

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle CAUSES OF BRIDGE PIER STAINING		5. Report Date February, 1974
		6. Performing Organization Code
7. Author(s) Sam I. Thornton and Charles Springer		8. Performing Organization Report No.
9. Performing Organization Name and Address Department of Civil Engineering University of Arkansas Fayetteville, Arkansas 72701		10. Work Unit No. 11. Contract or Grant No.
12. Sponsoring Agency Name and Address Arkansas State Highway Department P. O. Box 2261 Little Rock, Arkansas 72203		13. Type of Report and Period Covered Final Report 14. Sponsoring Agency Code
15. Supplementary Notes This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration		
16. Abstract Four types of bridge stains exist in Arkansas: Rust stains - those stains directly traceable to rust; Red Stains - broad stains which are not directly traceable to rust; Gray stains - similar to red stains except for color; and graffiti. Except for graffiti, bridge stains are the result of weathering and runoff from the bridge deck. The stains contain the elements normally found in soil, rust, and tires. Bridge stains in Arkansas cause no significant structural damage, i.e., they do not accompany a deterioration of aggregate. Red and gray stains, which comprise over three-fourths of all stain on most bridges, can be effectively removed by sandblasting, washing with soap, water and a brush, or application of certain acids then rinsing. Stains on new structures can be greatly reduced by eliminating or sealing expansion joints above bridge piers.		
17. Key Words Stain, Bridge Piers, Cleaning Expansion Joints	unoff, \quad 18. Distributio	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price 59

CAUSES OF BRIDGE PIER STAINING

by
Sam I. Thornton
Charles Springer

FINAL REPORT
 HIGHWAY RESEARCH PROJECT 33

conducted for

The Arkansas State Highway Department in cooperation with

The U.S. Department of Transportation
Federal Highway Administration

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Arkansas State Highway Department or the Federal Highway Administration.

Abstract

Four types of bridge stains exist in Arkansas: Rust stains - those stains directly traceable to rust; Red stains - broad stains which are not directly traceable to rust; Gray stains - similar to red stains except for color; and graffiti.

Except for graffiti, bridge stains are the result of weathering and runoff from the bridge deck. The stains contain the elements normally found in soil, rust, and tires. Bridge stains in Arkansas cause no significant structural damage, i.e., they do not accompany a deterioration of aggregate.

Red and gray stains, which comprise over three-fourths of all stain on most bridges, can be effectively removed by sandblasting, washing with soap, water and a brush, or application of certain acids then rinsing.

Stains on new structures can be greatly reduced by eliminating or sealing expansion joints above bridge piers.

GAINS', FINDINGS, AND CONCLUSIONS

This study shows that most bridge stains are a result of weathering and storm runoff from the bridge deck. Stains, other than graffiti, are composed of the elements which make up road grime, i.e., soil, rubber and rust. Due to their superficial nature, stains cause no significant structural damage to the bridge piers.

Stains on new structures can be greatly reduced by eliminating or sealing the expansion joints above bridge piers. By eliminating runoff, stains (except for graffiti) will be stopped at their sources.

Ninety to ninety-five percent of bridge stains can be removed. Rust stains, however, can only be removed by a time consuming and costly chemical procedure. Graffiti, and sometimes rust stains, can be removed by sandblasting. Sandblasting has the disadvantage of removing part of the concrete matrix. Red and gray stains, which comprise over three-fourths of the stains on most bridges, can be removed by washing with soap, water and a brush, sandblasting, or application of certain acids then rinsing.

IMPLEMENTATION STATEMENT

Bridge pier stains can be effectively prevented by eliminating runoff from the bridge deck to the concrete below. Use of continuous span bridges, placing expansion joints away from the bridge piers, or sealing the joint with the new compressible joint sealers, angle trough drains, or neoprene belt type troughs. New bridge structures should incorporate methods to eliminate runoff over the concrete substructure.

Stains from existing structures can, for the most part, be removed by cleaining. Cleaning will not prevent the stains from recurring, however, unless a method is found to eliminate discharge through the existing expansion joints. For this reason, and because the costs and effectiveness of a regular cleaning program are not known, a pilot bridge cleaning program should be initiated. Information from the pilot study can be used to determine the frequency of a routine cleaning program.

ACKNOWLEDGMENTS

This study was conducted under the sponsorship of the Arkansas Department of Highways and the U.S. Department of Transportation, Federal Highway Administration. The authors extend their thanks to Mr. Veral Pinkerton, Mr. Bert Rownd, and Mr. John Hall of the Arkansas Highway Department for their invaluable assistance on design and maintenance procedures of bridge structures.

