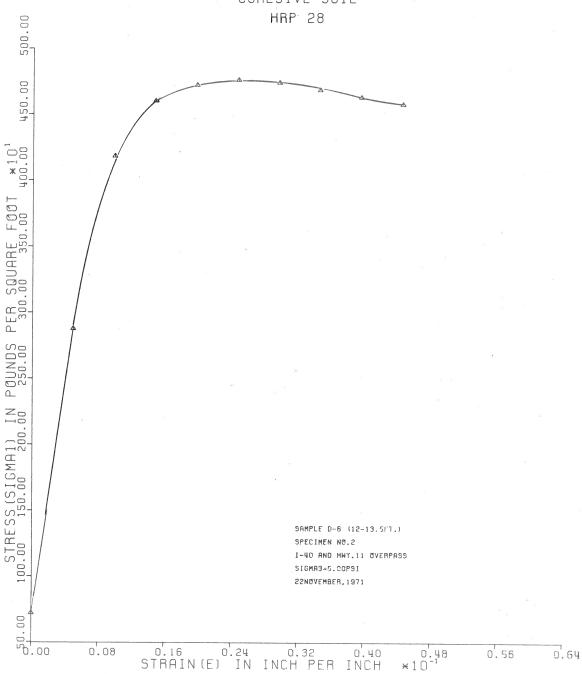


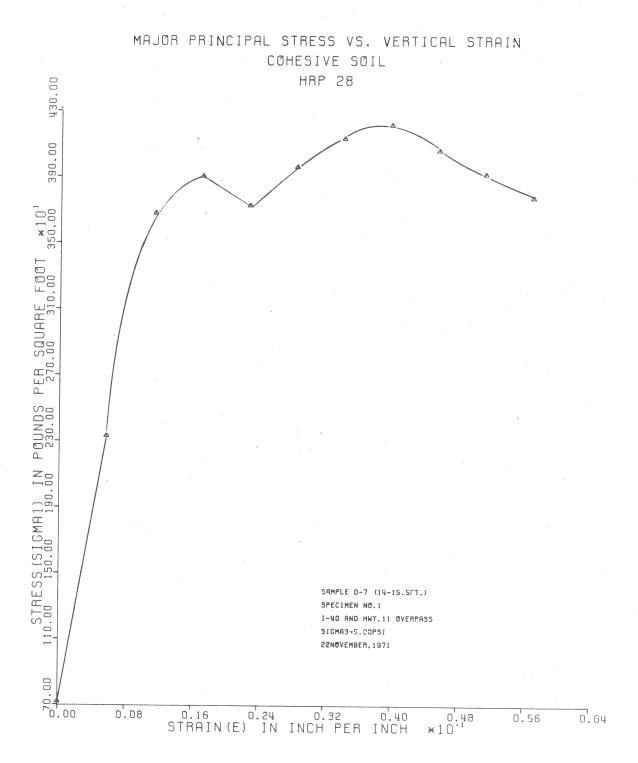


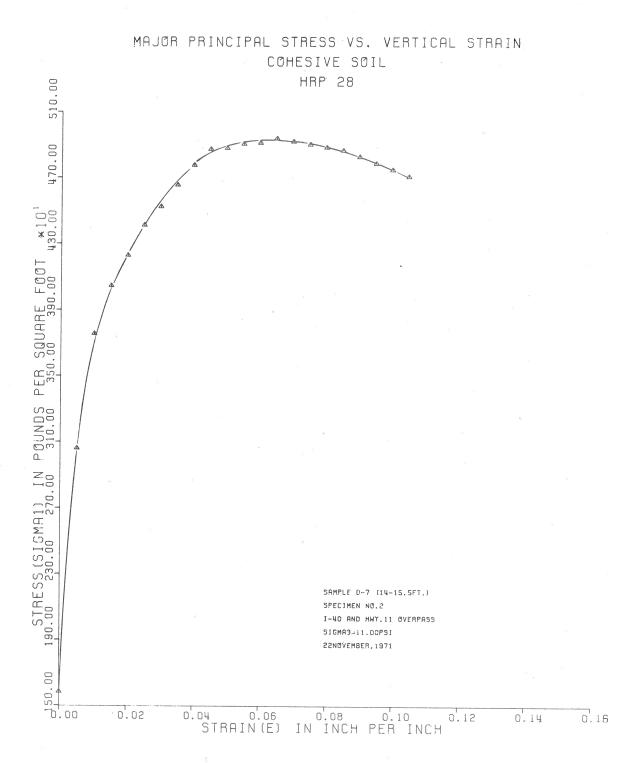


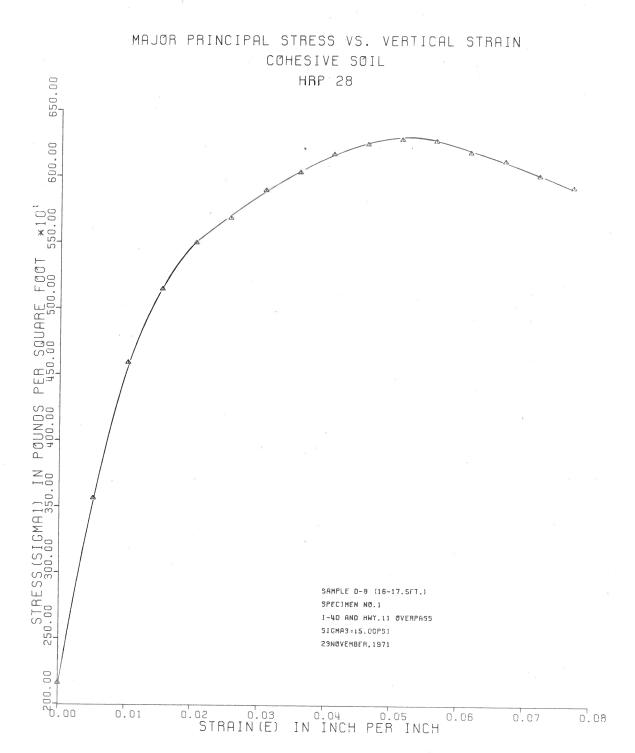


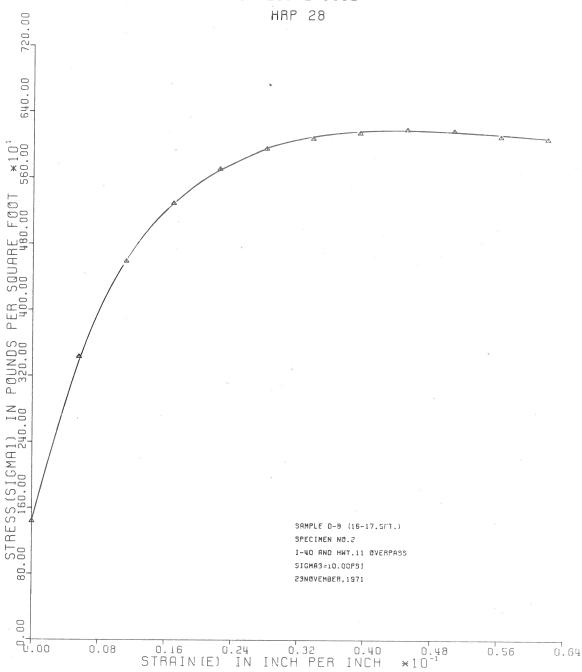


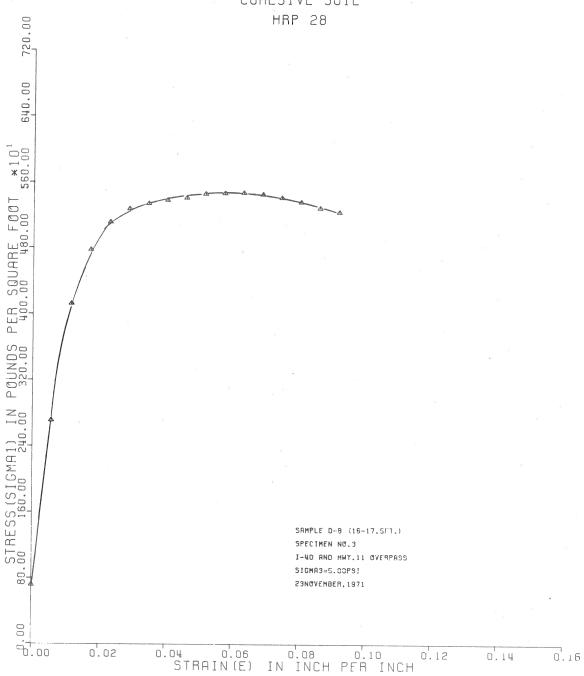


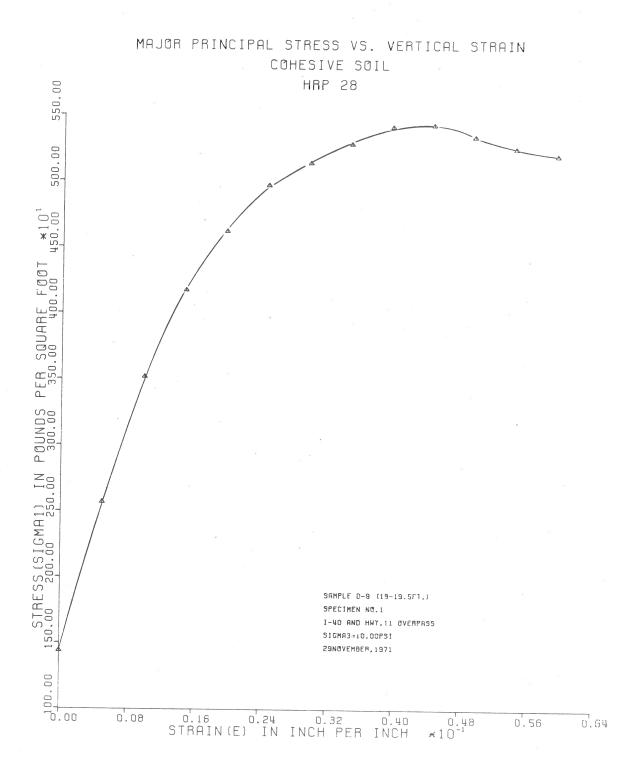


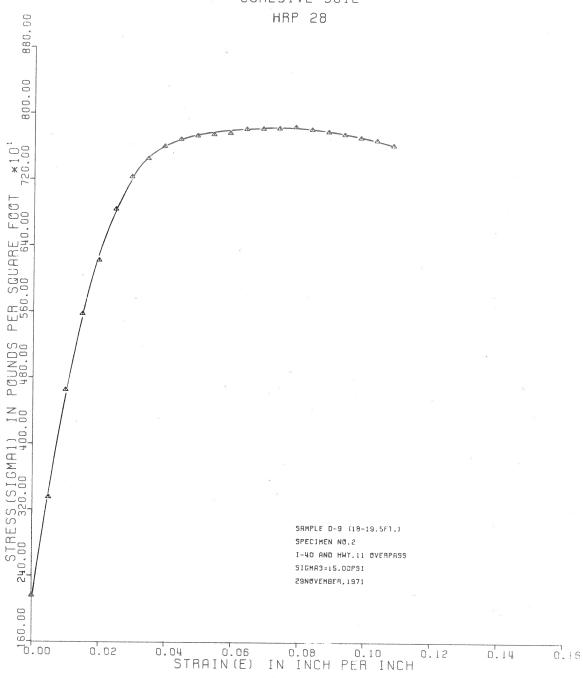


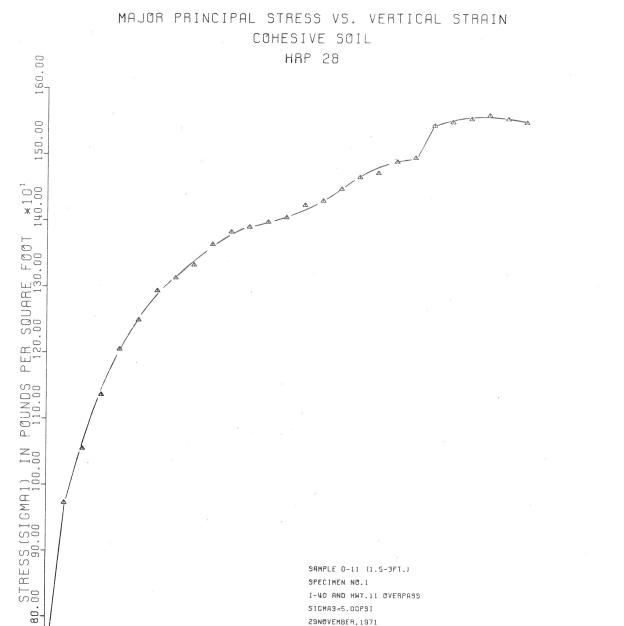










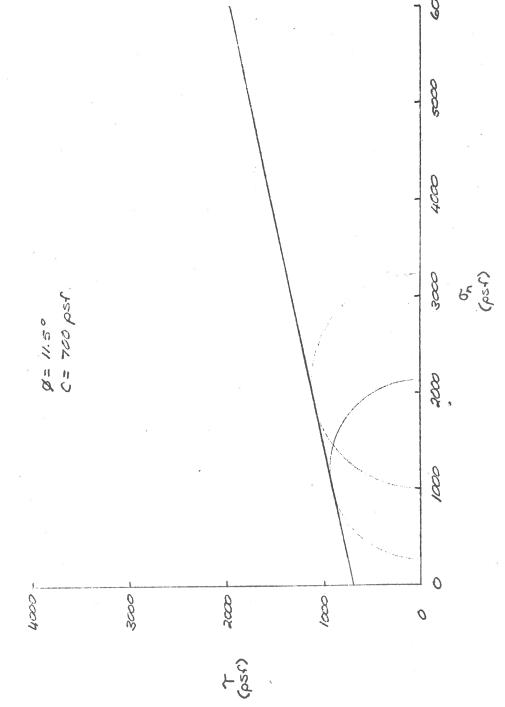


SIGMA3=5.00PSI 29NOVEMBER, 1971

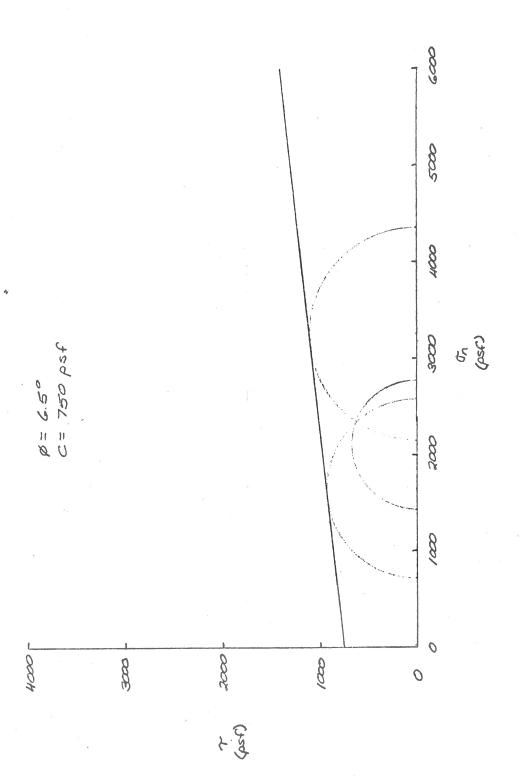
0.14

0.04 0.06 0.08 0.10 STRAIN(E) IN INCH PER INCH

00.00


0.02

APPENDIX C

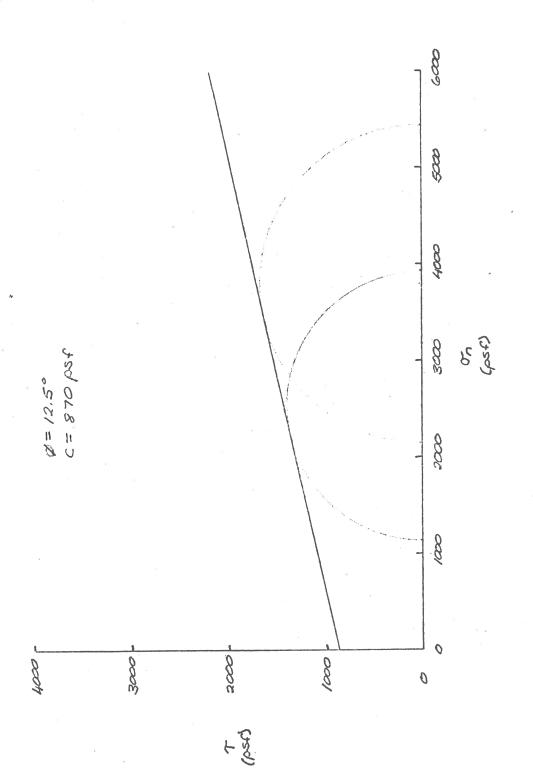

Mohr Rupture Envelopes

Sample A-1

Brown-gray clay with spots of oxidized iron and traces of silt Degree of saturation = 95-99%.

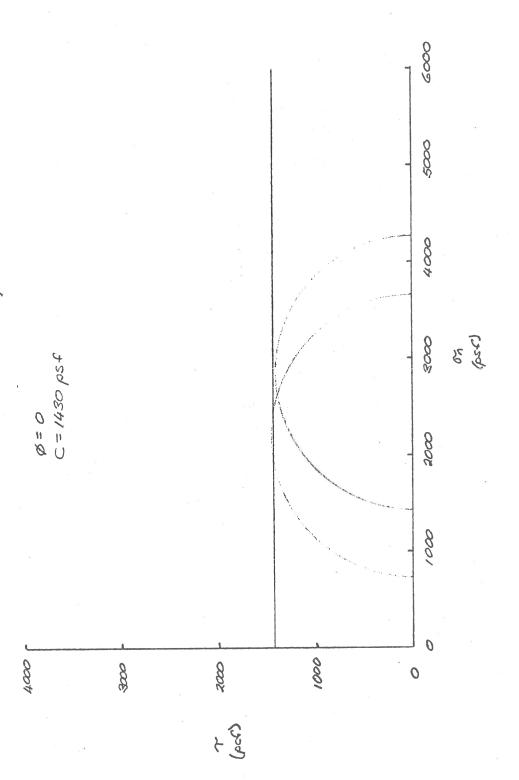


Sample A-2 Gray clay. Degree of saturation = 91-98%.

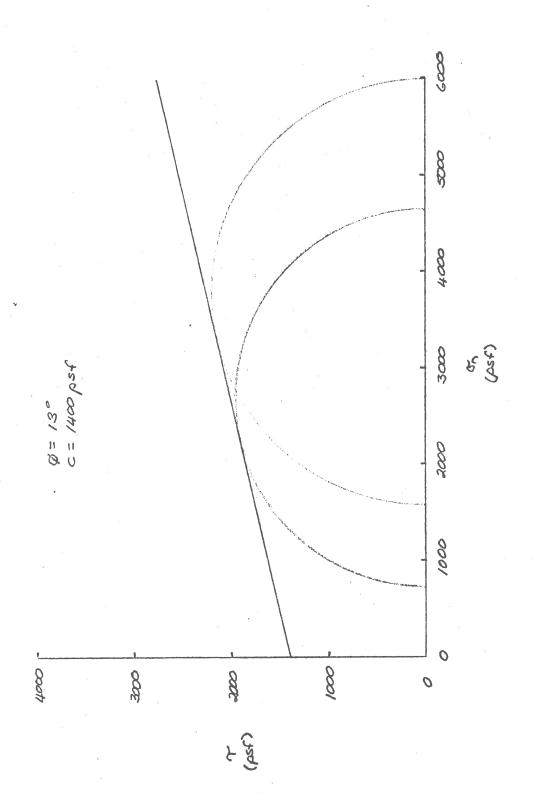


Sample A-3

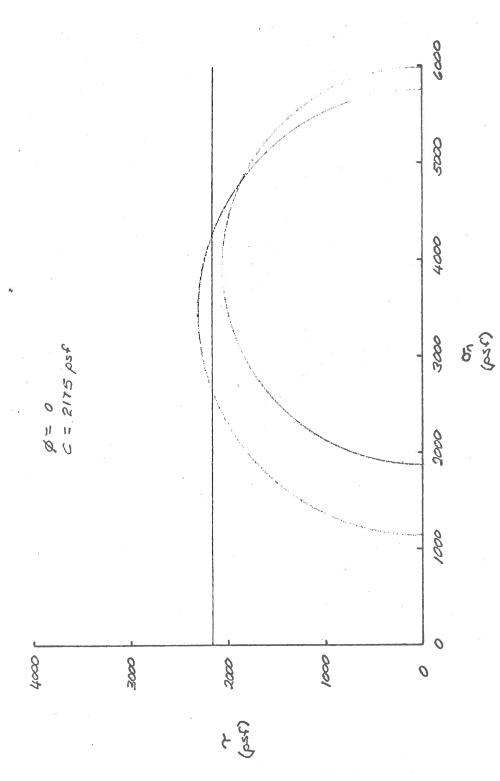
Brown - gray clay with iron oxidized spots. Degree of soturation = 98-100%.



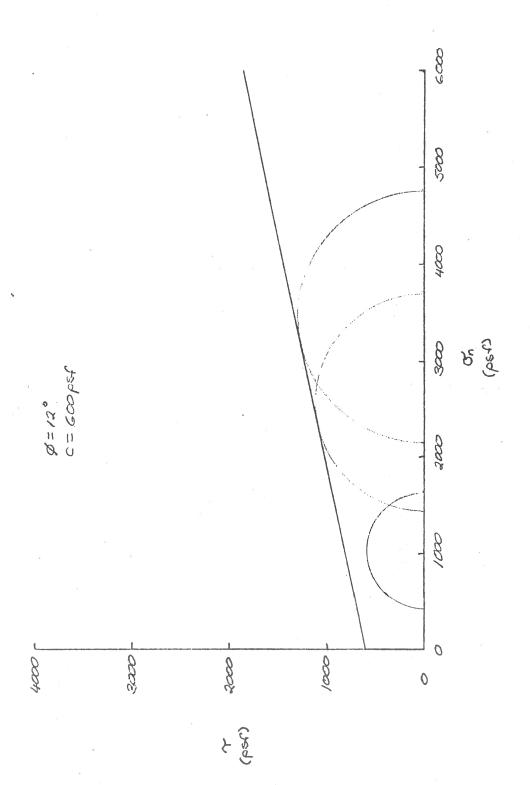
Gray clay. Degree of saturation = 100%.



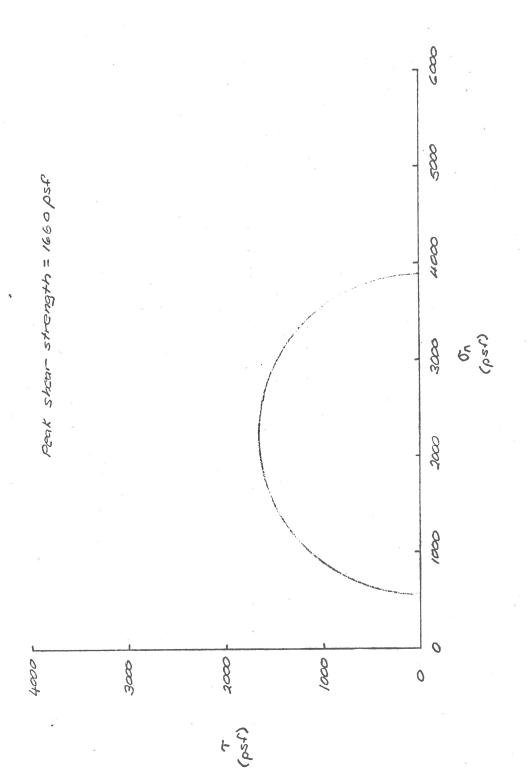
Sample A-5


Brown-gray clay with roots. Deg. of sat. = 93-100%.

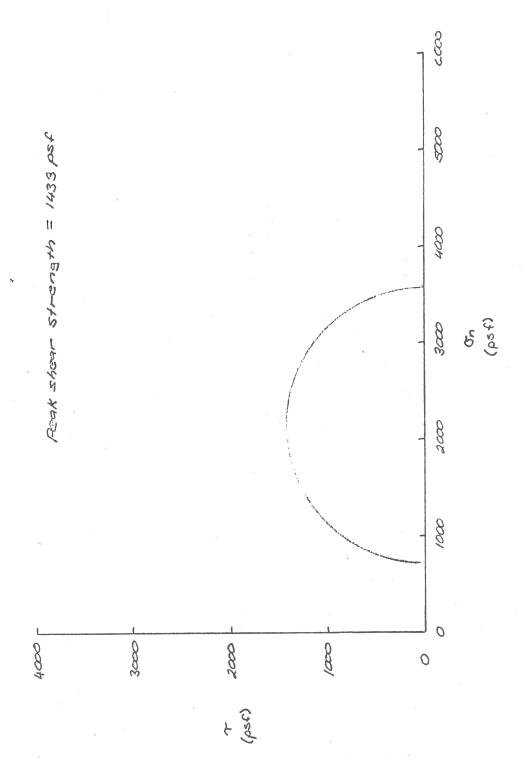
Sample A-6 Brown-gray clay. Deg. of sat. = 97-100%.



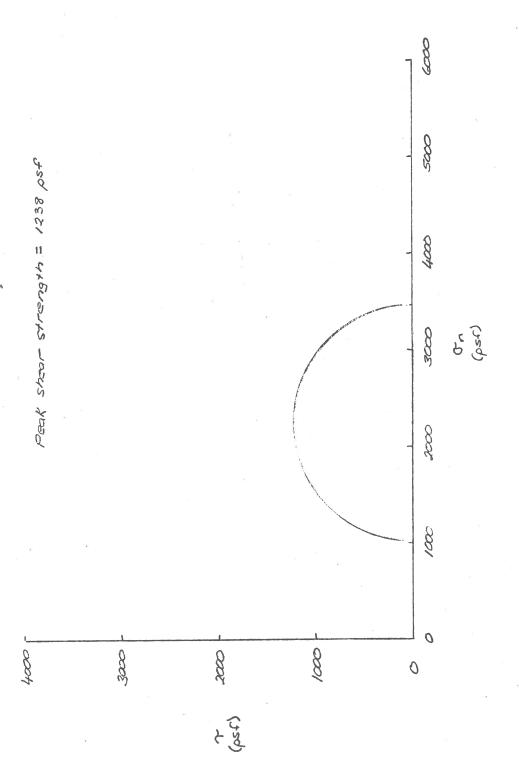
Brown Silty clay with roots. Dag. of sat. = 91-98%.

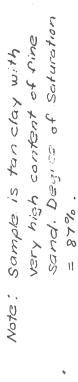


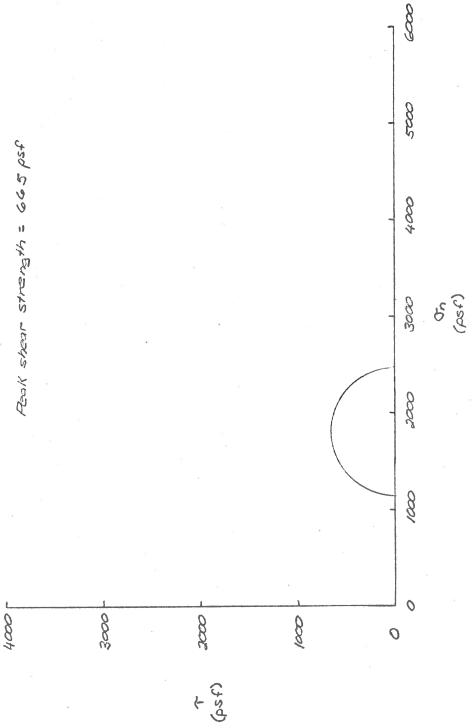
Sample B-1


Light gray mottled brown clay with roots. Deg. of Sat. = 91-96%.

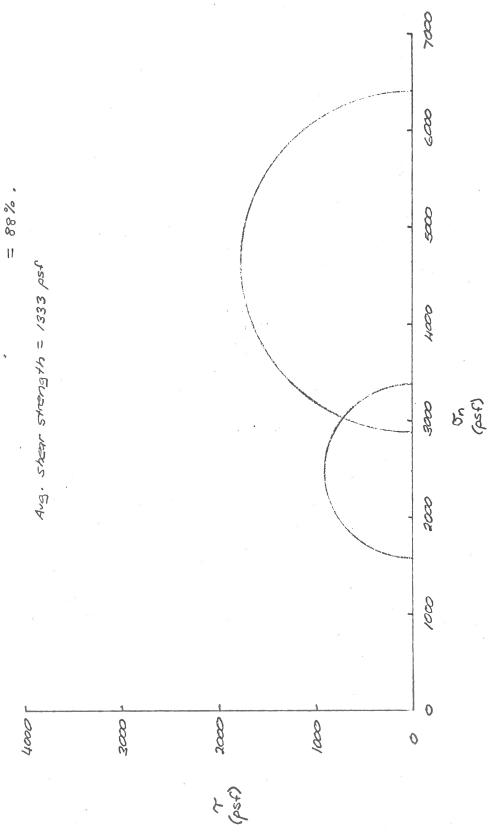
Sour silty clay with roots. Deg. of sat. = 83%

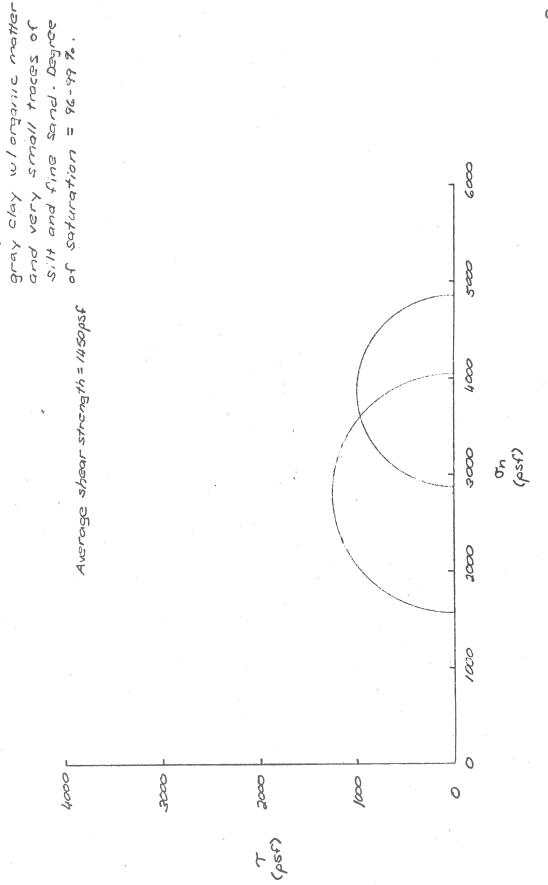



Sample B-3
Tan clay with roots and scams of fine sand. Deg. of sat. = 81%.

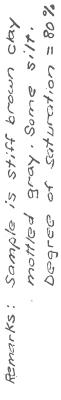

Sample B-4

Brown sandy clay with roots and organic matter. Degree of Saturation = 92%.



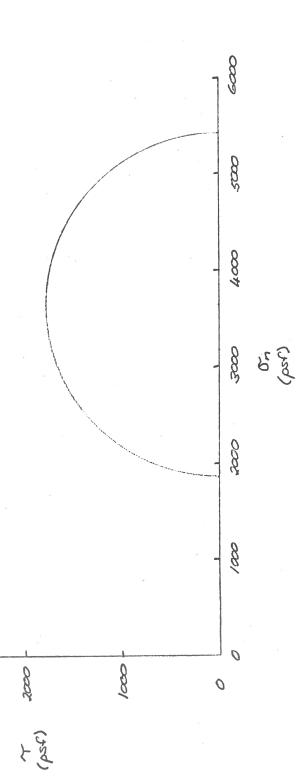


Note: Sample is very sandy gray to tan clay WI roots and organic matter. Degree of Saturation

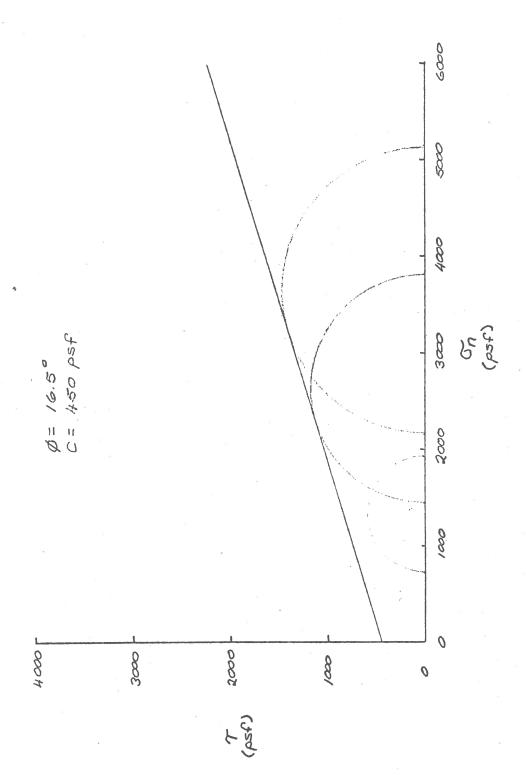


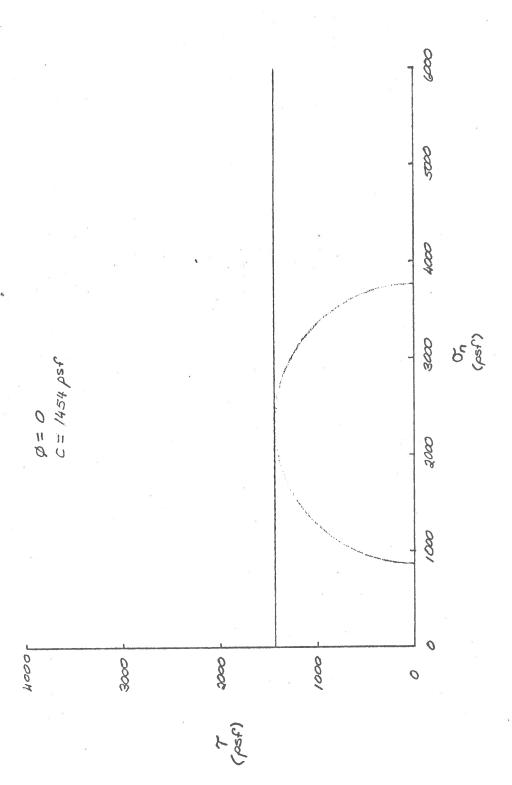
Sample B-7

Remarks: Sample is mottled tan and

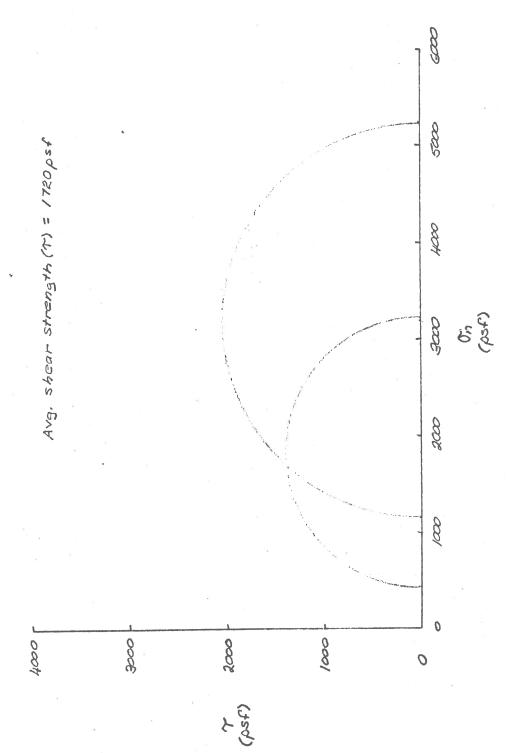


Remarks: Sample is stiff brown clay gray. Some silt. mottled

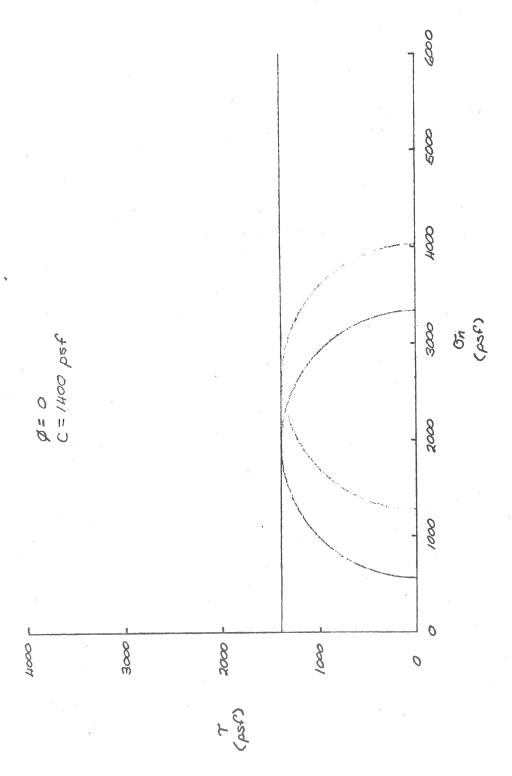



3000

Sample C-2 Brown silty clay. Dag. of sat. = 96-100%.



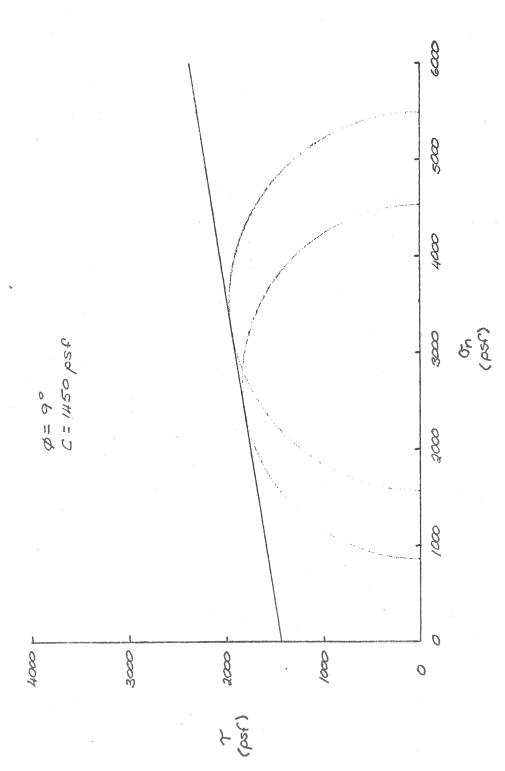
Sample C-3 Brown-gray clay with roots. Deg. of sat = 100%.


Sample C-4

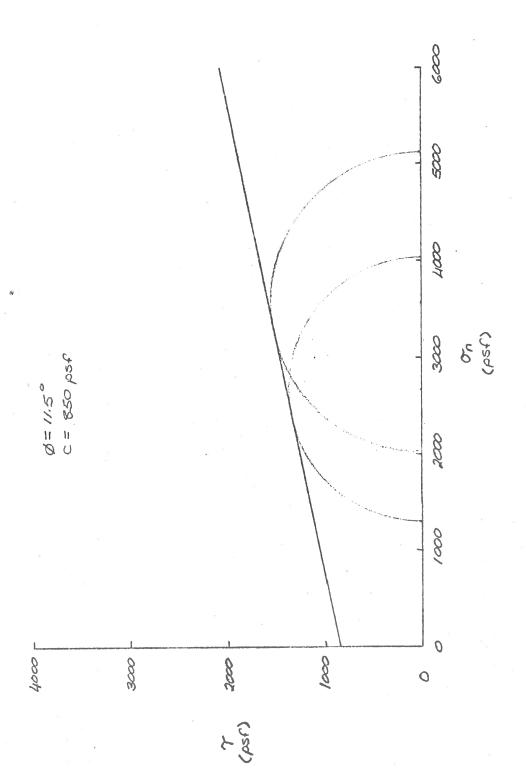
Brown -gray clay with traces of silt. Deg. of sat. = 100%.