Special thanks are due to Susan Gray for the cover design, typesetting, and drafting, and to the Highway Departments and corporations listed below who contributed by answering questionnaires and letters:

Alaska Department of Highways, Doyle W. Ross
California Department of Public Works, Division of Highways, Guy D. Mancarti
Colorado State Department of Highways, M. A. Kahm
Connecticut Department of Transportation, Edmund R. Koenig
Delaware Department of Highways and Transportation, R. C. McDowel/
Florida Department of Transportation, T. Alberdi, Jr.
Georgia Department of Transportation, Tom Stapler
Goodyear Rubber, D. J. Shepherd
Hawaii Department of Transportation, T. Aratani
Idaho Department of Highways, L. F. Erickson
Illinois Department of Transportation, Carl E. Thunman, Jr.
I. Schneid, Inc., George L. Rosenberg

Kansas State Highway Commission, J. M. Hemphill
Louisiana Department of Highways, Verdi Adam
Maine Department of Transportation, Frederick M. Boyce
Maryland Department of Transportation, Nathan L. Smith, Jr.
Massachusetts Department of Public Works, Paul W. McHugh
Michigan Department of State Highways, Max N. Clyde
Mississippi State Highway Department, H. V. Mahan
Missouri State Highway Commission, W. L. Trimm
Montana Department of Highways, Paul R. De VineNebraska Department of Roads, D. E. Koop
Nevada Department of Highways, Hugh E. Brinson
New Hampshire Department of Public Works and Highways, Philip E. McIntyre
New Jersey Department of Transportation, Bruce Cosaboom
New Mexico State Highway Department, J. A. Seibert
New York State Department of Transportation, R. N. Kamp
North Dakota Highway Department, Allen J. Anderson
Ohio Department of Transportation, Martin P. Burke, Jr.
Oregon State Highway Division, Walter J. Hart
Pennsylvania Department of Transportation, Richard K. Shaffer
South Carolina State Highway Department, Oren S. Fletcher
South Dakota Department of Highways, James F. Wilsey.
Tennessee Department of Transportation, Henry W. Derthick
Texas Highway Department, A. W. Eatman
U.S. Steel, J. A. Gilligan
Utah State Department of Highways, W. J. Stephenson
Vermont Department of Highways, Russell H. Watson
Virginia Highway Research Council, W. T. McKeel, Jr.
Washington State Department of Highways, C. S. Gloyd
West Virginia Department of Highways, George E. White, Jr.
Wisconsin Department of Transportation, G. H. Zeuhlke
Wyoming State Highway Commission, James C. Wise

TABLE OF CONTENTS

Page
Abstract ii
Gains, Findings, and Conclusions iii
Implementation Statement iv
Acknowledgments v
Introduction 1
Arkansas Study 1
Letter Survey 2
Composition of the Stains 3
Origin of the Stain 5
Extent of the Stain 6
Effects of the Stains on Structures 6
Cleaning 6
Prevention of Stains 8
Conclusions 12
Recommendations 13
Appendix
Appendix A
Composition of Red and Gray Stains a1
Appendix B
Survey of Stains in Arkansas. b1
Appendix C
Method for Removing Rust. c1

INTRODUCTION

The pleasing appearance of highway structures, particularly grade separations, is a vital part of highway beautification efforts. A stained or discolored bridge can look old before its time and will give the appearance of being dirty or unkept.

Concrete stains on grade separations, and in some instances damage due to some undefined cause, prompted the Arkansas Highway Department to seek solutions to the problem particularly along Interstate Highways 30, 40 and 55 where most grade separations exist. The objectives sought include the following:

1. To determine the composition of the stain.
2. To determine the origin of the stain.
3. To determine the effects of the stain on the structure.
4. To make recommendations as to methods of remedying and preventing the staining.

ARKANSAS STUDY

In an effort to find solutions to the problem of bridge pier staining, the Arkansas Highway Department in cooperation with the Federal Highway Administration, funded this study. The method of study included a survey of staining problems in other states, classification of the types of stains in Arkansas, determination of the origin, chemical and physical properties of the stains, and evaluation of evidence from testing and attempts to clean bridge piers.

Letter Survey

A letter survey on bridge stains was sent to the other forty-nine states and District of Columbia. The survey asked for experience on composition, origin, effects, and prevention of bridge pier stains. Forty of the states replied but five of the replies reported that they had no information to offer.

The most common reports of stain composition are of iron and salt. Rust was the most common stain but weathering of iron pyrite in aggregate was also reported. Salt from roadway de-icing is reported as the second most common cause of stain.