Samole C-5

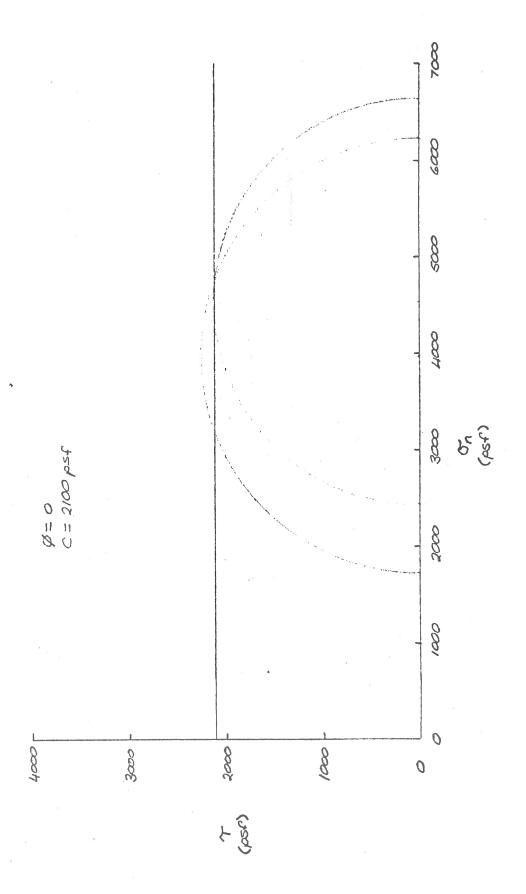
Light gray clay with Iron oxidized spots. Deg. of sot. = 100%.

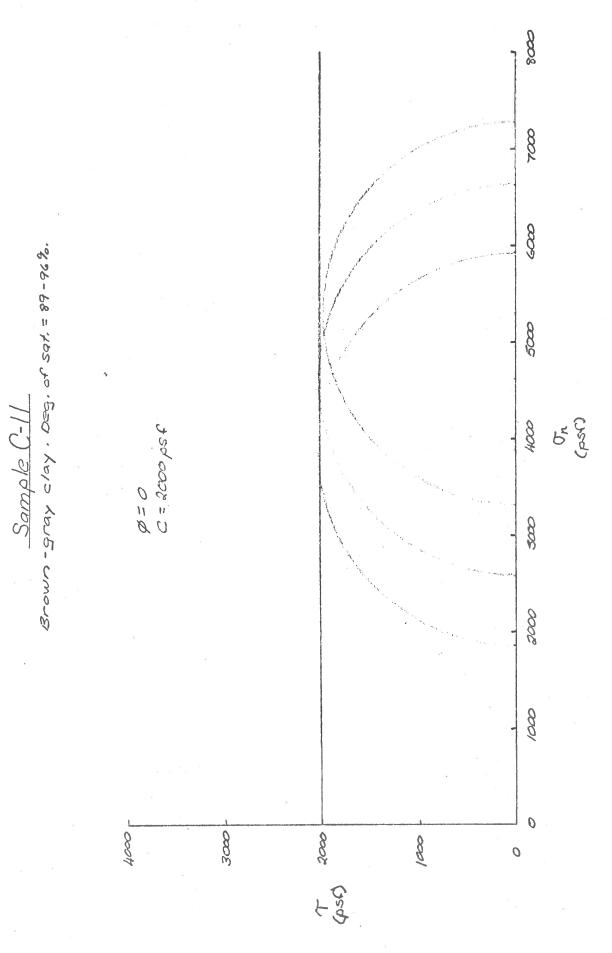

Sample C-6

Light brown-gray clay with traces of silt. Deg. of sat. = 100%.

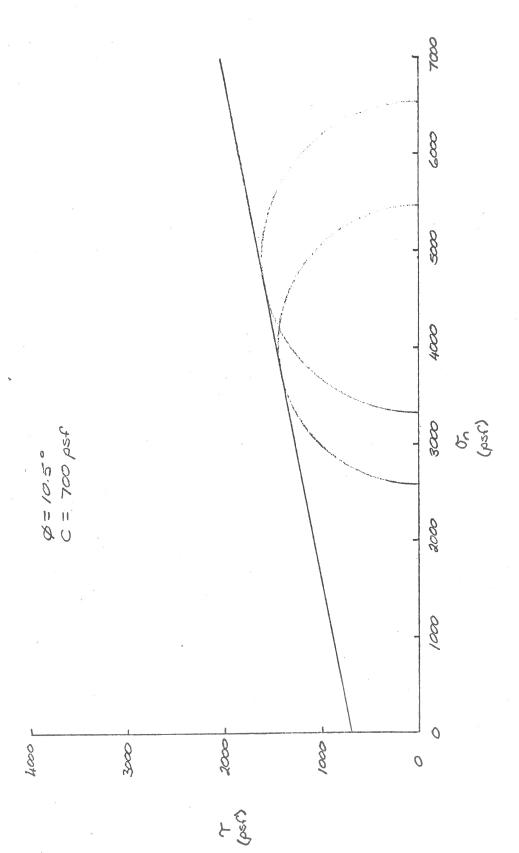

Sample C-T

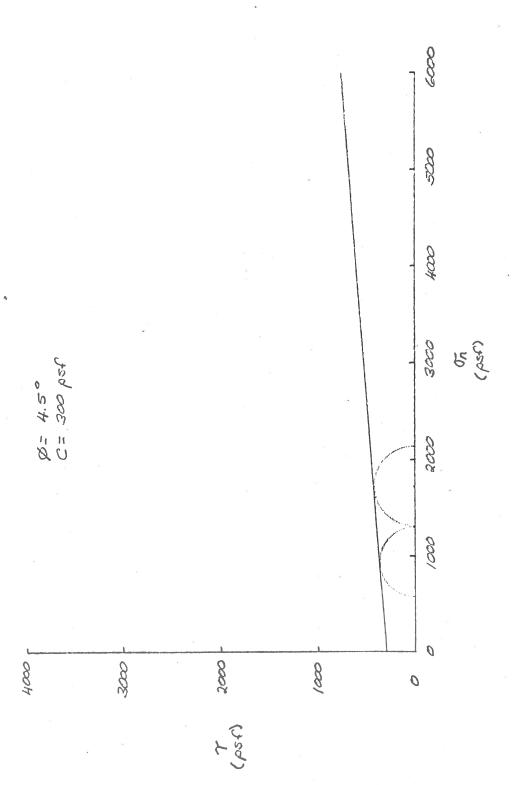
Brown - gray clay with traces of sitt. Ocg of sat. = 94-100%.



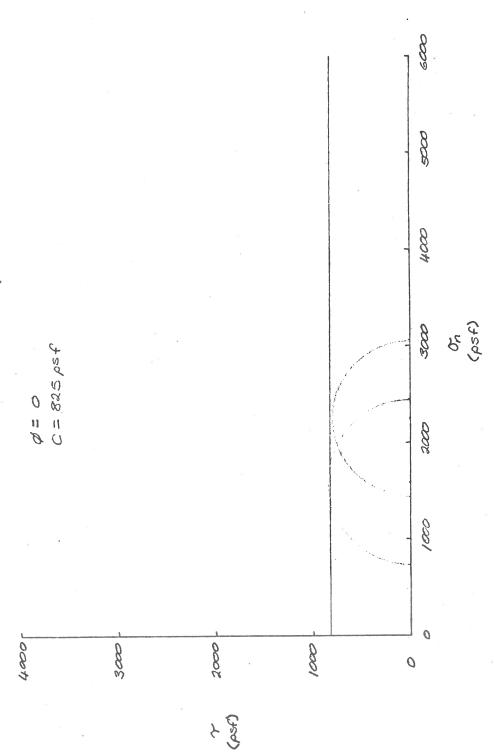

Sample C-8

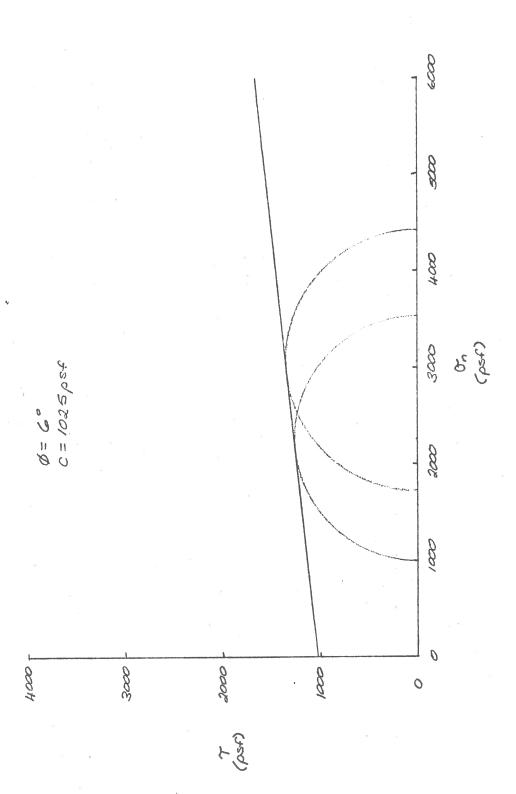
Light gray clay with oxidited spots and traces of silt. Deg. of sat = 100%.

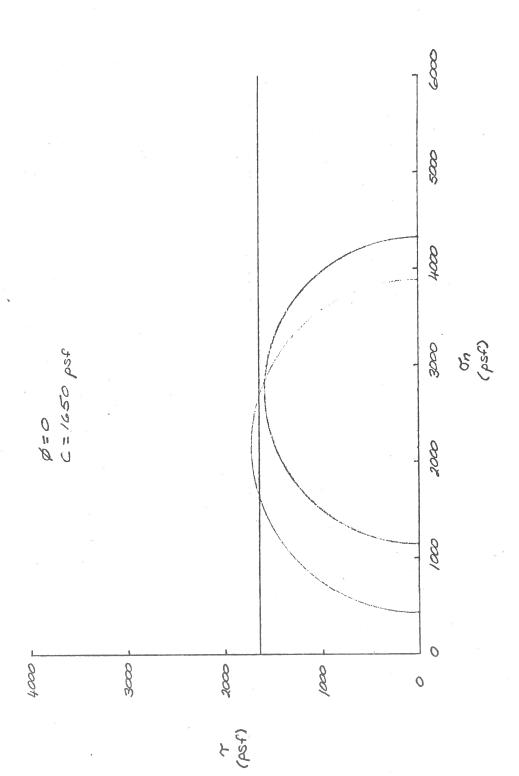

Sample C-10.
Brown clay. Deg. of sat. = 98-100%.

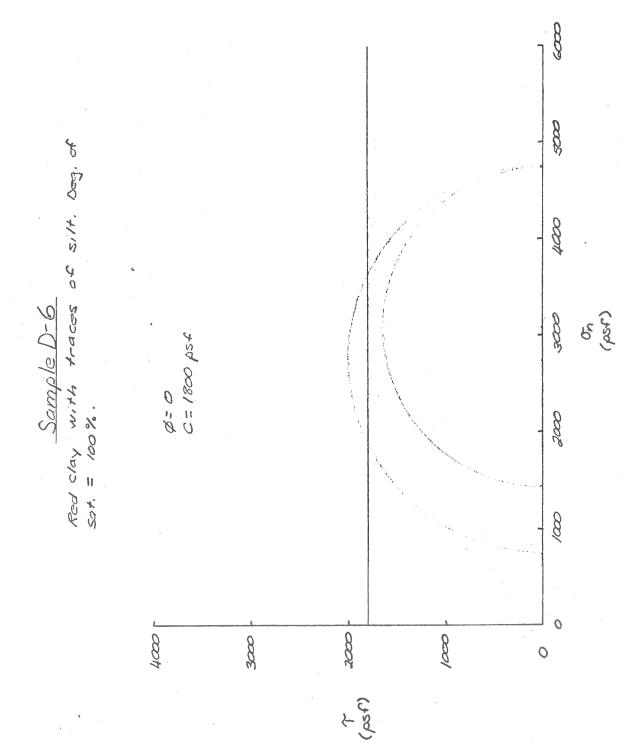


Samole C-12

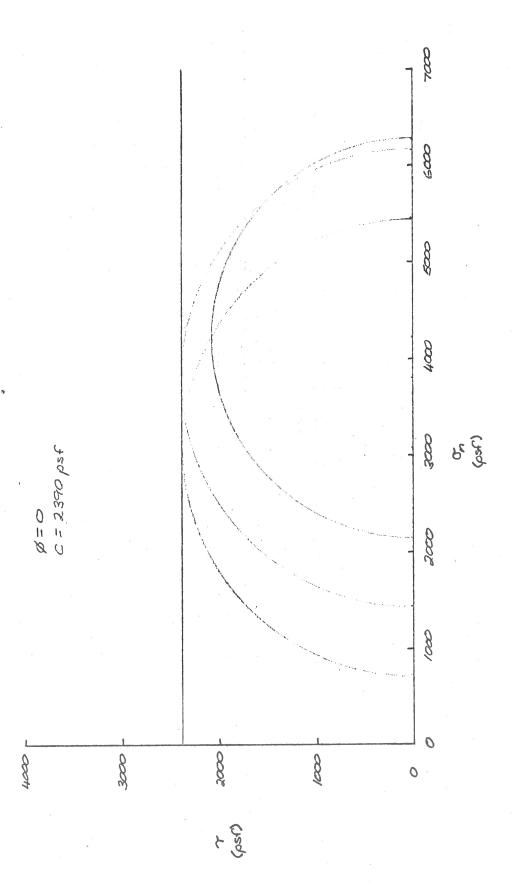

Gray Clay with oxidized spots and limonite nodules. Deg. of sat. = 94-95%.

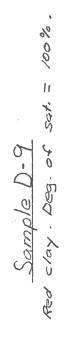

Fed 5,1ty clay. Dog. of sat. = 88-100%.

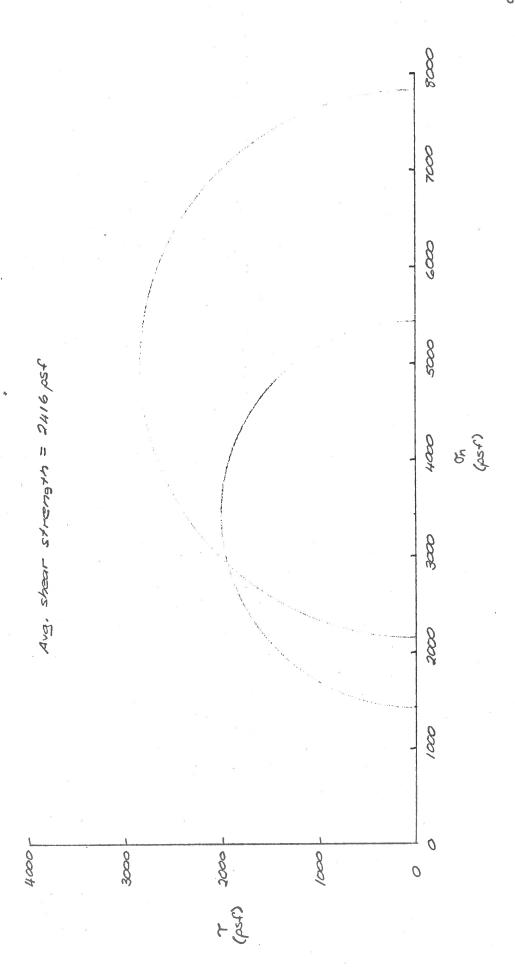

Red sitty clay. Deg. of sat. = 100%.

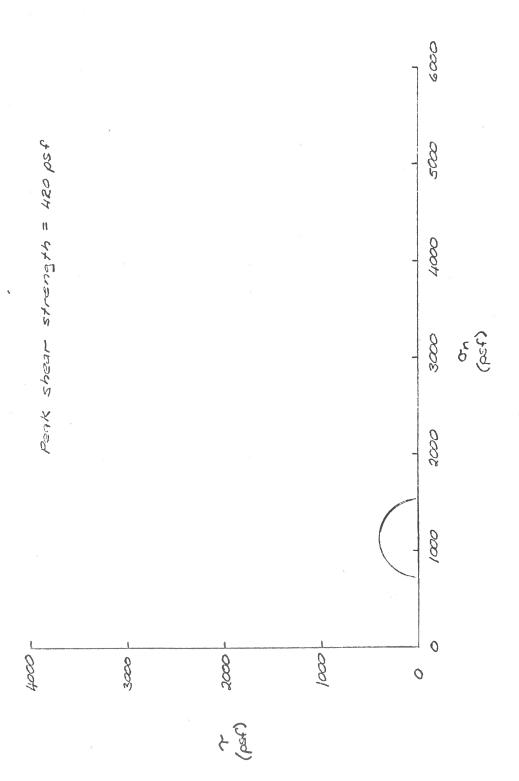


Sample D-5
Red clay with traces of silt, Deg. of sat. = 100%






Sample D-T Red silty clay, veg. of sat. = 95-100%.



Very sitty and sandy red clay. Deg. of sat. = 98%.