Stains are also reported from fungus, bird drippings, water borne minerals, petroleum products, dust, clay, marine growth, calcium carbonate, concrete or grout salts, and joint sealants.

Leakage of expansion joints is reported as by far the most common source of stain. Weathering of concrete and paint breakdown were also reported.

Of the respondents to the letter survey, fifteen reported only aesthetic damage and eight reported serious deterioration in some cases. Four of the eight reporting damage listed salt or salt wastes as the cause. From the remaining four, one blamed scaling and spalling, one drainage and one weathering. The other respondent did not list a cause. Most of the remaining respondents considered structural damage as a minor problem only.

Most suggestions to prevent stain or discoloration are to eliminate water through the joints. Designing more effective drainage systems, sealing all joints, and elimination of joints by use of continuous span bridges were all suggested.

Other preventive measures include using waterproof membranes to seal concrete and galvanizing exposed anchor bolts and bearing plates. Where weathering is involved, limiting the amount of iron pyrites and shale in aggregates is suggested.

Only two systems of treating bridges which were already stained were suggested. One suggested removing stains with muratic acid then treating with a 50% 50\% solution of boiled linseed oil and mineral spirits. The other respondent suggested either sandblasting and treating the caps with epoxy paint or bi-annual washing of areas and treating with a solution of linseed oil and mineral spirits.

Composition of the Stains

Four general types of concrete stains were found: rust stain, graffiti, red stain, and gray stain (Figure 1). These stain types account for more than 99 percent of all discoloration on bridge piers, aprons and supporting members.

Composition of the stains were determined by chemical and X-ray analysis. Samples of the four stain types were taken by scraping the surface of the stained concrete. Each stain type was tested (except graffiti) by X-ray analysis, qualitative chemical tests, and combustion.

Rust stains are those stains which are directly traceable to metal rust. For example, the stains which are found under the columns of Corten steel or below exposed reinforcing steel. As expected, rust stains contained iron compounds and were the familiar burned red or rust color.

Graffiti stains are mostly paint stains from pressurized cans.

Figure 1. Types of Stain

Rust stains, by the way they were identified, are a result of rusting from steel in the bridge structure. Rust stains occured at the anchor bolts, bridge expansion joints, bridge piers, and on the apron at the end of bridges. Several examples of rust stains which occured before the bridge deck was placed were found on concrete aprons. Almost all of the rust stains on bridges were below places on the bridge which are difficult if not impossible to paint.

Red and gray stains are the result of weathering and surface runoff. The stains occur in areas where runoff from the bridges wets the concrete surfaces. In addition, The composition of the stains, i.e. iron, silica, aluminum, sulfur, indicate that soil and road grime are the origin. The presence of sulfur is not surprising because it is used in the manufacture of tires (1 to $1 \frac{1}{2} \%$ by weight) and occurs naturally in asphalts (usually less than 1% by weight). Inspection trips during and just after showers confirmed that areas of red and gray stains are wet by surface runoff.

Graffiti is the result of vandalism. Graffiti's origin, therefore, is people. Graffiti stain, therefore, can best be controlled by a sense of public responsibility.

Extent of the Stain

In order to determine the extent of bridge staining, inspection trips were made in the fall of 1973. All the bridges along Interstate Highway I-30, I-40 and I-55 were included.

Generally, stains on bridge columns, aprons, bents and superstructure averaged ten to thirty percent of the total area but varied between almost no stain to eighty percent of the total area.

Appendix B is a compilation of the survey. Stains are listed by stain type, i.e. gray, red, rust or graffiti, and location. For example, the approximate amount of gray stain on columns of the I-40 bridge at log mile 4.42 on $\mathrm{I}-55$ in Crittenden County was 10% of the surface area. No rust, red or graffiti stains are reported on these columns.

Effects of the Stains on Structures

No significant structural damage as a result of stains was found on Arkansas bridges during the inspection trips. Stains were superficial and did not penetrate the concrete or accompany a deterioration of aggregate.

A small amount of deterioration was present, however, above the rust stains. Rocker arms, anchor bolts and bearing plates were the most frequent cause of rust stains.

Cleaning

Once the stains were classified as rust, graffiti, red or gray, and their composition was determined, various cleaning methods and agents were tried. Several
cleaning agents and methods were tried on a one square foot area to test their eftiveness.