APPENDIX D

New York State Computer Program Listing

LEVEL 20 MAIN DATE = 72033 18/01/03	SLICE=SLICE+WEIGHT(M)*WIDTH*(YS-YC) YC=YS	83 IF(M-1) 85,85,84	84 M=M-1 GJ TO 79	85 ALPHA=ATAN((HORZON-XS)/(VERTCL-YCI)) PARTA=PARTA+(SLICE+SEEP#SIN(BET(L)))#SIN(ALPHA)+SFFP#COS(BET(L)))#(1VERTCL-YCI-(YW-YCI)/2.)/RADIUS PARTB=PARTB+(COHES(NSOIL(1))*WIDTH+(SLICE+SEEP*SIN(BET(L)))*TAN(PH	11(NSOIL(1))))/(FSOLD*COS(ALPHA)+TAN(PHI(NSOIL(1)))*SIN(ALPHA)) 86 PARTC=PARTC+(COHES(NSOIL(1))*WIDTH+(SLICE+SEEP*SIN(BET(L)))*TAN(PH	2 (FSULUS)) *SIN(ALPHA)) **2)	FSBIS=FSOLD*(1(PARTA-PARTB)/(PARTA-PARTC))	C. IF FSBIS IS NOT NEARLY EQUAL TO FSOLD, REPLACE FSOLD WITH FSBIS AND C. COMPUTE A NEW FSBIS	IF(ABS(FSBIS-FSOLD)001) 89,89,88 88 FSOLD=FSBIS		C SEARCH USING FSNYS OR FSBIS DEPENDING ON OPTION ITER 89 IF(ITER) 90.90.91	90 IRAD=IRAD+1	NTO 11 MAD = TON 15	91 IRAD=IRAD+1	92 TELLANTECN	970	93 SEPMOM=SEPMOM*。001	DRVMOM=DRVMOM*.001	CHASHWAINTENANCOI	PHIMUM=PHIMUM*.001 PRINT 94; SEPMOM,DRVMOM,PHIMOM,CHSMOM,HORZON,VERTCL,RADIUS,FSNYS,F	15815 94 FJRMAT (4F9.0,3F7.1,2F7.3)			. NEW F.S. IF GREALEK, CHANGE CIRCLE CENTER LOCATION 96 IF(RFS(IRAD)-RFS(IRAD-1)) 97,97,98	97 RADIUS=RADIUS+RADINC GD TO 21	98 IHOR=IHOR+1	XRAD(IHOR)=RADIUS-RADINC HES IS THE MINIMUM ES COMPUTED AT A CIRCLE CENTER LOCATION	THE STATE STATES AND A STREET
FORTRAN IV G	0193	0195	0196	0198 0199	0500	0201	0000			0204 0205	0206	0207	0208	0210	0211	0213		0214	0215	0216	0218	0219	0	0220	0221	0222 0223	0224	0225 C	,

```
18/01/03
                                                                                                                                                                    ARRANGE ELEMENTS OF XSEC IN ORDER OF MAGNITUDE AND STORE IN ASEC K IS NOW THE NUMBER OF ELEMENTS IN ASEC
                                                                                                                                                                                                                                                                                                                                           INITIALIZE COMPONENTS OF NEW YORK STATE FACTOR OF SAFETY
    DATE = 72033
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          42 IF((ASEC(I+1)-ASEC(I))-(.1*RADIUS)) 43,43,44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             44 IF ((ASEC(I+1)-ASEC(I))-(.5*RADIUS)) 45,45,46
                                                                                                                                                                                                                                                                                                                                                                                                                                        DETERMINE WIDTH OF ALL SLICES IN SESMENT I
IF ((ASEC(I+1)-ASEC(I))-2.) 41,41,42
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NSLIC IS THE NUMBER OF SLICES IN SEGMENT WIDTH= (ASEC(I+1)-ASEC(I))/ASLIC
                       DELETE DUPLICATE ELEMENTS FROM XSEC
                                                                       DO 35 J=II,K
IF(XSEC(I)-XSEC(J)) 35,33,35
                                                                                                                                                                                                                     IF(I-J) 37,39,37
37 IF(XSEC(I)-XSEC(J)) 39,38,38
38 B=XSEC(J)
                                                                                                                                                                                                                                                                                                                                                                                                                   LOOP FOR NUMBER OF SEGMENTS KI
                                                                                                                                                                                                                                                                                                        IF (K-1)163,163,164
                                                                                               33 DO 34 L=J,K1
34 XSEC(L)=XSEC(L+1)
                                                                                                                                                                                                                                                                                39 CONTINUE
40 ASEC(I)=XSEC(I)
                                                                                                                                                                                                                                                         XSEC(J)=XSEC(I)
XSEC(I)=B
                                                                                                                                                                                                                                                                                                                    163 NUMRAD=NUMRAD-1
                                              00 35 I=1,K1
                                                                                                                                                                                                                                                                                                                                                                                                                               DJ 62 I=1,KI
                                                                                                                                                                                               N<sub>1</sub>=1 04 CO
DO 39 J=I,K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  46 NSLIC=20
47 ASLIC=NSLIC
                                                                                                                                                                                                                                                                                                                                                        164 SEPMOM=0.
                                                                                                                                                                                                                                                                                                                                                                    CHSMOM=0.
                                                                                                                                                                                                                                                                                                                                                                               PHIMUM=0.
                                                                                                                                                                                                                                                                                                                                                                                            DR VMOM=0.
                                                                                                                                                           35 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GD TU 47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GD TO 47
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           45 NSLIC=10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G0 T0 47
                                                                                                                                    K1 = K1 - 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   41 NSLIC=1
                                                              I + I = I I
                                     215 K1=K-1
                                                                                                                         K=K-1
                                                                                                                                               1-1-1
                                                                                                                                                                                                                                                                                                                                                                                                         [=]
FURTRAN IV G LEVEL
                                                                                                                                                                                                            36
                                                                                                                                                                                                                                                                                                                                            ں
                                                                                                                                                                      ں ں
                                                                                                                                                                                                                                                                                                                                                                                                                    ر
                                                                                                                                                                                                                                                                                                                                                                                                                                           ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ن
                                                                                             0080
                                    0075
                                                           0077
0078
                                                                                  6200
                                                                                                          0081
                                                                                                                                  0083
                                                                                                                                             0084
                                                                                                                                                                                              9800
                                                                                                                                                                                                                     0088
                                                                                                                                                                                                                                 6800
                                                                                                                                                                                                                                             0600
                                                                                                                                                                                                                                                                               6600
                                                                                                                                                                                                                                                                                                                    9600
                                                                                                                                                                                                                                                                    0092
                                                                                                                                                                                                                                                                                            7600
                                                                                                                                                                                                                                                                                                                                                        8600
                                                                                                                                                                                                                                                         1600
                                                                                                                                                                                                                                                                                                       9600
                                                                                                                                                                                                                                                                                                                               7600
                                                                                                                                                                                                                                                                                                                                                                  6600
                                                                                                                                                                                                                                                                                                                                                                               0100
                                                                                                                                                                                                                                                                                                                                                                                         0101
                                                                                                                                                                                                                                                                                                                                                                                                                                                     0104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0109
                                                                                                                                                                                                                                                                                                                                                                                                                               0103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0111
0112
0113
0114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0115
```

18/01/03													*(VERICL-YC					LHR (M)-SOIL												E SOIL))*RADIUS					
DATE = 72033			CEMIEKLINE OF THE SLICE	LE AT XS ((XS-HORZON)*(XS-HORZON)				WATER TABLE AT XS	(BET(L))				*(HORZON-XS)+COS(BET(L))		OF SLICE			DILVL(M)-SOILVR(M))/(SOI							M AT SLICE CENTERLINE					LINE WHICH DESCRIBES THE	C	IDTH*(RADIUS/(VERICL-YCI		FOR BISHOP ITERATION EPHON		IE PRUGRAM	
20 MAIN	XS=ASEC(I)-WIDIH/2.	LOOF FOR SELECT IN SECRENI DO 61 J=1,4/SLIC YOUR YEAR YEARSHARE OF THE CONTENTS	XS=XS+WIDTH	IS THE Y-COORDINATE OF THE CIRCLE AT XS YC=VERTCL-SQRI((RADIUS*RADIUS)-((XS-HORZON)*(XS-HORZON)))	YCI=YC		60 10 48	IS THE Y-COORDINATE OF THE WATER	YW=WAIRVL(L)-(XS-WATRHL(L))*TAN(BET(L))	SEEP IS THE SEEPAGE FORCE	51 SEEP=0	G3 TU 53 SEFD=WIDIH#(VW-VC)#62 A*SIN/DET	SEPMOM=SEPMOM+SEEP*(SIN(BET(L))*(HORZON-XS)+COS(BET(L))*(VERTCL-YC	1-(YW-YC)/2.))	COMPOSE SESCE WHICH IS THE WEIGHT (M=NSL	54 YS=SOILVL(M)-((XS-SOILHL(M))*(SOILVL(M)-SOILVR(M))/(SOILHR(M)-SOIL	TE(VC_VC) 50 50 55	IF (XS-SOILHL(M)) 58,58,56	IF(SOILHR(M)-XS) 58,58,57		NSOIL(N)=M	SLICE=SLICE+WEIGHT(M) *WIDTH* (YS-YC)	IS THE Y-COURDINATE OF SOIL LINE M	TC=T3	M=M-1	60 10 54	60 DRVMOM=DRVMOM+SLICE*(HORZON-XS)	NSGIL(I) IS THE NUMBER OF THE SOIL LINE PROPERTIES AT THE ROTTOM OF THE SITE	PHIMOM=PHIMOM+SLICE*TAN(PHI(NSDI)(1)))*(VERIC) -VCI)	CHSMOM=CHSMOM+COHES(NSOIL(1))*WIDTH*(RADIUS/(VERICL-YCI))*RADIUS	CONTINUE	FSULD IS THE ULD FACIUR OF SAFETY FOR BISHOP ITERATION FSUYS=(PHIMOM+CHSMOM)/(DRVMOM+SEPMOM)	FSOLD=FSNYS+.2	FSNYS IS LESS THAN 0.60 TERMINATE PRUSRAM	1F(FSNYS6) 63,65,65
	X	Y 0 1		7C I	γ				۲ O ک	SEEP	51 \$	52 0	53 S	1-1) E D S	2	Σ	7 + ₹		55 I	1 95	57 N	Z		YS		59 M	• 5	09	NSCI	4	61 C	62 61	T 20 T	ŭ.	H H	=
G LEVEL	(ے د	د	S				ں		ں				(د									(ن					ں ر)		Ĺ	ر		ی	
9 ^ I																																					
FURTRAN	0116	0117	0118	0119	0120	0122	0123		0124	4	0126	0127	0129		0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0170	0140	0142	0143	0144		0145	0146	0147	0148	0149	02.00	0100

PASE

```
18/01/03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          79 YS=SOILVL(M)-((XS-SOILHL(M))*(SOILVL(M)-SOILVR(M))/(SOILHR(M)-SOIL
                                         SAFETY, /, 12X, 18HOF LESS
                                                                                                                                                                                                                                                                                                                                                                                       YC=VERTCL-SQRI((RADIUS*RADIUS)-((XS-HORZON)*(XS-HORZON)))
    DATE = 72033
                                                                                                                                                                                                                   67 IF((ASEC(I+1)-ASEC(I))-(.1*RADIUS)) 68,68,69
                                                                                                                                                                                                                                                        IF ((ASEC(I+1)-ASEC(I))-(.5*RADIUS)) 70,70,71
                                                               GO TO 125
INITIALIZE COMPONENTS OF BISHOP SAFETY FACTOR
                      63 PRINT 64
64 FORMAT(/,5X,33HA NEW YORK STATE FACTOR OF
1THAN 0.600,/,11X,20HHAS BEEN ENCOUNTERED)
                                                                                                                                                                 DETERMINE WIDTH OF ALL SLICES IN SEGMENT I
IF ((ASEC(1+1)-ASEC(1))-2.) 66,66,67
                                                                                                                                                                                                                                                                                                                                                                                                                                                      75 YW=WATRVL(L)-(XS-WATRHL(L))*IAN(BET(L))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SEEP=WIDIH*(YW-YC)*62.4*SIN(BET(L))
                                                                                                                                                                                                                                                                                                           ASLIC=NSLIC
WIDIH=(ASEC(I+1)-ASEC(I))/ASLIC
                                                                                                                                         LOOP FOR NUMBER OF SEGMENTS KI
                                                                                                                                                                                                                                                                                                                                                                                                       73 IF(XS-WAIZHR(L)) 75,75,74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               80 IF(XS-SOILHL(M)) 83,83,81
81 IF(SOILHR(M)-XS) 83,83,82
82 N=N+1
  MAIN
                                                                                                                                                                                                                                                                                                                                                 LOOP FOR SLICES IN SEGMENT
                                                                                                                                                                                                                                                                                                                                     XS=ASEC(I)-WIDTH/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (YS-YC) 83,83,80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF (YW-YC) 76,76,77
                                                                                                                                                                                                                                                                                                                                                              DO 86 J=1,NSLIC
XS=XS+WIDTH
                                                                                                                                                     DO 87 I=1,K1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NSCIL (N)=W
                                                                                                                                                                                                                                                         69 IF ((ASEC)
70 NSLIC=10
                                                                                        65 PARTA=0.
                                                                                                      PARTB=0.
                                                                                                                 PARTC=0.
                                                                                                                                                                                                        60 10 72
                                                                                                                                                                                                                                              G0 T0 72
                                                                                                                                                                                                                                                                                 GD TO 72
                                                                                                                                                                                                                                                                                              71 NSLIC=20
72 ASLIC=NSL
                                                                                                                                                                                                                                                                                                                                                                                                                                          60 TO 73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO TO 78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SLICE=0.
                                                                                                                                                                                           66 NSLIC=1
                                                                                                                                                                                                                                 68 NSLIC=5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                76 SEEP=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1HL(M))
                                                                                                                                                                                                                                                                                                                                                                                                      YC I = YC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               M=NSL
FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    78
                                                                             ں
                                                                                                                                          ں
                                                                                                                                                                  ں
                                                                                                                                                                                                                                                                                                                                                  ب
                                                                                                                                                                                                                                                                                                                                                            0172
0173
0175
0175
0175
0177
0177
0178
                          0151
                                     0152
                                                               0153
                                                                                       0154
                                                                                                  0155
                                                                                                              0156
                                                                                                                                                   0158
                                                                                                                                                                             0159
                                                                                                                                                                                           0910
                                                                                                                                                                                                      0161
                                                                                                                                                                                                                                0163
                                                                                                                                                                                                                                                        0165
0166
0167
                                                                                                                                                                                                                                                                                                                       0170
                                                                                                                                                                                                                                              0164
                                                                                                                                                                                                                                                                                               8910
                                                                                                                                                                                                                                                                                                            0169
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0183
0184
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0186
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0189
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0191
```

```
100 IF(HFS(IHOR)-HFS(IHOR-1)) 101,101,102
IF INDEX IS ZERO, SEARCH IS PROCEEDING TO RIGHT, IF POSITIVE, SEARCH
IS PROCEEDING TO LEFT ON HORIZONFAL LINE PRESENTLY BEING SEARCHED
                                                                                                                                           IF HES AT NEW LUCATION IS LESS THAN HES AT PREVIOUS LOCATION, CONTINUE IN SAME HORIZONTAL DIRECTION. IF GREATER, AND MORE THAN TWO LOCATIONS HAVE BEEN TRIED ON SAME HORIZONTAL LINE, INCREASE VERTCL BY GRID AND COMPUTE MINIMUM HES ON NEW HORIZONTAL LINE. IF GREATER AND UNLY TWO LOCATIONS HAVE BEEN TRIED, PROCEED TOWARD LEFT ON SAME HORIZONTAL LINES
                                              IF UNLY UNE LOCATION HAS BEEN USED, INCREASE HORZON BY GRID AND
   DATE = 72033
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VFS IS THE MINIMUM HFS ON HORIZONTAL LINE
                                                                                                                                                                                                                                                                                                                                                                                         IF (HFS (IHUR)-HFS(1)) 105,105,109
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RADIUS=RADIUS-RADINC*2.+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RADIUS=RADIUS-RADINC *2.+GRID
 MAIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CRAD(IVER)=XRAD(IHOR-1)
                                                                                                99 RADIUS=RADIUS-RADINC*2.
                                                                                                                                                                                                                                                                                                                                                          RADIUS=RADIUS-RADINC*2.
                                                                                                                                                                                                                                                                                                                                                                                                                                           RADIUS=RADIUS-RADINC*2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(INUEX-1) 110,110,111
                                                                                                                                                                                                                                                                                                           IF(IHUR-2) 103,103,106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CHOR (IVER) = HORZON-GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CHOR (IVER)=HORZON+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF(INDEX) 107,107,109
                               HFS(IHOR)=RFS(IRAD-1)
                                                                                                                                                                                                                                                                                                                                            HORZON-HORZON-GRID*2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            VFS(IVER)=HFS(IHOR-1)
                                                                                 IF(IHOR-1) 99,99,100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(IVER-1) 19,19,112
                                                                                                                                                                                                                                                                                           IF(INDEX) 99,99,104
                                                                                                                HORZON=HORZON+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HORZON=HORZON-GRID
                                                                                                                                                                                                                                                                                                                                                                                                                            HORZUN=HURZON-GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HORZON=HORZON+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         VERTCL=VERTCL+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VERICL=VERICL+GRID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CRAD(IVER)=XRAD(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CVER (IVER) = VERTCL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CVER (IVER) = VERICL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VFS(IVER)=HFS(1)
                                                                                                                                                                                                                                                                                                                                                                                                            INDEX=INDEX+1
                                                                COMPUTE NEW HFS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IVER=IVER+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IVER=IVER+1
                                                                                                                              GD TO 20
                                                                                                                                                                                                                                                                                                                                                                              G0 T0 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                            G0 T0 20
                                                                                                                                                                                                                                                                                                                               [NDEX=1
 20
                                                                                                                                                                                                                                             001
                                                                                                                                                                                                                                                                                           101
102
103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            901
                                                                                                                                                                                                                                                                                                                                                                                             104
                                                                                                                                                                                                                                                                                                                                                                                                          105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          109
FORTRAN IV 6 LEVEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          107
                                                                                                                                               000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ب
                                                                                             0228
                                                                                                              0229
                                                                                0227
                                                                                                                                                                                                                                                                                            0232
                                                                                                                                                                                                                                                                                                                            0234
                                                                                                                                                                                                                                                                                                                                            0235
                                                                                                                                                                                                                                                                                                                                                          0236
                                                                                                                                                                                                                                                                                                                                                                                           0238
                                                                                                                                                                                                                                                                                                                                                                                                          0239
                                                                                                                                                                                                                                                                                                                                                                                                                                                         0242
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0245
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0247
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0250
                                                                                                                                                                                                                                             0231
                                                                                                                                                                                                                                                                                                            0233
                                                                                                                                                                                                                                                                                                                                                                                                                                           0241
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0243
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0244
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0249
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0253
                               0226
                                                                                                                                                                                                                                                                                                                                                                                                                           0540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0246
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0248
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0252
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0254
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0255
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0258
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0256
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0239
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0262
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0261
```

FORTKAN IV 6 LEVEL 20 MAIN DATE = 72033 18/01/03	111 VFS(IVER)=HFS(IHOR-1) CAAD(IVER)=XRAD(IHOR-1) IF(IVER-1) 19,19,112	C PRI			IINIMUM FACTOR OF SAFETY IS. F6.3)			11		121	10RZON IS ,F6.1,10x,10HVERTCL IS ,F6.1,/,20x,10HRADIUS IS .F6.1)	C PRINT OUT NUMBER OF SAFETY FACTORS COMPUTED AND NUMBER OF INCATIONS	1		1,9HLDCATIONS)	124 CONTINUE	60 TO 184	125	CZ
FOR IR	0263 0264 0265	0266	0267	0268	200	0270	0271	0272	0273	0274			0275	0276		0277	0278	0279	0280

UPTIONS IN EFFECT NOID, EBCDIC, SOURCE, NOLIST, NOJECK, LOAD, NOMAP
OPTIONS IN EFFECT NAME = MAIN , LINECNT = 50
STATISTICS SOURCE STATEMENTS = 280, PROGRAM SIZE = 12396
STATISTICS NO DIAGNOSTICS GENERATED

APPENDIX E

New York State Example Output

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

SLOPE STABILITY ANALYSIS

PROGRAM NO. S517300/SOILSL DEVELOPED FEBRUARY, 1970

INPUT DATA

	SOIL	LINES					
LINE	SOILHL	SOILVL	SOILHR	SOILVR	WEIGHT	PHI	COHES
	FT	FT	FT	FT	PCF	DEG	PSF
1	-15.00	0.0	0.0	0.0	120.00	36.0	0.0
2	0.0	0.0	2.50	-1.00	120.00	36.0	0.0
3	-15.00	-1.00	2.50	-1.00	112.00	3.0	700.00
4	2.50	-1.00	10.00	-4.00	112.00	3.0	700.00
5	-15.00	-4.00	10.00	-4.00	106.00	0.0	200.00
6	10.00	-4.00	17.50	-7.00	106.00	0.0	200.00
7	-15.00	-7.00	17.50	-7.00	108.00	3.0	200.00
8	17.50	-7.00	25.00	-10.00	108.00	3.0	200.00
9	-15.00	-10.00	25.00	-10.00	110.00	0.0	300.00
10	25.00	-10.00	37.50	-15.00	110.00	0.0	300.00
11	-15.00	-15.00	37.50	-15.00	112.00	5.0	300.00
12	37.50	-15.00	50.00	-20.00	112.00	5.0	300.00
13	-15.00	-20.00	50.00	-20.00	115.00	10.0	800.00
14	50.00	-20.00	70.00	-20.00	115.00	10.0	800.00
15	-15.00	-21.00	70.00	-21.00	52.50	10.0	800.00
16	-15.00	-35.00	70.00	-35.00	90.00	40.0	5000.00

WATER TABLE LINES LINE WATRHL WATRVL WATRHR WATRVR FT FT FT FT 1 -15.00 -21.00 70.00 -21.00

RADIUS INCREMENT IS 2.0 GRID INCREMENT IS 2.0

SEPMOM FT-KIP	DRVMOM FT-KIP	PHIMOM FT-KIP	CHSMOM FT-KIP	HORZON FT	VERTCL FT	RADIUS FT	FSNYS	FSBIS
	150. 214. 90. 139. 202. 107. 159. 224. 123. 185. 259. 112. 171. 245. 134. 196. 273.	41. 105. 21. 37. 97. 26. 44. 112. 28. 48. 121. 25. 43. 112. 31. 52. 130.	258. 542. 180. 246. 528. 210. 275. 550. 236. 302. 620. 218. 292. 609. 252. 319. 626.	25.0 25.0 27.0 27.0 23.0 23.0 23.0 25.0 25.0 27.0 27.0 27.0 23.0 23.0 23.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.0 22.0 18.0 20.0 22.0 18.0 20.0 22.0 20.0 22.0 24.0 20.0 22.0 24.0 20.0 22.0	1.994 3.026 2.236 2.031 3.087 2.206 2.009 2.950 2.140 1.890 2.856 2.172 1.959 2.947 2.114 1.891 2.768	2.015 3.080 2.261 2.059 3.141 2.215 2.029 3.008 2.151 1.906 2.906 2.188 1.980 2.995 2.121 1.912 2.824
0 -	150.	33.	280.	25.0	4.0	22.0	2.076	2.083

0.	223.	55.	342.	25.0	4.0	24.0	1.779	1.793
0.	308.	137.	695.	25.0	4.0	26.0	2.703	2.750
0.	136.	29.	260.	27.0	4.0	22.0	2.117	2.128
0.	205.	50.	340.	27.0	4.0	24.0	1.901	
0.	290.	127.	688.	27.0	4.0	26.0		1.917
0.	164.	36.	293.	23.0			2.808	2.851
0.	237.	60.			4.0	22.0	2.005	2.013
			361.	23.0	4.0	24.0	1.779	1.800
0.	322.	148.	701.	23.0	4.0	26.0	2.635	2.687
0.	180.	38.	324.	25.0	6.0	24.0	2.007	2.013
0.	264.	63.	379.	25.0	6.0	26.0	1.669	1.684
0.	358.	155.	772.	25.0	6.0	28.0	2.585	2.630
0.	163.	33.	304.	27.0	6.0	24.0	2.069	2.075
0.	242.	57.	389.	27.0	6.0	26.0	1.839	1.852
0.	340.	143.	764.	27.0	6.0	28.0	2.672	2.714
0.	197.	42.	330.	23.0	6.0	24.0	1.886	1.898
0.	278.	69.	402.	23.0	6.0	26.0	1.693	1.714
0.	372.	166.	779.	23.0	6.0	28.0	2.543	2.590
0.	213.	43.	361.	25.0	8.0	26.0	1.898	1.907
0.	308.	71.	417.	25.0	8.0	28.0	1.584	1.598
0.	409.	173.	851.	25.0	8.0	30.0	2.506	2.547
0.	193.	38.	352.	27.0	8.0	26.0	2.026	2.030
0.	283.	65.	430.	27.0	8.0	28.0	1.747	1.761
0.	391.	161.	843.	27.0	8.0	30.0	2.569	2.608
0.	232.	48.	368.	23.0	8.0	26.0	1.796	1.808
0.	320.	78.	445.	23.0	8.0	28.0	1.633	1.653
0.	421.	186.	859.	23.0	8.0	30.0	2.479	2.523
0.	248.	49.	400.	25.0	10.0	28.0		
0.	351.	79.	456.	25.0	10.0		1.813	1.822
0.	459.	192.	932.	25.0		30.0	1.524	1.537
0.	224.	43.	391.		10.0	32.0	2.450	2.489
0.	326.	73.		27.0	10.0	28.0	1.938	1.943
0.	442.	178.	473.	27.0	10.0	30.0	1.674	1.688
0.			924.	27.0	10.0	32.0	2.495	2.531
	266.	54.	408.	23.0	10.0	28.0	1.736	1.748
0.	362.	87.	489.	23.0	10.0	30.0	1.591	1.610
0.	471.	206.	941.	23.0	10.0	32.0	2.435	2.476
0.	283.	55.	439.	25.0	12.0	30.0	1.749	1.758
0.	395.	88.	496.	25.0	12.0	32.0	1.479	1.491
0.	510.	212.	1016.	25.0	12.0	34.0	2.409	2.445
0.	259.	49.	430.	27.0	12.0	30.0	1.849	1.857
0.	369.	81.	516.	27.0	12.0	32.0	1.620	1.634
0.	493.	197.	1007.	27.0	12.0	34.0	2.441	2.475
0.	300.	61.	449.	23.0	12.0	30.0	1.695	1.706
0.	404.	97.	535.	23.0	12.0	32.0	1.563	1.581
0.	521.	227.	1026.	23.0	12.0	34.0	2.405	2.443
0.	317.	61.	480.	25.0	14.0	32.0	1.705	1.714
0.	438.	97.	537.	25.0	14.0		1.448	1.458
0.	561.	232.	1102.	25.0	14.0	36.0	2.380	2.414
0.	294.	54.	471.	27.0	14.0 14.0	32.0	1.784	1.791
0.	412.	90.	561.	27.0	14.0	34.0	1.581	1.594
0.	544.	216.	1092.	27.0	14.0	36.0	2.404	2.436
0.	335.	67.	490.	23.0	14.0	32.0	1.664	1.674
0.	446.	106.	581.	23.0	14.0	34.0	1.543	1.560
0.	571.	249.	1112.	23.0	14.0	36.0	2.383	2.419
0.	352.	67.	523.	25.0	16.0	34.0	1.674	1.682
0.	481.	106.	579.	25.0	16.0	36.0	1.424	1.434
0.	611.	253.	1191.	25.0	16.0	38.0	2.363	2.395
0.	329.	60.	512.	27.0	16.0	34.0	1.735	1.742
0.	454.	99.	607.	27.0	16.0	36.0	1.554	
0.	595.	235.	1180.	27.0	16.0	38.0	2.377	1.566
0.	370.	74.	533.	23.0	16.0	34.0	1.643	
0.	488.	117.	629.	23.0	16.0	36.0	1.528	1.653
0.	622.	272.	1201.	23.0	16.0			1.544
0.	387.	74.	566.	25.0	18.0	38.0	2.370	2.405
0.	525.	116.	622.	25.0		36.0	1.653	1.661
0.	662.	275.	1281.	25.0	18.0 18.0	38.0 40.0	1.406	1.415
0.	364.	66.	554.	27.0	10 0	34 0	2.349	2.380
~ -	2010	00+	ノノて。	C100	18.0	36.0	1.702	1.708

0.	498.	108.	655.	27.0	18.0	38.0	1.532	1.544
0.	647.	256.	1269.	27.0	18.0	40.0		
0.	404.	81.	577.	23.0	18.0	36.0		1.639
0.	530.	128.	678.	23.0	18.0	38.0	1.518	1.533
0.	672.	295.	1293.	23.0	18.0	40.0	2.362	
0.	422.	81.	610.	25.0	20.0	38.0		2.395
0.	568.	126.	667.	25.0			1.636	1.643
0.	714.	298.	1373.		20.0	40.0	1.394	1.402
0.	400.			25.0	20.0	42.0	2.342	2.371
		72.	597.	27.0	20.0	38.0	1.676	1.682
0.	540.	118.	703.	27.0	20.0	40.0	1.518	1.529
0.	698.	277.	1361.	27.0	20.0	42.0	2.344	2.371
0.	439.	89.	622.	23.0	20.0	38.0	1.620	1.628
0.	573.	139.	728.	23.0	20.0	40.0	1.513	1.527
0.	723.	319.	1386.	23.0	20.0	42.0	2.358	2.390
0.	457.	88.	655.	25.0	22.0	40.0	1.624	1.631
0.	612.	136.	712.	25.0	22.0	42.0	1.385	1.392
0.	765.	321.	1468.	25.0	22.0	44.0	2.339	2.367
0.	435.	79.	641.	27.0	22.0	40.0	1.656	1.662
0.	583.	127.	752.	27.0	22.0	42.0	1.507	1.517
0.	750.	298.	1454.	27.0	22.0	44.0	2.337	2.363
0.	474.	96.	668.	23.0	22.0	40.0	1.614	1.622
0.	615.	150.	779.	23.0	22.0	42.0	1.510	1.523
0.	773.	343.	1481.	23.0	22.0	44.0	2.359	2.389
0.	492.	95.	701.	25.0	24.0	42.0	1.617	1.623
0.	656.	147.	757.	25.0	24.0	44.0	1.378	1.385
0.	816.	344.	1564.	25.0	24.0	46.0	2.339	2.365
0.	470.	85.	687.	27.0	24.0	42.0	1.642	1.647
0.	627.	137.	802.	27.0	24.0	44.0	1.500	1.509
0.	802.	320.	1550.	27.0	24.0	46.0	2.333	2.358
0.	509.	104.	715.	23.0	24.0	42.0	1.610	1.618
0.	658.	162.	831.	23.0	24.0	44.0	1.509	1.521
0.	819.	368.	1542.	23.0	24.0	46.0	2.333	
0.	527.	102.	748.	25.0				2.361
0.	700.	157.	804.	25.0	26.0 26.0	44.0	1.612	1.618
0.	867.	368.	1662.	25.0		46.0	1.374	1.380
0.	505.	92.	733.		26.0	48.0	2.342	2.368
0.	670.	148.	854.	27.0	26.0	44.0	1.632	1.637
0.	853.	343.	1647.	27.0	26.0	46.0	1.495	1.503
0.	544.			27.0	26.0	48.0	2.332	2.355
0.	700.	112. 174.	763.	23.0	26.0	44.0	1.609	1.616
0.	857.	393.	883.	23.0	26.0	46.0	1.509	1.521
0.	563.	110.	1580.	23.0	26.0	48.0	2.302	2.331
0.			796.	25.0	28.0	46.0	1.609	1.615
0.	744. 912.	168.	852.	25.0	28.0	48.0	1.372	1.378
0.		392.	1719.	25.0	28.0	50.0	2.315	2.339
	541.	99.	779.	27.0	28.0	46.0	1.625	1.629
0.	713.	159.	906.	27.0	28.0	48.0	1.492	
0.	905.	366.	1746.	27.0	28.0	50.0	2.333	2.356
0.	579.	120.	811.	23.0	28.0 28.0	46.0 48.0	1.610	1.617
0.	740.	185.			28.0		1.498	1.509
0.	890.	418.			-000	50.0	2.311	2.339
0.	598.	117.	844.	25.0	30.0 30.0	48.0 50.0	1.609	1.614
0.	787.	180.		25.0	30.0	50.0	1.372	1.377
0.	951.	417.	1761.	25.0	30.0	52.0	2.290	2.315
0.	576.	106.	827.	27.0	30.0	48.0	1.620	1.624
0.	757.	169.	959.			50.0	1.491	1.499
0.	956.	389.		27.0	30.0	52.0	2.338	2.360
0.	614.	129.	861.	23.0	30.0	48.0	1.613	1.619
0.	774.	197.	924.	23.0	30.0	50.0	1.448	1.461
0.	920.	445.	1720.	23.0	30.0	52.0	2.354	2.382
0.	633.	125.	894.	25.0	32.0	50.0	1.610	1.615
0.	828.	190.	939.	25 0	22 0	F 2 0	1.363	1.368
0.	985.	442.	1816.	25.0	32.0	54.0	2.291	2.316
0.	612.	114.	876.	27.0	32.0		1 (10	1.622
0.	800.	181.	876. 1012.	27.0	32.0 32.0	52.0	1.492	1.499
0.	1002.	413.	1905.	27.0	32.0	54.0	2.313	2.334
0.	648.	137.	911.	23.0	32.0	50.0	1.617	1.623

```
0. 804. 209.
0. 946. 472.
0. 668. 133.
0. 864. 202.
0. 1016. 468.
0. 647. 121.
0. 843. 192.
0. 1042. 437.
0. 679. 145.
0. 831. 222.
0. 969. 499.
0. 703. 142.
0. 897. 213.
0. 1044. 495.
0. 682. 129.
                         927. 23.0 32.0 52.0 1.412 1.426
                      1802.
                               23.0 32.0 54.0 2.405 2.433
                       944.
                               25.0 34.0
                                            52.0 1.612 1.617
                         935.
                                25.0 34.0
                                             54.0 1.315
                                       34.0
                                25.0
                        1899.
                                              56.0 2.330
                                                          2.354
                         925.
                                27.0
                                       34.0
                                              52.0 1.617
54.0 1.493
                                                          1.621
1.501
                       1067.
                                      34.0
                                27.0
                                27.0 34.0
                                                          2.312
                       1950.
                                              56.0 2.291
                        938.
                               23.0 34.0
                                              52.0 1.594 1.600
                         944.
                               23.0 34.0
                                             54.0 1.404 1.417
                      1886.
                               23.0
                                       34.0
                                             56.0 2.462 2.490
                                                    1.616
                         995.
                                                          1.620
                                25.0
                                       36.0
                                              54.0
                         933.
                                25.0
                                       36.0
                                              56.0
                                                    1.279
                              25.0
   2.375 2.399
                       1984.
                                       36.0
                                            58.0
 0.
                               27.0 36.0
                                             54.0 1.618 1.621
 0.
                       1121. 27.0 36.0 56.0 1.496
                                                          1.503
 0.
                               27.0 36.0 58.0 2.282 2.303
                               23.0
23.0
 0.
                                                    1.551
                                                          1.557
                                       36.0
                                              54.0
                                      36.0
                                             56.0
 0.
                                                    1.422
                                                           1.436
                              23.0 36.0
                                             58.0 2.523 2.549
 0.
 0.
                               25.0 38.0 56.0 1.611
                                                          1.615
 0.
                              25.0 38.0 58.0 1.250 1.258
 0.
                              25.0
                                       38.0 60.0 2.425
                                                          2.449
                               27.0
 0.
                                       38.0
                                              56.0
                                                   1.620
                                                          1.623
                              27.0
27.0
 0.
                                       38.0
                                              58.0
                                                    1.453
                                                          1.460
 0.
                                       38.0
                                              60.0
                                                    2.315
                                                           2.337
                              23.0 38.0
 0.
                                             56.0 1.518
                                                          1.525
 0.
                               23.0 38.0
                                             58.0 1.445
                                                          1.458
                              23.0 38.0
 0.
                                             60.0 2.587 2.613
                               25.0
 0.
                                      40.0
                                             58.0 1.568 1.572
                              25.0
                                                          1.269
                                             60.0 1.261
62.0 2.479
 0.
                                       40.0
                                             60.0
 0.
                               25.0
                                       40.0
                                                           2.502
                              27.0
 0 .
                                       40.0
                                             58.0 1.623 1.626
               226.
       954.
0.
                               27.0
                                                          1.428
                                       40.0
                                             60.0 1.419
     1139.
 0.
               513.
                      2170.
                               27.0
                                       40.0
                                             62.0 2.354 2.376
                               23.0
      753.
897.
1027.
                        953.
                                       40.0
 0.
                170.
                                             58.0 1.491
                                                          1.500
                               23.0
23.0
 0.
                263.
                        1056.
                                       40.0
                                              60.0 1.470 1.484
0 .
                580.
                        2147.
                                       40.0
                                              62.0 2.655 2.680
```

SEARCH HAS USED BISHOP FACTOR OF SAFETY
THE MINIMUM FACTOR OF SAFETY IS 1.258
THE CRITICAL CIRCLE CENTER COURDINATES ARE
HORZON IS 25.0 VERTCL IS 38.0
RADIUS IS 58.0

188 FACTORS OF SAFETY HAVE BEEN COMPUTED AT 63 LOCATIONS

APPENDIX F

LEASE I Example Output

LEASE

POINT DATA

- 5 31
- 2 20 31
- 3 5 30
- 4 22.5 30
- 5 5 27
- 6 30 27
- 7 5 24
- 8 37.5 24
- 9 5 21
- 10 45 21
- 11 5 16
- 12 57.5 16
- 13 5 11
- 14 70 11
- 15 90 11
- 16 5 10
- 17 90 10

LINE DATA

- 1 1 2 1
- 2 = 2 4 1
- 3 3 4 2
- 4 4 6 2
- 5 5 6 3
- 6 6 8 3
- 7 7 8 4
- 8 8 10 4
- 9 9 10 5
- 10 10 12 5
- 11 11 12 6

```
12
            12
                  14
                       6
       13
            13
                  14
                       7
       14
            14
                  15
                       7
       15
            16
                  17
       SUIL DATA
       1
            120
                 0
                       36
       2
                  700
            112
                       3
       3
            106
                 200
                       0
       4
            108
                 200
                       3
            110
                 300
            112
                 300
                       5
       6
       7
           115
                 800
                       10
           52.5 800
                       10
       GRID 1 65 57 2
                             60 37 3 30 32 5
                                                      5
  ORDERED LINE ARRAY
                                                              BNDS ARRAY
  NÜ
        PT
              PT
                  SOIL
                                      X-LEFT
                                                 Y-LEFT
                                                           X-RIGHT
                                                                       Y-RIGHT
                                                                                       SLOPE
   1
         -1
               2
                    1
                                         5.00
                                                   31.00
                                                               20.00
                                                                          31.00
                                                                                        0.0
   2
         2
               4
                                        20.00
                    1
                                                   31.00
                                                               22.50
                                                                          30.00
                                                                                       -0.400
   4
         4
               6
                    2
                                        22.50
                                                   30.00
                                                               30.00
                                                                          27.00
                                                                                       -0.400
   6
         6
               Ħ
                     3
                                        30.00
                                                   27.00
                                                               37.50
                                                                          24.00
                                                                                       -0.400
   8
         8
              10
                                        37.50
                                                   24.00
                                                               45.00
                                                                          21.00
                                                                                       -0.400
  10
        10
                                                               57.50
             12
                                        45.00
                                                   21.00
                                                                          16.00
                                                                                       -0.400
  12
        12
             14
                    6
                                        57.50
                                                   16.00
                                                               70.00
                                                                          11.00
                                                                                       -0.400
  14
        14
             15
                    7
                                        70.00
                                                   11.00
                                                               90.00
                                                                          11.00
                                                                                        0.0
   9
         9
              10
                    5
                                         5.00
                                                   21.00
                                                               45.00
                                                                          21.00
                                                                                        0.0
   3
         3
              4
                    2
                                         5.00
                                                   30.00
                                                               22.50
                                                                          30.00
                                                                                        0.0
  11
             12
        11
                    6
                                         5.00
                                                   16.00
                                                               57.50
                                                                          16.00
                                                                                        0.0
   7
         7
              8
                                         5.00
                                                   24.00
                                                               37.50
                                                                          24.00
                                                                                        0.0
  13
        13
             14
                    7
                                         5.00
                                                   11.00
                                                               70.00
                                                                          11.00
                                                                                        0.0
   5
         5
              6
                    3
                                         5.00
                                                   27.00
                                                               30.00
                                                                          27.00
                                                                                        0.0
  15
        16
             17
                    8
                                         5.00
                                                   10.00
                                                               90.00
                                                                          10.00
                                                                                        0.0
          NUMBER OF TOPLINES IS
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                        60.00 Y=
                                                     37.00
 3.214
        3.083
                  39.70
                           21
 3.192
         3.065
                  38.54
                           19
 3.246
        3.133
                  37.39
                           19
 3.242
         3.112
                  39.41
                           21
 3.191
         3.057
                  39.12
                           20
```