Graffiti and rust stains were very difficult to remove. Sandblasting is an effective method of stain removal but has the disadvantage of removing part of the concrete. When repeated often, sandblasting removes the concrete matrix. Derrington, Stowe and Miller in the Corps of Engineers paper $\mathrm{C}-68-8$, "Investigation of Methods for Removing Stains from Mortar and Concrete" recommend using sodium citrate-sodium hydrosulfite for removing iron stains. Details of this method are included in Appendix C. The method, however, is expensive and time consuming.

Red and gray stains were relatively easy to remove in the initial test sections. Application of commercial alkaline detergents and moderate mechanical action removed almost all of the stain in the one square foot test area. Dry brushing and rinsing also removed most of the deposit.

Because red and gray stains comprise over three-fourths of the stain on most bridges and they were relatively easy to remove, a field test using a cleaning agent, water, and mechanical action or combination of these was made. The Seventh Street overpass of $1-40$ in North Little Rock was selected because it was extensively stained with red and gray stains and it could be cleaned from Seventh Street where only low velocity, low volume traffic existed.

The most effective method of cleaning the $\mathrm{I}-40$ bridge combined the use of mechanical action with a brush, cleaning agent, and rinse water. An estimated 95 percent of the stain was removed this way. Use of mechanical action alone removed
approximately 60 percent of the stain. A sprayed application of soap, rinsed 5 minutes later removed only 20 percent of the stain.

Application of one commercial cleaning agent to the I-40 bridge, then rinsing, also removed 90-95 percent of the stain. Cleaning was accomplished with or without broom brushing. The cleaning agent (Removox-a product of I. Schneid, Inc., Atlanta, Ga.) is a mixture of hydrochloric acid, gluconic acid, 9-10 molar ethylene oxide nonionic, 12-15 molar ethylene oxide nonionic, and an inhibitor. This cleaning agent, because of the acid it contains, also removes some of the concrete matrix.

Prevention of Stains

Prevention of stains, other than graffiti, is accomplished by keeping the water off of the concrete. The most effective of methods is the use of continuous span bridges or to place the expansion joint away from the bridge piers. Elimination of expansion joints over bridge piers, however, is not always economical.

Coatings and sealers are effective in prevention of stains over short periods of time (Figure 2). Polyethylene and vinyl can effectively prevent stains during the construction period before the bridge deck is poured. With time, coatings and sealers break down and expose the concrete to stains.

A sloping abutment with drain (Figure 3) is effective for eliminating stains from the bridge ends. Drip pans, also shown in Figure 3, are only moderately succesful because wind which accompanies the storms will blow water on the bridge piers.

Expansion joints between sections of bridges can effectively be sealed in one of three ways (Figure 4). Where expansions are large, as in the finger type joints, the

Figure 3

COMPRESSIBLE SEALER

Figure 4
neoprene or conveyor belt type trough is effective. Care must be taken, however, that the belt type trough has sufficient room to flex so it will not become clogged. Intermediate movements can be absorbed with the angle troughs and still remove water which passes the joint. Small expansions can be absorbed with the compressible block type joint sealers. Compressible joint sealers must be installed with care or leaks will develop.

CONCLUSIONS

1. Except for graffiti, bridge pier stains contain the elements found in soil, iron rust and tires.
2. Stains on bridges in Arkansas were not damaging to the structures.
3. The natural stains, i.e. all stains except graffiti, were the result of weathering and surface runoff.
4. Natural stains, other than rust stains, can be effectively removed by sandblasting, washing with soap, water and a brush, or application of certain acids then rinsing. These stains will recur, however, unless their source is stopped.
5. Bridge pier stains can be greatly reduced by preventing rainfall runoff from reaching the concrete below the bridge deck.

RECOMMENDATIONS

1. Incorporate in the design of all new bridge structures a method to drain surface runoff away from the exposed concrete substructure.
2. Initiate a pilot bridge cleaning program within the Arkansas Highway Department of 5 to 10 bridges in order to evaluate the costs, effectiveness and benefits of a regular cleaning program.

APPENDIX A

The material in Appendix A is a summary of the scanning electron microscope and X-ray examination of red and dark gray stains at the $1-40$ and $1-55$ intersection in West Memphis. Micrographs and X-ray patterns for both red and gray stains were similar. For this reason, only results from the red stain are included.

Samples were taken by scraping the stained surface of the bridge piers. The micrographs, therefore, contain stained concrete particles in the sand and silt size range and X-rays reveal those elements normally found in concrete as well as the possible source of stain.

Two micrographs taken at 1000 power of representive samples are shown in Figure $A-1$. The samples are coated with a thin coat of gold, a conductive metal, to give better pictures.