3.090

3.083

3.100

3.117

3.260

3.253

3.371

3.220

3.239

38.83

38.25

37.96

37.68

36.23

35.07

33.92

35.94

35.65

20

19

19

19

17

17

16

17

17

3.222

3.207

3.220

3.233

3.373

3.353

3.458

3.329

3.345

```
3.370
                  34.78
         3.274
                          17
  3.385
         3.292
                  34.50
                          17
  3.410
         3.321
                  34.21
                          17
  3.514
         3.432
                  32.76
                          15
  3.634
         3.565
                  31.60
                          14
  3.655
         3.598
                  30.45
  3.745
         3.696
                  29.29
                          12
  3.769
         3.732
                  28.14
                          11
  3.717
         3.689
                  26.98
  2.596
         2.584
                  25.82
                           9
  3.142
         3.133
                 24.67
                           7
  3.625
         3.600
                 26.69
  3.455
         3.434
                 25.40
                          9
  3.085
         3.068
                 26.11
                           9
  2.704
         2.694
                  25.53
                           9
  2.827
         2.817
                 25.24
                           9
  2.977
        2.969
                 24.96
                           8
 4.089 4.086
                 23.51
                           7
 6.295 6.295
                 22.35
 TOO FEW SLICES AT RAD=
                           21.20
 THE LEWEST FACTOR OF SAFETY FOUND WAS 2.596 AT R=
                                                      25.82
FSBSHP FSARML RADIUS NO.SLCS. X=
                                    61.00 Y=
                                                41.00
 3.225 3.119
                 41.73
                        21
        3.091
 3.188
                 40.69
                         19
 3.310
         3.219
                 39.66
                         19
 3.239
         3.135
                 41.47
                         21
 3.242
        3.141
                 41.21
                         21
 3.170
        3.070
                 40.95
                         20
 3.216 3.120
                 40.43
                         19
 3.245
        3.151
                 40.18
                         19
 3.278
        3.185
                 39.92
                         19
 3.372
         3.288
                 38.63
                         19
 3.403
        3.326
                 37.59
                         17
 3.444
        3.377
                 36.56
                         16
 3.558
        3.495
                 35.53
                         15
 3.594
        3.543
                 34.50
                         14
 3.667
        3.624
                 33.46
                        14
 3.743
        3.708
                 32.43
                         12
        3.630
 3.656
                 31.40
                         11
 3.348
        3.332
                 30.36
                         10
 2.738
        2.730
                 29.33
                         9
 3.332
                28.30
        3.329
                          8
 3.010
        2.996
                30.11
                          9
 2.531
        2.521
                29.85
                          9
 2.629
        2.621
                29.59
                          9
 2.859
        2.852
                29.07
                          9
 3.007
        3.001
                28.82
                          8
 3.158
        3.154
                28.56
                          8
 4.392
       4.391
                27.27
                          7
 6.879
        6.880
                26.23
                          õ
16.690 16.690
                25.20
                         4
THE LOWEST FACTOR OF SAFETY FOUND WAS 2.531 AT R=
                                                     29.85
FSBSHP FSNRML RADIUS NO.SLCS. X= 62.00 Y= 45.00
 3.275 3.190
                44.05
                        21
 3.214
        3.136
                43.12
                        20
       3.289
 3.361
                42.19
                        19
 3.298
       3.215
                43.81
                        21
 3.316
       3.240
                43.58
                        21
 3.268
       3.196
                43.35
                        21
 3.314
        3.238
                42.89
                        19
 3.330
        3.255
                42.66
                        19
 3.345
        3.272
                42.42
                        19
 3.422
       3.355
                41.26
                        19
```

3.359 3.256

35.36

17

```
3.410 3.351
                 40.34
                          17
  3.482
         3.430
                  39.41
                          17
  3.446
         3.381
                  41.03
                          18
  3.373
         3.310
                  40.80
                          17
  3.392
         3.331
                  40.57
                          17
  3.424
         3.368
                  40.11
                          17
  3.452
         3.397
                  39.87
                          1.7
  3.496
         3.442
                  39.64
                          1.7
  3.608
         3.562
                  38.48
                          16
  3.638
                  37.56
         3.600
                          14
 3.689
         3.658
                 36.63
                          14
 3.692
         3.667
                  35.70
                          13
  3.496
         3.478
                 34.78
                          11
 2.491
         2.484
                  33.85
                          10
 2.911
         2.906
                 32.92
                           9
 3.408
         3.393
                 34.54
                          11
 3.250
         3.237
                 34.31
                          11
 2.906
        2.896
                 34.08
                          10
 2.582
        2.576
                 33.62
                          10
 2.681
         2.675
                 33.39
                          10
  2.790
         2.785
                  33.15
                           9
 3.565
         3.564
                  32.00
                           8
 4.739
        4.739
                 31.07
                           7
 7.376
        7.379
                 30.14
                           6
13.481 18.481
                 29.21
THE LOWEST FACTOR OF SAFETY FOUND WAS 2.491 AT R=
                                                      33.85
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                    63.00 Y= 49.00
 3.321
        3.254
                 46.62
                         21
 3.325
        3.270
                 45.78
                          21
 3.437 3.379
                 44.94
                          19
 3.495
         3.443
                 44.11
                          19
 3.476
         3.430
                 43.27
                          17
 3.556
         3.515
                 42.44
                          16
                 43.90
 3.513
         3.462
                          18
 3.554
         3.505
                 43.69
                         1.8
 3.503
        3.455
                 43.48
                         17
 3.494
         3.449
                 43.06
                         17
 3.511
         3.468
                 42.85
                          17
 3.529
         3.487
                 42.64
                          17
 3.684
         3.648
                 41.60
                          16
 3.683
        3.654
                 40.76
                         14
 3.706
        3.683
                 39.93
                         14
 3.696
        3.662
                 41.39
                         16
 3.706
         3.673
                 41.18
                         16
 3.717
         3.685
                 40.97
                          15
 3.693
                 40.55
         3.665
                          14
 3.700
         3.674
                 40.35
                         14
 3.704
        3.679
                 40.14
                         14
 3.616
        3.598
                 39.09
                         13
 3.154
         3.143
                 38.26
                         11
 2.646
         2.642
                 37.42
                          10
 3.107
        3.105
                 36.58
                          9
 2.765
        2.757
                 38.05
                         1.1
 2.471
        2.466
                 37.84
                         10
 2.555
        2.550
                 37.63
                         10
        2.742
                 37.21
 2.745
                         10
 2.855
        2.852
                 37.00
                          10
 2.976
         2.973
                 36.79
                          10
 3.825
         3.826
                 35.75
                           3
 5.141
        5.143
                 34.91
                           6
 3.014
        8.017
                 34.08
20.426 20.426
                 33.24
                           4
THE LUWEST FACTOR OF SAFETY FOUND WAS 2.471 AT R=
                                                       37.84
FSBSHP FSNRML RADIUS NJ.SLCS. X= 64.00 Y= 53.00
```

```
3.402
         3.352
                 49.40
                          21
  3.409 3.364
                 48.64
                          21
  3.525 3.479
                 47.88
                          19
  3.588 3.545
                 47.12
                         19
  3.657
         3.621
                 46.37
                         18
  3.722
         3.690
                 45.61
                         16
  3.765
         3.737
                 44.85
                          16
  3.783
         3.760
                 44.09
                          15
  3.688
                 43.33
        3.670
                         13
  3.426
        3.413
                 42.58
                         12
  2.455
         2.451
                 41.82
                         10
  2.817
         2.815
                 41.06
                         10
  3.280
         3.268
                 42.39
                         12
  3.087
         3.077
                 42.20
                         12
  2.562
        2.555
                 42.01
                         12
 2.539
        2.536
                 41.63
                         1.0
  2.626
        2.623
                 41.44
                         10
 2.717
        2.714
                 41.25
                         10
 3.332
                 40.30
         3.331
                          9
 4.102
         4.103
                 39.55
                          8
 5.532
        5.535
                 38.79
                          7
 8.692 8.694
                 38.03
                          6
TOO FEW SLICES AT RAD=
                          37.27
THE LOWEST FACTOR OF SAFETY FOUND WAS 2.455 AT R=
                                                      41.82
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                   65.00 Y=
                                               57.00
 3.468 3.427
                 52.35
                         21
 3.523
        3.488
                 51.66
                         21
 3.635
        3.595
                 50.97
                         19
 3.697
        3.664
                 50.28
 3.768
        3.739
                49.59
                         18
 3.814
         3.789
                 48.90
                         16
 3.846
        3.824
                 48.21
                         16
 3.823
        3.806
                47.52
                         15
 3.601
        3.588
                45.83
                        13
 2.998
        2.990
                46.14
                        12
 2.616
        2.613
                45.45
                         11
 3.004
        3.003
                44.76
                         1.0
 2.403
        2.399
                45.97
                         12
 2.471
        2.467
                45.80
                         12
 2.546 2.542
                45.63
                        1.1
 2.706 2.703
                45.28
                        11
 2.795
        2.793
                45.11
                        10
 2.895
        2.894
                44.94
                         10
 3.562
        3.562
                44.07
 4.405
        4.407
                43.38
                          8
 5.957
        5.960
                42.69
                          7
 9.442 9.444
                42.00
TOO FEW SLICES AT RAD=
                        41.31
THE LOWEST FACTOR OF SAFETY FOUND WAS 2.403 AT R= 45.97
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                  54.00 Y=
                                                36.00
 2.821 2.647
                43.83
                        23
 2.795 2.636
                42.24
                        22
 2.813 2.669
                40.64
                        21
 2.822
       2.649
                43.43
                        23
 2.823
        2.651
                43.03
                        23
 2.782
       2.620
                42.63
                        23
 2.810
       2.654
                41.84
                        22
 2.798
       2.647
                41.44
                        22
 2.850
       2.703
                41.04
                        22
 2.822
        2.683
                39.05
                        20
 2.826
        2.704
                37.45
                        19
 2.845
       2.731
                35.86
                        18
2.988
       2.890
                34.27
                        17
 2.952 2.863
                32.67
                        15
```

```
3.085
        3.011
                  31.08
                          15
  2.991
         2.895
                  33.87
  3.015
         2.922
                  33.47
                          17
  2.938
        2.844
                  33.07
                          16
  2.973
         2.888
                  32.28
  3.018
         2.938
                  31.88
                          15
  3.000
         2.924
                  31.48
                          15
  3.074
         3.007
                  29.49
                          13
  3.186
         3.137
                  27.89
                          12
                  30.68
  3.104
         3.031
                          15
  3.067
         2.993
                  30.28
                          13
  3.080
         3.011
                 29.89
                          13
  3.094
         3.033
                 29.09
                          13
  3.118
         3.061
                  28.69
                          13
  3.128
         3.076
                 28.29
                          12
 3.030
        2.993
                 26.30
                          11
  2.095
        2.077
                 24.71
 2.466
        2.453
                 23.11
                          8
        2.919
 2.951
                 25.90
                          10
 2.792
         2.765
                 25.50
                          10
 2.427
         2.404
                 25.10
                          10
 2.176
        2.157
                 24.31
 2.260
        2.244
                 23.91
 2.362
        2.347
                 23.51
                           8
 3.093
        3.087
                 21.52
                           7
 4.438
        4.438
                 19.93
                           6
TOO FEW SLICES AT RAD=
                         18.33
THE LUWEST FACTOR OF SAFETY FOUND WAS 2.095 AT R=
                                                       24.71
FSBSHP FSVRML RADIUS NO.SLCS. X= 55.00 Y=
                                                40-00
 2.738 2.597
                 45.45
                         23
        2.614
 2.740
                 44.01
                         22
 2.810
        2.693
                 42.56
                         22
 2.744 2.635
                 41.12
                          20
 2.766
                 39.67
        2.670
                         20
 2.760
        2.639
                 42.20
                         21
 2.761
        2.643
                 41.84
                         20
 2.743
        2.630
                 41.48
                         20
 2.759
        2.653
                 40.75
                         20
 2.781
        2.678
                 40.39
                         20
 2.759
        2.660
                 40.03
                         20
 2.779
        2.692
                 38.22
                         1.8
 2.924
        2.848
                 36.78
                         17
 2.986
        2.922
                 35.33
                         17
 3.021
        2.967
                 33.89
                         15
 2.962
        2.915
                 32.44
                         13
 2.988
        2.954
                 30.99
                         12
 3.071
        3.019
                 33.52
                         15
 3.054
        3.003
                 33.16
                         14
 3.063
        3.015
                 32.80
                         14
 3.002
        2.959
                 32.08
                         13
 2.995
        2.955
                 31.72
                         12
 2.997
        2.960
                 31.36
                         12
 2.685
       2.661
                 29.55
                         11
 2.128
       2.116
                28.10
                         10
 2.483
        2.475
                26.66
                          -8
 2.430
        2.411
                 29.19
                         10
1.984
        1.970
                 28.83
                         10
2.053
        2.040
                28.46
                         10
2.211
        2.201
                27.74
                         10
2.305
        2.295
                27.38
                         10
        2.405
2.415
                27.02
                          2
3.205
        3.203
                25.21
                          8
4.706
       4.705
                23.76
                          6
TOO FEW SLICES AT RAD=
                        22.32
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.984 AT R=
```

```
FSBSHP FSNRML RADIUS NO.SLCS. X= 56.00 Y=
                                                44.00
 2.707 2.593
                 41.38
                        23
 2.768
        2.667
                 45.06
                         22
 2.792
        2.698
                 44.75
                         22
 2.721
       2.635
                 43.43
                         20
 2.815
        2.740
                 42.12
                         20
 2.717
       2.621
                 44.42
                         21
       2.641
 2.734
                 44.09
                         20
 2.757
        2.066
                 43.76
                         20
 2.727
        2.644
                 43.10
                         20
 2.732
        2.652
                 42.77
                         20
 2.810
        2.733
                 42.44
                         20
        2.797
 2.865
                 40.80
                         19
 2.934
        2.875
                 39.48
                         17
 2.969
        2.921
                 38.17
                         17
 2.995
        2.954
                 36.85
                         15
        2.983
                 35.53
 3.017
                         14
 2.816 2.793
                 34.22
                        12
 1.999 1.986
                 32.90
                        11
                31.58
 2.191 2.184
                        10
 2.744
        2.124
                 33.89
                         12
 2.629
        2.610
                 33.56
                         12
 2.498 2.481
                33.23
                         12
 2.051
       2.039
                32.57
                        11
 2.038 2.029
                32.24
                        10
 2.111
       2.103
                 31.91
                         1.0
 2.625
        2.620
                 30.27
                         9
 3.358
        3.357
                28.95
                          Ç)
 4.994 4.992
                27.63
TOO FEW SLICES AT RAD=
                        26.32
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.999 AT R=
                                                      32.90
FSBSHP FSVRML RADIUS NO.SECS. X=
                                    57.00 Y=
                                                48.00
2.760 2.669
               49.58
                         23
 2.775
       2.690
                43.38
                         22
2.799
       2.721
                47.17
                         22
 2.719
       2.651
                45.97
                         20
 2.828
       2.767
                44.77
                         20
        2.697
 2.768
                46.87
                         22
 2.712
        2.638
                40.57
                        20
 2.715
        2.644
                46.27
                         20
 2.729
       2.663
                45.67
                         20
 2.835
       2.771
                45.37
                         20
       2.757
 2.819
                45.07
                         20
       2.837
2.890
                43.56
                        19
2.898
        2.852
                42.36
                         17
2.968
       2.931
                41.16
                         16
 2.918
       2.897
                39.95
                        16
 2.950
       2.926
                38.75
       2.948
 2.982
                40.86
                        16
 2.951
        2.929
                40.55
                        16
 2.941
        2.926
                40.25
                        16
 2.972
       2.943
                39.65
                         14
 2.966
       2.939
                39.35
                        14
2.961
       2.935
                39.05
 2.562 2.547
                37.55
                        12
2.094
       2.085
                36.34
                        1.1
 2.276
        2.271
                35.14
                        10
 2.373
       2.360
                37.25
                        12
1.984
       1.974
                36.94
                        12
2.034
       2.025
                36.64
                        12
        2.144
2.152
                36.04
                        11
2.213
        2.206
                35.74
                        1.1
2.280
        2.214
                35.44
                        11
 2.743 2.740
                33.94
                         9
```

```
3.547 3.547
               32.73
                          7
5.361 5.358 31.53
TOO FEM SEICES AT RADE
                          6
                          30.33
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.984 AT R=
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                   58.00 Y=
                                               52.00
 2.780 2.704
                52.01
                        2.3
       2.729
 2.800
                50.91
                         22
        2.732
 2.190
                49.80
                         22
        2.769
 2.824
                48.70
                         20
 2.806
        2.737
                50.63
                         22
 2.811
       2.744
                50.35
                         22
 2.816
       2.750
                50.08
                         22
 2.786
       2.731
                49.53
                         22
 2.797
        2.744
                49.25
                         21
        2.674
 2.731
                48.97
                         20
 2.863
        2.814
                47.59
                         20
 2.893
       2.850
                46.49
                        19
       2.869
 2.905
                45.39
                        17
 2.973
       2.945
                44.28
                        16
 2.886
        2.874
                43.18
                        15
 2.847
        2.830
                42.07
                         14
 2.001
        1.998
                40.97
                         13
 2.207
        2.202
                39.87
                        11
 2.789
       2.774
                41.80
                        13
 2.688
       2.671
                41.52
                        13
 2.513
        2.505
                41.25
                        13
 2.033
        2.026
                40.69
                        12
 2.087
       2.080
                40.42
                        12
2.147 2.141
                40.14
                        1.1
 2.498
       2.495
                38.76
                        11
2.878
       2.876
                37.66
                         9
3.746
        3.746
                36.55
                         7
 5.751
        5.748
                35.45
                         6
13.957 13.955
                34.35
                         4
THE LOWEST FACTUR OF SAFETY FOUND WAS 2.001 AT R=
                                                     40.97
FSBSHP FSWRML RADIUS NO.SLCS. X=
                                  59.00 Y=
                                                56.00
2.814 2.750
                54.64
                        23
2.833
       2.775
                53.63
                        22
2.820
       2.773
                        22
                52.61
2.871
       2.826
                51.59
                        20
2.849
       2.792
                53.37
                        22
2.862
       2.806
                53.12
                        22
2.828
        2.779
                52.86
                        22
2.811
        2.167
                52.36
                        22
2.805
       2.762
                52.10
                        21
2.852
       2.806
                51.85
                        20
2.890
       2.849
                50.58
                        20
2.922
       2.388
                49.56
                        19
2.896
       2.875
                48.54
                        1.8
2.944
        2.923
                47.53
                        10
2.929
       2.897
                49.31
                        19
2.920
       2.895
                49.05
                        19
2.909
       2.835
                48.80
                        1.8
2.946
       2.919
                48.29
                        17
2.933
       2.907
                48.03
                        17
2.942
        2.918
                47.78
                        16
2.831
       2.826
                46.51
                        15
2.674
       2.663
                45.49
                        1.3
2.111
       2.110
                44.48
                        13
2.337
       2.333
                43.46
                        11
2.512
       2.504
                45.24
                        13
2.011
       2.008
                44.98
                        13
2.060 2.057
                44.73
                        13
2.164 2.164
                44.22
                        1.3
```

```
2.215 2.217
2.270 2.266
2.660 2.658
                43.97
                        13
                 43.71
                         11
 2.660
        2.658
                 42.44
                         11
 3.021
        3.020
                          9
                 41.42
 3.970 3.967
                 40.41
                          8
 6.125 6.122
                 39.39
14.827 14.825
                 38.37
                          4
THE LOWEST FACTOR OF SAFETY FOUND WAS 2.011 AT R=
                                                    44-98
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                    48.00 Y=
                                               35.00
 2.773 2.593
               43.19
                        23
 2.155 2.588
                41.44
                         21
 2.756 2.596
                39.70
                         21
        2.593
 2.771
                42.75
                         23
 2.747
        2.574
                42.31
                         23
        2.579
 2.747
                41.88
                         23
 2.752 2.586
                41.01
                         21
 2.748
        2.584
                40.57
                         21
 2.760 2.597
                40.13
                        21
       2.592
 2.740
                37.95
                         19
 2.716
        2.584
                 36.21
                         19
 2.769
        2.648
                34.46
                         17
 2.739
        2.592
                37.52
                        19
 2.720
       2.581
                37.08
                        19
 2.723 2.586
                36.64
                        19
 2.719
        2.592
                35.77
                        18
 2.722
        2.600
                35.34
                         18
 2.780
        2.669
                34.90
                         18
 2.741
       2.630
                32.72
                        16
 2.830 2.733
                30.98
                        15
 2.751 2.631
                34.03
                        17
       2.635
 2.753
                33.59
                        16
 2.758
        2.644
                33.16
                         16
       2.663
 2.770
                32.28
                         16
 2.806
       2.703
                31.85
                         16
       2.706
 2.806
                31.41
                        15
       2.750
 2.831
                29.23
                        14
 2.979
        2.913
                27.49
                        1.3
 2.759
        2.712
                25.74
                         12
 1.785
        1.753
                24.00
                         10
 2.022
       2.002
                         9
                22.25
 2.795
       2.753
                25.31
                         11
 2.695
       2.656
                24.87
                         11
       2.378
 2.418
                24.43
                         10
 1.836
        1.808
                23.56
                         10
       1.869
 1.894
                23.13
                         10
 1.957
       1.934
                22.69
                         10
 2.309
       2.297
                20.51
                         - 8
 2.776
       2.771
                18.76
                         7
 4.066 4.061
                17.02
                         5
                        15.28
TUO FEW SLICES AT RAD=
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.785 AT R=
                                                    24.00
FS8SHP FSNRML RADIUS NO.SLCS. X= 49.00 Y= 39.00
2.670 2.525
                44.72
                        23
       2.598
                43.13
 2.734
                        22
 2.642
        2.519
                41.54
                        21
 2.713
                39.95
       2.601
                        20
 2.684
       2.546
                42.73
                        21
 2.641
       2.510
                42.33
                        21
       2.514
 2.641
                41.94
                        21
 2.642
        2.522
                41.14
                        21
 2.693
        2.576
                40.74
                        21
 2.691
       2.577
                40.34
                        20
 2.630
       2.530
                38.36
                        19
 2.711 2.621
                36.76
                       1.8
```

```
2.626 2.514
                 39.55
                         19
 2.626
        2.517
                 39.15
                         19
                 38.75
 2.624
                         19
        2.520
 2.715
        2.619
                 37.96
                          18
 2.689
        2.598
                 37.56
                          18
 2.700
        2.608
                 37.16
                          18
 2.630
        2.548
                 35.17
                         16
                         15
 2.799
        2.730
                 33.58
        2.549
 2.641
                 36.37
                         17
 2.633
        2.543
                 35.97
                         16
 2.666
        2.579
                 35.57
                          16
 2.641
        2.562
                 34.78
                          16
 2.643
        2.569
                 34.38
                         16
 2.649
        2.579
                 33.98
                         16
                 31.99
 2.657
        2.601
                         14
 2.779
        2.735
                 30.40
                         13
 2.760
        2.695
                 33.18
                         15
        2.709
 2.772
                 32.79
                         15
 2.643
        2.584
                 32.39
                         14
 2.805
        2.753
                 31.59
                         14
                 31.19
 2.775
                         13
        2.724
 2.780
        2.733
                 30.80
                         13
 2.401
        2.371
                 28.81
                         12
 1.937
        1.919
                 21.22
                         11
1.997
        1.985
                 25.62
                          9
 2.378
        2.352
                 28.41
                         11
1.939
        1.918
                 28.01
                         11
 1.888
        1.869
                 27.61
                         11
 1.990
        1.974
                 26.82
                         11
1.860
        1.850
                 26.42
                         10
1.929
        1.916
                 26.02
                         1.0
2.435
       2.426
                 24.03
                          9
2.847
       2.843
                 22.44
                          7
4.215
       4.211
                 20.85
                          5
TOO FEW SLICES AT RAD=
                          19.26
THE LUWEST FACTUR OF SAFETY FOUND WAS 1.866 AT R=
                                                       26.42
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                   50.00 Y=
                                                  43.00
2.684 2.565
                45.57
                         23
2.665
       2.556
                 45.12
                         22
2.652
        2.554
                 43.66
                         21
2.650
       2.561
                 42.20
                         20
2.638
       2.562
                 40.74
                         19
2.700
       2.630
                 39.29
                         18
2.662
       2.575
                 41.84
                         20
                41.47
2.569
        2.485
                         19
2.569
        2.489
                 41.11
                         19
2.642
       2.567
                40.38
                         18
2.648
       2.575
                40.01
                         1.8
2.670
       2.598
                39.65
                         18
2.546
       2.489
                 37.83
                         16
2.666
       2.617
                36.37
                         15
2.661
       2.593
                 38.92
                         18
2.647
       2.590
                 33.56
                         1.7
2.552
       2.488
                 38.19
                         16
2.572
       2.516
                 37.46
                         16
2.560
       2.506
                 37.10
                         16
                36.74
2.691
       2.638
                         15
2.689
        2.649
                 34.91
                         15
2.573
       2.544
                 33.46
                         13
1.766
       1.780
                32.00
                         13
1.979
       1.967
                30.54
                         11
2.526
       2.499
                33.09
                         13
2.442
       2.420
                32.73
                         1.3
2.303
       2.287
                32.36
                         13
1.777 1.789
                31.63
                         12
```

```
1.877 1.863
               31.27
                       11
 1.926 1.914
                30.91
                        1.1
 2.010
        2.002
                29.08
                         9
 2.534
        2.528
                27.63
                         9
 2.959
        2.955
                          7
                26.17
 4.419 4.414
                24.71
TOU FEW SLICES AT RAD=
                         23.25
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.766 AT R=
                                                     32.00
FSBSHP FSNRML RADIUS NO.SLCS. X= 51.00 Y=
                                              47.00
 2.640 2.543
                48.70
                       23
 2.627 2.546
                47.36
                        22
 2.622 2.543
                46.02
                        21
 2.624
        2.554
                44.68
                        20
 2.561
        2.476
                47.03
                        21
 2.623
        2.540
                46.69
                        21
        2.541
 2.622
                46.36
                        21
 2.631
       2.554
                45.69
                        21
 2.649
       2.574
                45.35
                        21
 2.628
        2.554
                45.02
                        20
 2.641
        2.579
                43.34
                        19
 2.622
        2.568
                42.00
                        18
 2.497 2.452
                40.66
                        16
 2.603 2.567
                39.32
                        15
 2.622 2.571
                41.67
                        1.8
 2.622
       2.579
                41.33
                        17
 2.576
       2.537
                41.00
                        17
 2.494
        2.453
                40.33
                        16
       2.568
 2.607
                39.99
                        16
 2.604 2.566
                39.66
                        15
 2.564
       2.536
                37.98
                        15
 2.317
       2.297
                36.64
                        13
                35.30
 1.851
       1.846
                        13
 2.049
        2.041
                33.96
                        11
 2.173
       2.155
                36.31
                        13
 1.745 1.734
                35.97
                        1.3
1.796
       1.788
                35.64
                        13
 1.839
       1.857
                34.97
                        12
1.855
       1.873
                34.63
                        12
 1.936
        1.950
                34.30
                        12
 2.324
        2.324
                32.62
                        10
2.664
       2.659
                31.28
                         9
3.097 3.093
                29.94
                         7
4.668 4.662
                28.60
10.440 10.435
                         4
                27.26
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.745 AT R=
                                                   35.97
FSBSHP FSNRML RADIUS NO.SLCS. X= 52.00 Y=
                                               51.00
2.638 2.558
               51.08
                      23
2.603
       2.538
                49.84
                        22
2.619
       2.554
                48.60
                        21
2.633
       2.555
                50.77
                        23
        2.554
2.629
                50.46
                        23
2.617
       2.549
                50.15
                        23
2.594
       2.531
                49.53
                        22
 2.640
       2.572
                49.22
                       21
2.621
        2.554
                48.91
                        21
 2.638
        2.584
                47.37
                        20
2.606
       2.557
                46.13
                        18
2.603
       2.561
                44.89
                        1.8
2.521
       2.497
                43.65
                       17
2.541
        2.513
                42.42
                       15
2.590
       2.550
                44.58
                        17
2.567
        2.536
                44.27
                        17
2.557 2.530
                43.96
                        17
2.562 2.530
                43.34
                        16
```

```
2.557 2.526
                 43.03
                          16
 2.550
        2.521
                 42.73
                         15
 2.427
                 41.18
        2.408
                         15
 1.641
         1.652
                 39.94
                          14
 1.893
         1.889
                 38.70
                          13
 2.365
        2.348
                 40.87
                          14
 2.269
        2.255
                 40.56
                          14
 2.067 2.069
                 40.25
                          14
 1.733 1.724
                 39.63
                          13
 1.782
        1.775
                 39.32
                          13
 1.835
        1.830
                 39.01
                          13
 2.054
        2.073
                 37.47
                          12
 2.439
        2.439
                 36.23
                          10
 2.796
        2.792
                 34.99
 3.566
        3.562
                 33.75
                           8
 4.916 4.911
                 32.52
                           6
10.967 10.963
                 31.28
                           4
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.641 AT R=
                                                       39.94
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                     53.00 Y=
                                                  55-00
 2.635 2.570
                 53.67
                         23
 2.600 2.547
                 52.52
                         22
 2.639
        2.587
                 51.37
                         21
       2.579
 2.642
                 53.38
                          23
 2.646
        2.588
                 53.09
                         23
 2.611
        2.556
                 52.80
                         23
 2.585
        2.533
                 52.23
                         22
        2.569
 2.625
                 51.94
                         21
        2.570
 2.624
                 51.66
                         21
 2.609
        2.569
                 50.22
                         20
 2.606
        2.567
                 49.08
                         18
 2.600
       2.568
                 47.93
                         18
 2.485
       2.468
                46.78
                         17
 2.461
        2.441
                 45.63
                         15
 2.211
        2.198
                 44.48
                         15
 1.694
        1.707
                 43.34
                         14
 1.947
        1.945
                 42.19
                         13
 2.046
        2.036
                 44.20
                         14
 1.694
        1.689
                 43.91
                         14
 1.685
        1.698
                43.62
                         14
 1.726
        1.739
                43.05
                         14
       1.826
 1.831
                42.76
                         13
                42.48
 1.887
       1.883
                         13
 2.117
        2.139
                 41.04
                         12
 2.579
        2.580
                39.89
                         10
        3.036
 3.033
                 38.75
                         10
 3.852
        3.848
                 37.60
                          8
 5.173
        5.167
                 36.45
                          6
11.508 11.504
                35.30
                          4
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.685 AT R=
                                                       43.62
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                    42.00 Y=
                                                 34.00
 2.869
       2.698
                37.12
                        19
       2.748
2.901
                35.55
                         19
2.963
       2.802
                33.98
                         17
 2.877
       2.742
                32.41
                         17
2.875
       2.745
                30.84
2.903
       2.791
                29.27
                         15
 2.961
        2.815
                32.02
                         15
2.916
        2.778
                31.63
                         15
2.898
       2.765
                31.23
                         15
2.871
        2.747
                30.45
                         15
2.873
        2.754
                30.06
                         15
2.911
        2.795
                29.66
                         15
2.889
        2.787
                27.70
                         13
2.743 2.664
                26.13
                         13
```

```
2.532 2.468
                24.56
                        11
       1.655
 1.694
                22.99
                        11
 2.008
       1.984
                21.42
                        1.0
 2.458
       2.401
                24.17
                        11
 2.351
       2.300
                23.78
                        11
 2.184
        2.140
                23.38
                        1.1
 1.859
        1.824
                22.60
                        10
 1.908
        1.876
                22.21
                        10
 1.956
       1.928
                21.81
                        10
 1.962
       1.945
                19.85
                        - 8
 2.080
       2.069
                18.28
 1.837
       1.809
                21.03
                         4
       1.855
 1.878
                20.64
                         9
 1.917
        1.897
                20.24
                         9
       2.164
 2.178
                19.46
                         8
 2.237
       2.225
                19.07
                         8
 2.292
       2.282
                18.67
                         8
 2.430
       2.422
                16.71
                         6
       3.032
 3.041
                15.14
                         5
 4.330
       4.320
                13.57
TUO FEW SLICES AT RAD= 12.00
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.694 AT R= 22.99
FSBSHP FSNRML RADIUS NO.SLCS. X= 43.00 Y=
                                             38.00
2.711 2.586
                      19
              38.64
 2.784
       2.665
                37.22
                        19
       2.609
2.717
                35.81
                       17
 2.796
       2.697
                34.39
                       17
2.736 2.613
                36.87
                       17
2.746 2.626
                36.52
                       1.7
 2.749
       2.633
                36.16
                       17
 2.715
       2.610
                35.45
                        17
       2.701
 2.804
                35.10
                        17
2.790 2.689
                34.75
                       17
2.692 2.604
                32.98
                       15
 2.782 2.708
                31.56
                       15
 2.801
       2.705
                34.04
                       16
 2.814
        2.721
                33.68
                       16
 2.734
       2.640
                33.33
                        15
2.689 2.604
                32.62
                       15
2.690 2.610
                32.27
                       15
2.755 2.679
                31.91
                       15
       2.501
 2.567
                30.14
                       13
 2.416
       2.369
                28.73
                       1.3
 2.134
        2.101
                27.31
                        12
1.768
       1.746
                25.90
                       11
1.970
       1.955
                24.48
                       10
1.722
       1.693
               26.96
                       12
1.754
       1.728
                26.60
                       12
 1.582
       1.556
                26.25
                       11
 1.813
       1.793
                25.54
                        11
1.863
       1.843
                25.19
                       1.0
1.914
       1.896
               24.83
                       10
 2.071 2.097
                23.06
                        10
2.301 2.296
                21.65
                        8
2.425
       2.418
                20.23
                        6
3.416
       3.407
                18.82
4.379 4.372
               17.40
TOO FEW SLICES AT RAD= 15.99
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.582 AT R=
                                                   26.25
FSBSHP FSNRML RADIUS NO.SLCS. X= 44.00 Y= 42.00
2.684 2.587
              40.52
                       19
2.725 2.634
                39.24
                       13
2.682 2.603
               37.95
                       17
2.690 2.618
               36.67
```