Figure $A-2$, like Figure $A-1$, contains micrographs of the samples except that they are not coated with gold in order thay they might be subjected to X-ray examination. In addition, the micrographs are at 500 and 2000 power in Figure A-2 (a) and A-2 (b) respectively.

X-ray analyses, comparing the relative intensity of X-ray with energy in Kev is shown in Figures $A-3$ and $A-4$.

Iron, Sulfur and Potassium are the elements found which might be stain related. Aluminum, Silica, and Calcium were also found but are common in concrete.

1.000X

Figure $A-1$

500X
Figure $A-2$ (a)

Figure $\mathrm{A}-2$ (b)

Figure A-3 (a)
Comparison of the X -rays gathered from a "cement grain" and a small particle on the surface of the same grain.

Figure $A-3$ (b)
Analysis from areas A and B shown in Figure $A-2$ (b).

APPENDIX B

The material in Appendix B is an evaluation of the extent of stain on overpasses along Interstate Highways 30, 40, and 55. The bridges are listed by log mile along the Interstate and discribed by the route crossing and bridge type.

Stains are listed by stain type, i.e. gray, red, or rust, and location. For example, the approximate amount of gray stain on columns at the $\mathrm{I}-40$ bridge at log mile 4.42 on Interstate 55 in Crittenden County is 10% of the surface area. No rust, red, or graffiti stain is reported on these columns. Total stain is the \% of area stained, not necessarily the sum of red, gray, rust, and graffiti stains (overlaping excluded).

The inspection trips, from which this appendix is formed, were made in the fall of 1973.
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
MILLER COUNTY									
0.0	Continuous	US 71	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 20 \% \end{array}$	10\%	$\begin{gathered} 10 \% \\ \text { * } 20 \% \end{gathered}$		$\begin{aligned} & 10 \% \\ & 10 \% \\ & 30 \% \end{aligned}$	Rust on flange from side drainage
2.12	1 Beam		Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 10 \% \\ 5 \% \end{array}$	$\begin{gathered} * 20 \% \\ 20 \% \end{gathered}$	5\%		$\begin{array}{r} 5 \% \\ 20 \% \\ 20 \% \\ 5 \% \end{array}$	
4.33	I Beam	Sugar Hill	Superstructure Bent Column Apron	*20\%	$\begin{aligned} & \text { *10\% } \\ & \text { * 10\% } \end{aligned}$	$\begin{array}{r} * 15 \% \\ 10 \% \\ \hline \end{array}$		$\begin{aligned} & 25 \% \\ & 20 \% \\ & 10 \% \\ & \hline \end{aligned}$	Clay on bottom of concrete barrier walls protecting piers
6.51	I Beam	SH 108	Superstructure Bent Column Apron	5\%	$\begin{aligned} & 15 \% \\ & 10 \% \end{aligned}$	30\%		$\begin{array}{r} 15 \% \\ 10 \% \\ 30 \% \\ \hline \end{array}$	
7.98	1 Beam	County Road	Superstructure Bent Column Apron	5\%	$\begin{gathered} 5 \% \\ * 10 \% \end{gathered}$	*10\%		$\begin{array}{r} 25 \% \\ 10 \% \\ 5 \% \\ \hline \end{array}$	
9.87	I Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	* 10\%	$\begin{array}{r} 5 \% \\ * 10 \% \end{array}$		$\begin{array}{r} 10 \% \\ 15 \% \\ 5 \% \\ \hline \end{array}$	Small spawling on columns
13.86	I Beam	County Road	Superstructure Bent Column Apron	30\%	5\%	30\%		$\begin{array}{r} 5 \% \\ 30 \% \\ 30 \% \\ \hline \end{array}$	Rebars exposed, bottom of bent

* Overlapping Stains
General Note: Approcimately 95% of all Over Passes had a small amount of gray stain directly beneath each guardrail support. This stain was on the concrete portion of the superstructure.
HIGHWAY: INTERSTATE 30