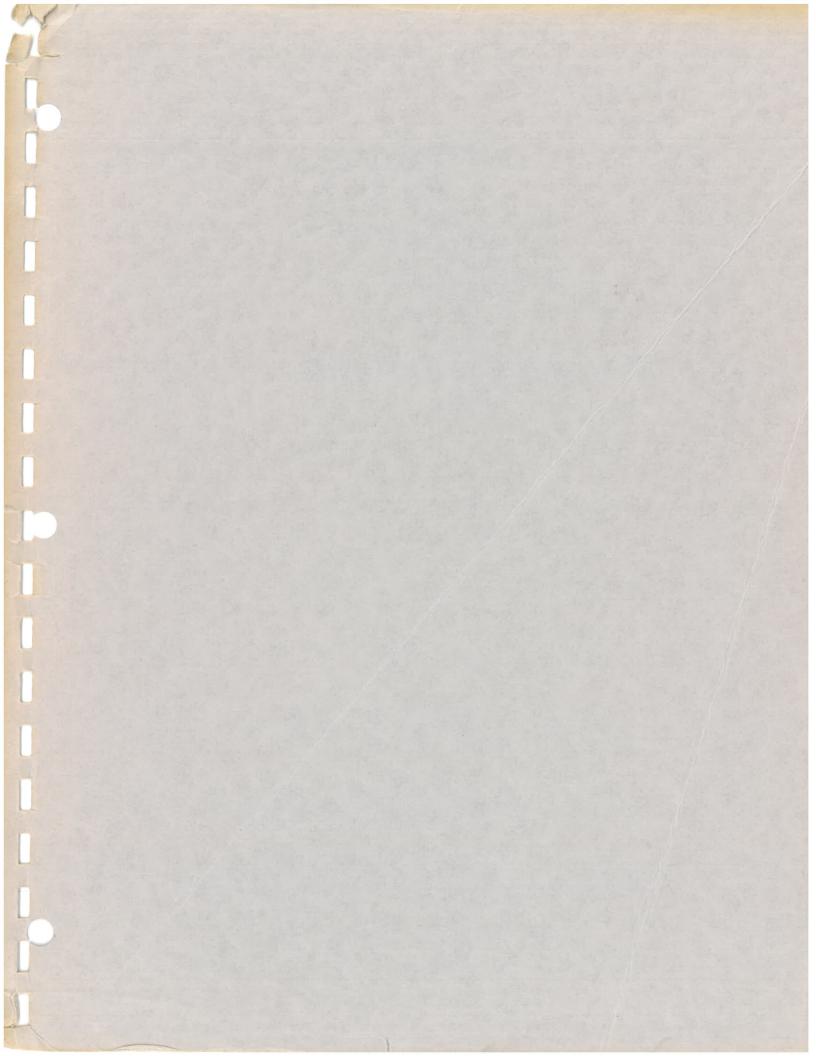
```
38.92
2.743 2.655
2.643 2.557
 2.643 2.557
2.610 2.528
               38.60
                       17
              38,28
                      1.7
 2.687 2.610
              37.63
                      17
 2.713 2.637
              37.31
                      17
              36.99
                       17
 2.695 2.619
       2.531
 2.591
               35.39
                       15
 2.594
       2.544
               34.10
                       15
                       16
 2.686
       2.617
               36.35
                      16
 2.674
       2.609
              36.03
 2.660 2.608
              35.71
                      16
 2.652 2.593
              35.07
                      15
 2.623 2.567
              34.74
                      15
               34.42
 2.610
       2.557
                       15
 2.477
       2.437
               32.82
                       14
 2.009 1.982
               31.54
                      13
1.693 1.672
               30.25
                      12
 1.826 1.815
               28.97
                      12
       1.947
 1.972
                       13
               31.21
 1.638
       1.616
               30.89
                       13
       1.644
 1.665
               30.57
                       12
 1.723 1.704
                      12
               29.93
 1.755
       1.739
              29.61
                      12
 1.790 1.776
              29.29
                      12
 1.959
       1.950
              27.68
                      10
 2.121
       2.153
               26.40
                       10
 2.437
       2.432
               25.12
                        8
2.970
       2.972
               23.83
                        7
3.672
       3.665
               22.55
                        6
4.491 4.486
               21.27
                       19.98
TOO FEW SLICES AT RAD=
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.638 AT R=
                                                 30.89
FSBSHP FSNRML RADIUS NO.SLCS. X= 45.00 Y= 46.00
2.633 2.558 42.72 19
2.648 2.588
              41.55
                      18
2.613 2.553
               40.38
                      17
 2.593
       2.542
               39.21
                       16
 2.488 2.457
               38.04
                       16
2.429 2.395
              36.87
                      15
2.157 2.146
              35.70
                      14
1.614
       1.598
              34.53
                      13
       1.709
1.723
              33.36
                      12
      2.007
1.778
                      14
2.012
               35.40
 1.778
               35.11
                       14
       1.575
               34.82
                      13
1.591
1.638 1.622
              34.23
                      13
1.664 1.649
              33.94
                      13
              33.65
1.692 1.677
                      12
 1.856
       1.850
               32.19
                      12
       1.978
1.984
               31.02
                       10
2.145
       2.171
               29.84
                       10
2.495
       2.519
               28.67
                       9
3.188 3.188
               27.50
                       7
       3.971
               26.33
3.977
 5.408
       5.406
               25.16
                      23.99
TOO FEW SLICES AT RAD=
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.591 AT R=
                                                 34.82
FSBSHP FSNRML RADIUS NO.SLCS. X= 46.00 Y= 50.00
2.606 2.548 45.19 19
2.545 2.502
2.553 2.508
               44.12
                       18
               43.04
                       17
2.587 2.532
               44.92
                       19
2.614 2.559
              44.65
                      1.8
2.566 2.521
               44.38
```