[^0]HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \\ & \hline \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust		Graffiti		
32.31	Girder	Deann Gr. S .	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ \quad * 20 \% \\ \hline \end{array}$		$\begin{array}{r} 5 \% \\ 5 \% \\ * 80 \% \\ \hline \end{array}$	5\%	10\% 5\% 80\%	
36.34	Girder	Emmett I.C.	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 5 \% \\ \times 2 \% \\ \hline \end{array}$		$\begin{array}{r} 5 \% \\ 5 \% \\ * 40 \% \end{array}$		$\begin{aligned} & 15 \% \\ & 10 \% \\ & 50 \% \end{aligned}$	
39.34	Continuous	County	Superstructure Bent Column Apron	5\%	5\%	5\%		$\begin{gathered} 10 \% \\ 5 \% \end{gathered}$	Grass on apron
NEVADA COUNTY									
40.77	Continuous	County	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	5\%		$\begin{array}{r} 10 \% \\ 5 \% \\ 20 \% \\ \hline \end{array}$		$\begin{array}{r} 15 \% \\ 5 \% \\ 20 \% \end{array}$	
42.46	Girder	County	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{aligned} & * 15 \% \\ & { }^{*} 10 \% \end{aligned}$	* 5\%	$\begin{array}{r} * 5 \% \\ +\quad 5 \% \\ 30 \% \end{array}$		$\begin{aligned} & 20 \% \\ & 10 \% \\ & 30 \% \end{aligned}$	
43.95	Girder	SH 24	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 10\% } \\ & \text { 10\% } \end{aligned}$		5\%		$\begin{aligned} & \text { 15\% } \\ & \text { 10\% } \end{aligned}$	
44.57	RR Girder	RR	Superstructure Bent Column Apron	$\begin{gathered} * 20 \% \\ 20 \% \end{gathered}$	$\begin{aligned} & * 20 \% \\ & 15 \% \end{aligned}$	20\%		$\begin{aligned} & 30 \% \\ & 15 \% \\ & 40 \% \end{aligned}$	

* Overlapping Stains
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
46.14	Continuous	SH 19	Superstructure Bent Column Apron	* 5\%	10\%	$\begin{gathered} \text { * } 10 \% \\ 20 \% \\ \hline \end{gathered}$		$\begin{aligned} & 10 \% \\ & 10 \% \\ & 20 \% \end{aligned}$	Rusting under point on flange under drain
47.93	I Beam	Nubbin H.G.S.	Superstructure Bent Column Apron	5\%	5\%	20\%		$\begin{array}{r} 5 \% \\ 25 \% \end{array}$	
51.28	I Beam	Bought on G.S.	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ \text { * } 10 \% \end{array}$		$\begin{array}{r} 5 \% \\ 5 \% \\ * 20 \% \end{array}$	$\begin{array}{r} 5 \% \\ 5 \% \\ * \quad 5 \% \end{array}$	$\begin{array}{r} 10 \% \\ 5 \% \\ 10 \% \\ 30 \% \end{array}$	
CLARK COUNTY									
53.67	I Beam	SH 51	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 15 \% \\ \text { * } 10 \% \\ \hline \end{array}$	$\begin{array}{r} \text { *15\% } \\ 5 \% \end{array}$	*30\%	* 5\%	$\begin{array}{r} 5 \% \\ 25 \% \\ 5 \% \\ 40 \% \\ \hline \end{array}$	Rebars exposed on bottom of bent
60.59	I Beam	FAS 1571	Superstructure Bent Column Apron	* 30%	$\begin{array}{r} 5 \% \\ * \quad 5 \% \end{array}$	$\begin{aligned} & \text { * } 10 \% \\ & \text { 10\% } \\ & \text { *10\% } \end{aligned}$		$\begin{array}{r} 5 \% \\ 10 \% \\ 10 \% \\ 35 \% \end{array}$	Rust on flange Rebars on bottom exposed
62.84	1 Beam	SH 53	Superstructure Bent Column Apron	$\begin{aligned} & \text { *15\% } \\ & \text { * 5\% } \\ & \text { *10\% } \end{aligned}$		$\begin{aligned} & \text { *20\% } \\ & { }^{*} 20 \% \\ & { }^{*} 10 \% \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \% \\ & 20 \% \\ & 15 \% \end{aligned}$	
65.10	I Beam	County	Superstructure Bent Column Apron	$\begin{gathered} 5 \% \\ 20 \% \\ { }^{*} 30 \% \\ { }^{*} 10 \% \end{gathered}$	$\begin{gathered} 15 \% \\ * 15 \% \end{gathered}$	$\begin{aligned} & 10 \% \\ & { }^{*} 15 \% \\ & { }^{*} 25 \% \\ & \hline \end{aligned}$	5\%	$\begin{array}{r} 5 \% \\ 45 \% \\ 50 \% \\ 30 \% \end{array}$	Stain on flange under drain

* Overlapping Stains
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
69.27	I Beam	SH 26	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 15 \% \\ 5 \% \\ 10 \% \\ \hline \end{array}$	* 5\%			$\begin{array}{r} 5 \% \\ 15 \% \\ 5 \% \\ 10 \% \\ \hline \end{array}$	Rebars exposed on side of bent
70.77	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 10 \% \\ 5 \% \end{array}$	5\%	5\%	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	$\begin{array}{r} 5 \% \\ 15 \% \\ 10 \% \\ 10 \% \end{array}$	Stains on I Beam under drains
72.86	I Beam	$\begin{gathered} \text { SH } 8 \text { \& } \\ \text { SH } 51 \end{gathered}$	Superstructure Bent Column Apron	$\begin{gathered} \text { *15\% } \\ \text { 10\% } \\ \text { " } 20 \% \end{gathered}$	* 5\%	$\begin{gathered} { }^{*} 10 \% \\ 10 \% \\ { }^{*} 5 \% \end{gathered}$		$\begin{aligned} & 25 \% \\ & 20 \% \\ & 20 \% \end{aligned}$	Same as above
74.59	I Beam	FAS 1576	Superstructure Bent Column Apron	$\begin{aligned} & 5 \% \\ & 5 \% \\ & 5 \% \\ & \hline \end{aligned}$		$\begin{array}{r} 5 \% \\ 10 \% \\ \hline \end{array}$		$\begin{array}{r} 10 \% \\ 5 \% \\ 15 \% \\ \hline \end{array}$	Same as above
76.64	I Beam	County Road	Superstructure Bent Column Apron	5\%		$\begin{aligned} & 10 \% \\ & 10 \% \\ & 10 \% \\ & \hline \end{aligned}$	5\%	$\begin{aligned} & 15 \% \\ & 10 \% \\ & 15 \% \\ & \hline \end{aligned}$	
HOT SPRINGS COUNTY									
82.59	1 Beam	SH 283	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 10 \% \end{aligned}$		5\%		$\begin{aligned} & 15 \% \\ & 10 \% \end{aligned}$	No aprons
87.32	I Beam	Carrol Road	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 5 \% \end{array}$	5\%	5\%	.	$\begin{array}{r} 15 \% \\ 5 \% \\ 5 \% \\ \hline \end{array}$	Snail slime on barrier

[^1]HIGHWAY: INTERSTATE 30

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{DESCRIPTION} \& \multicolumn{4}{|l|}{STAIN TYPE} \& \multirow[t]{2}{*}{TOTAL STAIN} \& \multirow[t]{2}{*}{COMMENTS} \\
\hline Log Mile \& Bridge Type \& Route \& Bridge Part \& Gray \& Rust \& Red \& Graffiti \& \& \\
\hline 91.11 \& I Beam \& \[
\begin{gathered}
\text { Old } \\
\text { SH } 84
\end{gathered}
\] \& \begin{tabular}{l}
Superstructure \\
Bent \\
Column \\
Apron
\end{tabular} \& \& * 5\% \& \[
\begin{array}{r}
{ }^{*} 20 \% \\
{ }^{*} 20 \% \\
5 \%
\end{array}
\] \& \[
\begin{array}{r}
* 5 \% \\
5 \% \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 20 \% \\
\& 20 \% \\
\& 10 \% \\
\& \hline
\end{aligned}
\] \& \\
\hline 92.75 \& I Beam \& County Road \& Superstructure Bent Column Apron \& 5\% \& \& \[
\begin{array}{r}
20 \% \\
20 \% \\
5 \%
\end{array}
\] \& \& \[
\begin{array}{r}
25 \% \\
20 \% \\
5 \%
\end{array}
\] \& \\
\hline 96.69 \& I Beam \& SH 84 \& Superstructure Bent Column Apron \& \(* 10 \%\)
\(*\)

* \& * 5\% \& $$
\begin{gathered}
* 30 \% \\
{ }^{*} 40 \% \\
30 \%
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 40 \% \\
& 40 \% \\
& 30 \%
\end{aligned}
$$
\] \&

\hline 97.98 \& Concrete I \& US 270 \& | Superstructure |
| :--- |
| Bent Column Apron | \& \[

$$
\begin{array}{r}
* 40 \% \\
40 \% \\
5 \%
\end{array}
$$

\] \& * 5\% \& * 5\% \& \& \[

$$
\begin{array}{r}
45 \% \\
40 \% \\
5 \% \\
\hline
\end{array}
$$
\] \& Algae on barrier wall spalling of concrete

\hline 98.86 \& Girder \& URI \& P \& | Superstructure |
| :--- |
| Bent Column Apron | \& 15\% \& 5\% \& 5\% \& \& \[

$$
\begin{array}{r}
20 \% \\
5 \% \\
\hline
\end{array}
$$
\] \& Paint on girder peeling