18

```
2.525 2.485
                43.85
                        18
 2.581 2.534
                43.58
                        17
 2.556
        2.510
                43.31
                        17
 2.505 2.470
                41.97
                        16
 2.338 2.319
                40.89
                        16
 2.195 2.172
                39.82
                        15
 1.557 1.564
                38.75
                        14
        1.540
                37.67
 1.531
                        14
 1.770
        1.760
                36.60
                        12
 1.551
        1.559
                38.48
                        14
 1.545 1.554
                38.21
                        14
 1.538 1.547
                37.94
                        14
 1.681 1.670
                37.41
                        13
 1.708 1.697
                37.14
                        13
 1.739
        1.729
                36.87
                        12
 1.908
        1.905
                35.53
                        12
 1.961
        1.982
                34.45
                        11
 2.257
       2.278
                33.38
                        10
 2.612 2.639
                32.31
       3.441
                         7
 3.440
                31.23
 4.395
        4.397
                30.16
                         7
 5.863
       5.863
                29.09
11.267 11.267
                28.01
THE LOWEST FACIOR OF SAFETY FOUND WAS 1.531 AT R=
                                                   37.67
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                              54.00
                                  47.00 Y=
 2.553 2.510
2.481 2.450
               47.89
                       19
                46.90
                        18
       2.446
 2.478
                45.90
                        17
 2.396
       2.372
                44.91
                        16
 2.159
       2.150
               43.92
                        16
       1.555
 1.567
                42.93
                        14
 1.590
        1.500
                41.94
                        14
 2.082
       2.074
                43.68
                        16
       2.016
 2.033
                43.43
                        15
 1.885
       1.869
                43.18
                        15
 1.586 1.575
                42.69
                       14
       1.595
 1.604
                42.44
                        14
 1.593
       1.602
                42.19
                        14
 1.640
       1.651
                40.95
                        14
       1.823
 1.830
                39.96
                        12
 1.975
       1.974
                38.97
                        12
 1.988
       2.009
               37.98
                        11
 2.373
       2.391
                36.99
                        10
 2.743
       2.766
                36.00
                        9
 3.511
        3.531
                35.01
4.785
       4.789
                34.02
                         7
               33.03
6.408 6.410
TOO FEW SLICES AT RAD= 32.04
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.567 AT R=
                                                  42.93
FSBSHP FSVRML RADIUS NO.SLCS. X= 36.00 Y= 33.00
3.215 3.040
               31.06
                        16
                29.67
3.223
       3.067
                        16
3.162
      3.011
               28.27
                        14
3.114
       2.989
                26.88
                        14
       2.937
3.051
                25.48
                        12
 2.813
       2.730
                24.08
                        12
 2.536
       2.477
                22.69
                        11
1.753
       1.701
                21.29
                        1.0
1.810
       1.779
                19.90
                        9
 2.264
       2.199
                22.34
                        10
1.774
       1.716
                21.99
                        10
1.779
       1.725
                21.64
                        10
1.767
       1.720
                20.94
                        10
 1.778
       1.735
                20.60
                        10
```

```
1.791 1.754
1.812 1.787
                20.25
                        10
                18.50
                         - 8
 1.857 1.847
               17.11
                         8
 2.363 2.354
                15.71
 2.603 2.593
                14.31
                         6
 3.146 3.131
                12.92
                         ٤,
 2.836 2.824
                11.52
TOO FEW SLIGES AT RAD= 10.13
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.753 AT R= 21.29
FSBSHP FSNRML RADIUS NO.SLCS. X= 37.00 Y= 37.00
 2.949 2.833 32.56
                       1.6
 3.033 2.926
2.821 2.737
                31.32
                        16
                30.08
                        14
 2.817 2.742
               28.84
                        14
 2.645 2.586
               27.60
                        13
 2.197 2.156
               26.36
                        12
       1.773
               25.12
 1.804
                        1.1
 1.644
        1.618
                23.87
                        10
 1.687
        1.670
                22.63
                        10
 1.825 1.797
               24.81
                        1.1
 1.840 1.822
               24.50
                       11
 1.633 1.603
               24.18
 1.656 1.533
               23.56
                        1.0
       1.647
 1.667
                23.25
                        10
 1.677
        1.658
                22.94
                        10
 1.962 1.952
                21.39
                        9
 1.993 1.985
               20.15
                        8
 2.366 2.359
               18.91
                        7
       2.741
 2.704
               17.67
                         - 7
       3.151
3.905
 3.160
                16.43
                         6
 3.898
                15.19
                         5
 5.566 5.564
               13.95
TOU FEW SLICES AT RAD= 12.71
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.633 AT R=
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                 38.00 Y= 41.00
 2.83/ 2.758
              34.48
                        16
 2.763 2.696
                33.37
                        16
 2.635
       2.580
               32.26
                        14
 2.430
       2.386
               31.15
                        14
               30.04
 1.852
       1.826
                        13
       1.595
 1.719
               28.93
                        12
 1.789
       1.771
                27.82
                        11
       1.648
 1.648
               29.76
                        13
       1.662
 1.688
               29.48
                        12
 1.703
       1.678
               29.21
                        12
       1.712
 1.736
               23.65
                        12
       1.731
 1.752
                28.37
                        12
 1.769
        1.749
                28.10
                        12
       1.772
 1.754
                26.71
                        11
       1.845
               25.60
 1.854
                        1.0
 1.792
       1.776
               27.54
                        11
 1.813
       1.801
               27.26
                        11
       1.793
 1.777
               26.98
                        1.1
 1.603
        1.591
                26.43
                        10
       1.810
 1.813
               26.15
                        10
       1.829
 1.833
               25.87
                        10
 1.933 1.926
               24.49
 2.170 2.169
               23.37
                        9
 2.418
       2.411
                22.26
                        7
        2.835
 2.808
                21.15
                         7
 3.114
        3.148
                20.04
 4.321
       4.328
               18.93
 6.375 6.376
                17.82
TOO FEW SLICES AT RAD=
                        16.71
```

```
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.603 AT R=
                                                   26.43
FSBSHP FSNRML RADIUS NO.SLCS. X= 39.00 Y= 45.00
 2.631 2.578
               36.77
                       16
               35.77
 2.478 2.446
                        15
       2.213
1.631
 2.247
                34.76
                        14
 1.653
                33.76
                        14
       1.649
               32.76
 1 - 045
                        13
 1.734 1.719
               31.76
                        12
 1.665
       1.045
               33.51
                        14
 1.677
       1.560
                33.26
                        13
 1.658
       1.561
                33.01
                        13
 1.630
        1.637
                32.51
                        13
       1.622
 1.615
                32.26
                        13
 1.718
       1.702
                32.01
                        12
 1.795
       1.786
                30.75
                        11
 1.748
       1.770
               29.75
                        11
       1.831
 1.837
                28.75
                        10
       1.307
 1.813
                30.50
                        11
       1.807
 1.790
                30.25
                        11
 1.771
       1.790
               30.00
                        1.1
 1.721
       1.744
                29.50
                        11
 1.685 1.709
               29.25
                        11
 1.795
       1.789
                29.00
                        10
 2.035
       2.029
                27.74
                        9
 2.282
       2.282
                26.74
                        -9
 2.433
       2.457
                25.74
                        8
2.916
       2.937
                24.74
                        7
 3.203
       3.240
                23.73
                        7
4.845
       4.852
                22.73
 7.599
        7.609
                21.73
TUU FEW SLICES AT RAD= 20.72
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.615 AT R= 32.26
FSBSHP FSNRML RADIUS NU.SLCS. X= 40.00 Y= 49.00
2.381 2.349
              39.36
                      16
       2.026
2.037
                38.44
                        15
1.628
       1.608
                37.53
                        14
1.676
       1.662
                36.62
                        14
1.881
       1.873
                38.22
                       15
1.554
       1.551
                37.99
                        15
1.618
       1.598
                37.76
                       14
       1.622
1.640
                37.30
                       14
1.651
       1.635
                37.07
                        14
       1.648
1.663
                36.85
                       14
1.643 1.653
               35.71
                       13
1.769
       1.758
               34.79
                       12
1.680
       1.675
                36.39
                       13
       1.672
1.665
                36.16
                       13
1.654
       1.663
                35.93
                        13
1.632
       1.643
                35.48
                        13
1.668
       1.678
               35.25
                       1.3
1.680
       1.688
               35.02
                       13
1.823
       1.825
               33.88
                       11
1.699
       1.722
                32.97
                       1.1
1.850
       1.866
                32.05
                        11
1.841
       1.840
                33.65
                       11
1.780
       1.808
               33.42
                       1.1
1.760
       1.781
               33.19
                       11
1.698
               32.74
       1.721
                       11
1.778
       1.800
                32.51
                       1.1
1.813
       1.832
                32.28
                       11
2.160
       2.156
               31.14
2.375
       2.392
               30.23
                        9
2.572 2.593
               29.31
3.019
       3.037
               28.40
                       7
```


```
3.419 3.450
                27.49
 4.965 4.996
               26.57
 8.853 8.868
               25.66
TUO FEW SLICES AT RAD= 24.75
THE LOWEST FACTOR OF SAFELY FOUND WAS 1.554 AT R= 37.99
FSBSHP FSVRML RADIUS NO.SLCS. X= 41.00 Y= 53.00
 1.899 1.892
               42.19
                      16
                       15
 1.560 1.562
                41.35
 1.662
       1.649
              40.51
                      14
 1.558
       1.559
               41.98
                       16
 1.551
        1.553
               41.77
                       15
 1.543
        1.545
               41.56
                       15
 1.568
       1.570
               41.14
                       15
 1.576
       1.577
               40.93
                       1.5
 1.650
       1.636
               40.72
                       14
 1.712
       1.705
               39.68
                      14
 1.680
        1.692
               38.84
                       13
 1.719
        1.730
                38.00
                       13
       1.693
 1.683
               39.47
                       13
              39.26
 1.674
       1.685
                      13
 1.665
       1.677
               39.05
                       13
 1.691
       1.703
               38.63
                      13
 1.698
       1.709
               38.42
                       13
 1.709
        1.721
               38.21
                       13
       1.839
 1.821
               37.16
                       11
                      11
 1.780
       1.801
               36.33
 1.961
       1.977
               35.49
                      11
 1.771
       1.791
               36.95
                      11
               36.74
 1.774
       1.795
                      11
 1.776
       1.798
               36.53
                       11
       1.871
 1.850
               36.12
                       11
               35.91
 1.886 1.905
                       1.1
 1.923 1.940
              35.70
                      11
 2.301 2.299
               34.65
                      9
 2.498 2.515
                       9
               33.81
 2.725
       2.744
               32.97
                        8
       3.097
 3.075
               32.14
                        8
 3.659 3.685
               31.30
                        7
 5.319 5.349
               30.46
                        6
10.012 10.022
               29.62
                       28.78
TUB FEW SLICES AT RAD=
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.543 AT R=
                                                41-56
FSBSHP FSNRML RADIUS NO.SLCS. X= 30.00 Y= 32.00
3.666 3.507 25.02 13
3.433 3.308
              23.80
                      12
3.208 3.098
              22.57
                      11
 2.622 2.546
2.199 2.139
               21.35
                       11
               20.13
                       10
2.071 2.025
               18.91
2.065 2.038
               17.68
                       9
 2.061
      2.031
               16.46
       1.914
1.937
               15.24
                        7
2.037
       2.014
               14.02
                        7
       1.925
1.954
               16.16
                        7
      1.861
1.887
               15.85
                        7
1.911 1.887
              15.54
                        7
1.965 1.943
              14.93
                        7
       1.968
1.989
               14.63
                        7
2.017
       1.995
               14.32
                        7
       2.444
2.472
               12.79
                        7
2.571
      2.542
               11.57
2.936 2.911
               10.35
3.884 3.896
               9.13
TOO FEW SLICES AT RAD=
```

```
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.887 AT R= 15.85
FSBSHP FSNRML RADIUS NO.SLCS. X= 31.00 Y= 36.00
 2.956 2.583
              26.48
                      13
 2.564 2.507
               25.41
                       12
 1.859 1.812
               24.35
                       1.1
 2.027 1.992
               23.28
                       11
       2.305
1.978
               25.15
 2.358
                       12
 2.026
               24.88
                       12
       1.804
 1.854
               24.61
                       11
       1.817
 1.861
               24.08
                       11
 1.863
       1.821
               23.81
                      11
 2.016 1.978 23.55
                      11
       2.055
 2.080
               22.22
                       1.1
                       9
 1.845
       1.830
               21.15
 2.006
       1.996
                20.09
                        9
       2.071
 2.091
               21.95
                       10
 2.103
       2.090
               21.68
                      10
 1.850
       1.831
               21.42
                       9
       2.023
 2.035
                       9
               20.89
 2.036
       2.025
               20.62
                        9
       2.021
 2.032
               20.35
                        9
 2.075 2.064
              19.02
                        9
 1.820 1.805
              17.96
                        7
 2.261 2.244
              16.89
                        7
 2.118 2.111
               18.76
                        9
       2.178
2.136
 2.181
               18.49
                        -8
 2.103
               18.22
                        8
       1.824
1.839
                        7
               17.69
2.170
      2.156
               17.42
                       7
 2.214
       2.198
              17.16
       2.449
 2.468
               15.83
                       7
 2.677
       2.671
               14.76
                       6
 2.949
       2.939
               13.70
                        5
3.771
       3.798
               12.63
                        5
0.154 5.193
              11.57
TOO FEW SLICES AT RAD= 10.50
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.820 AT R=
FSBSHP FSNRML RADIUS NO.SLCS. X= 32.00 Y= 40.00
1.908 1.870 28.46 13
1.946 1.920
               27.52
                       12
1.931 1.909
              20.58
                       11
      1.952
1.968
               25.64
                       11
1.956
       1.934
               27.29
                       12
       1.902
1.899
               27.05
                       12
1.922
      1.899
               26.82
                       11
1.940
      1.919
               26.35
                      11
1.950
      1.931
               26.11
                      11
1.958
      1.940
               25.88
                      11
1.990
       1.985
               24.71
                      11
1.797
       1.828
               23.77
                      10
2.019
       2.009
               22.83
                       9
1.997
      1.995
               24.47
                      1.0
1.921
      1.945
              24.24
                      10
      1.866
1.836
               24.00
                      10
1.921
       1.913
               23.53
                       9
1.953
       1. 444
               23.30
                       9
      1.974
1.984
               23.06
                       9
2.149
      2.144
               21.89
2.092
      2.120
              20.95
                       3
2.355
      2.340
               20.01
2.186
       2.183
               21.65
                       9
2.125
       2.148
               21.42
                       9
2.119
      2.145
               21.18
                       3
2.061 2.091
               20.71
```

```
2.267 2.254
                20.48
 2.310 2.296
               20.25
 2.484 2.474
                19.07
                         7
       2.844
 2.844
                18.13
                          6
 3.057
        3.088
                17.19
                          6
 3.846 3.865
                16.26
                          'n
 5.476 5.499
                15.32
10.029 10.051
                14.38
TOU FEW SLICES AT RAD=
                         13.44
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.797 AT R=
                                                     23.77
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                   33.00 Y=
 1.883 1.865
               30.87 13
 1.849 1.858
                30.03
                        12
 1.908 1.896
               29.19
                        11
       1.876
 1.891
                        13
                30.66
 1.900
        1.887
                30.45
                        13
 1.869
       1.877
                30.24
                        12
       1.838
                29.82
 1.827
                        12
 1.804
        1.817
                29.61
                        12
 1.834
        1.847
                29.40
                        12
 1.917
        1.912
                28.36
                        11
 1.860
        1.883
                27.52
                        11
 1.901
       1.923
                26.68
                        10
 1.903
               28.15
       1.900
                        11
 1.862
       1.861
                27.94
                        11
       1.888
 1.883
               27.73
                        11
 1.859
        1.883
                27.31
                        10
 1.849
        1.873
                27.10
                        10
 1.879
       1.902
                26.89
                        10
 2.120
       2.113
                25.84
                        9
 2.190
       2.217
                25.00
 2.233
       2.256
                24.16
                        8
 2.463
       2.454
                23.33
                        7
 2.629
       2.626
                22.49
 2.905
       2.928
                21.65
                         7
 3.337
       3.363
                20.81
                         6
 4.016
       4.032
               19.97
 5.960
       5.971
               19.13
10.984 10.994
               18.30
                        4
TOO FEW SLICES AT RAD=
                       17.40
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.804 AT R=
                                                    29.61
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                 34.00 Y= 48.00
1.879 1.873
              33.62
                      13
       1.822
               32.86
1.800
                        12
1.863
       1.859
                32.10
                        11
       1.848
1.836
                33.43
                        13
               33.24
1.818
       1.831
                        13
1.801
       1.816
               33.05
                        12
1.806
       1.821
                32.67
       1.816
1.801
                32.48
                        12
1.791
       1.807
                32.29
                        12
1.906
       1.905
                31.34
                        11
1.900
       1.921
                30.58
                        11
1.995
       2.013
               29.83
                        10
1.932
       1.932
               31.15
                        11
1.908
       1.927
               30.96
                        11
1.904
       1.924
                30.77
                        11
1.925
       1.945
                30.39
                        10
1.947
       1.967
               30.20
                       1.0
1.971
       1.990
               30.02
                       10
       2.247
2.250
               29.07
                        -9
2.254
                        9
       2.278
               28.31
2.337
       2.358
               27.55
                       8
2.332
       2.353
               26.79
```

```
2.884 2.885
2.348 2.369
                26.04
                27.36
  2.347 2.368
                27.17
                          8
  2.279
        2.302
                26.98
  2.604
        2.606
                26.60
  2.693
        2.691
                26.42
  2.785
        2.784
                26.23
  3.087
        3.110
                25.28
                         7
  3.681
        3.703
                24.52
                         6
 4.658 4.676
                23.76
 6.559 6.562
                23.00
 12.023 12.020
                22.25
 TOO FEW SLICES AT RAD=
                         21.49
THE LUWEST FACTOR OF SAFETY FOUND WAS 1.791 AT R= 32.29
FSBSHP FSNRML RADIUS NO.SLCS. X=
                                  35.00 Y=
                                              52.00
 1.802 1.818 36.62 13
 1.728
       1.746
               35.93
                        12
 1.910 1.908
                35.23
                       11
 1.781
       1.798
                36.45
                       13
 1.782
        1.799
                36.27
                        12
 1.765
        1.782
                36.10
                        12
 1.746 1.763
                35.75
                        12
 1.764 1.781
                35.58
                       12
 1.783 1.798
                35.41
                       12
        1.980
 1.963
                34.54
                       11
 1.997
        2.015
                33.85
                       1.1
 2.107
       2.123
                33.15
                        1()
 2.394
       2.392
                32.46
                         9
 2.348
       2.369
               31.77
                        9
 2.388
       2.411
                31.08
                        8
       2.371
 2.355
                32.29
                        - 9
 2.347
        2.365
                32.11
                         9
 2.336
       2.355
                31.94
                         9
 2.368 2.389
                31.60
                         9
 2.380 2.407
               31.42
                        9
 2.394
       2.416
               31.25
 2.531
       2.552
                30.38
                        9
 3.116
        3.133
                29.69
                        7
 3.367
       3.389
                29.00
                        7
 4.069
       4.089
                28.30
 5.208
       5.220
               27.61
                        6
 7.225 7.224
               26.92
13.182 13.170
               26.22
TOO FEW SLICES AT RAD=
                       25.53
THE LOWEST FACTOR OF SAFETY FOUND WAS 1.728 AT R= 35.93
THE MINIMUM FACTOR OF SAFETY IS 1.531 FOR X= 46.00 Y=
                                                           50.00 R=
                                                                       37.67
FINISH
```

GOOD-BYE