\hline 100.22 \& I Beam \& County Road \& | Superstructure |
| :--- |
| Bent Column Apron | \& \[

$$
\begin{array}{r}
15 \% \\
* 5 \% \\
\\
20 \% \\
\hline
\end{array}
$$

\] \& * 5\% \& \[

$$
\begin{array}{r}
* 5 \% \\
5 \%
\end{array}
$$

\] \& \& \[

$$
\begin{array}{r}
15 \% \\
10 \% \\
5 \% \\
20 \% \\
\hline
\end{array}
$$
\] \& Stain \& rust below drain

\hline 101.80 \& I Beam \& County Road \& Superstructure Bent Column Apron \& 5\% \& \& $$
\begin{aligned}
& 5 \% \\
& 5 \%
\end{aligned}
$$ \& 5\% \& \[

$$
\begin{aligned}
& 5 \% \\
& 5 \% \\
& 5 \% \\
& \hline
\end{aligned}
$$
\] \&

\hline \multicolumn{4}{|l|}{SALINE COUNTY} \& \& \& \& \& \&

\hline
\end{tabular}

* Overlapping Stains
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
106.35	1 Beam	Military Road	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{gathered} * 40 \% \\ 40 \% \\ 10 \% \\ \hline \end{gathered}$	$\begin{gathered} 10 \% \\ * \quad 5 \% \end{gathered}$	* 5\%		$\begin{aligned} & 10 \% \\ & 40 \% \\ & 40 \% \\ & 10 \% \end{aligned}$	I beams rusting
108.47	1 Beam	County Road	Superstructure Bent Column Apron	10\%	5\%	5\%	$\begin{gathered} 5 \% \\ 10 \% \end{gathered}$	$\begin{array}{r} 5 \% \\ 10 \% \\ 5 \% \\ 15 \% \end{array}$	
110.1	1 Beam	County	Superstructure Bent Column Apron	$\begin{aligned} & \text { 10\% } \\ & \text { 10\% } \\ & \text { 10\% } \end{aligned}$		5\%		$\begin{aligned} & \text { 10\% } \\ & \text { 10\% } \\ & \text { 15\% } \end{aligned}$	Steel stains Rebars bottom of bent
115.82	1 Beam	Sevier Street	Superstructure Bent Column Apron	$\begin{gathered} * 5 \% \\ 5 \% \\ 20 \% \end{gathered}$	$\begin{aligned} & 5 \% \\ & * 10 \% \end{aligned}$	* 5\%		$\begin{array}{r} 5 \% \\ 15 \% \\ 5 \% \\ 50 \% \\ \hline \end{array}$	Same as above
116.69	I Beam	Carpenter	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{gathered} 10 \% \\ { }^{*} 50 \% \\ * 35 \% \\ \\ \hline 10 \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { *10\% } \\ & \end{aligned}$	$\begin{aligned} & * 5 \% \\ & { }^{*} 5 \% \end{aligned}$		$\begin{aligned} & 10 \% \\ & 50 \% \\ & 35 \% \\ & 10 \% \\ & \hline \end{aligned}$	
118.31	1 Beam	Congo Road	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 50 \% \\ & 20 \% \\ & 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \% \\ & \text { 10\% } \end{aligned}$	30\%		$\begin{aligned} & 10 \% \\ & 60 \% \\ & 50 \% \\ & 10 \% \\ & \hline \end{aligned}$	Concrete spalling. Rebars exposed bottom bent
120.65	1 Beam	Alcoa Road	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ \text { * } 10 \% \\ 10 \% \\ 10 \% \\ \hline \end{gathered}$	* 5\%	$\begin{array}{r} * \\ \\ 10 \% \\ \hline \end{array}$		$\begin{aligned} & 10 \% \\ & 15 \% \\ & 10 \% \\ & 15 \% \end{aligned}$	Repainted steel
122.96	1 Beam	SH 183	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 30 \% \\ & 25 \% \end{aligned}$	5\%	$\begin{aligned} & 15 \% \\ & 15 \% \end{aligned}$		$\begin{aligned} & 10 \% \\ & 35 \% \\ & 35 \% \end{aligned}$	Rebars exposed bottom of bent No Apron (Dirt \& Grass)

* Overlapping Stains
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
PULASKI COUNTY									
126.35	Concrete	SH 111	Superstructure Bent Column Apron		$\begin{array}{r} * 5 \% \\ 5 \% \end{array}$	$\begin{gathered} { }^{*} 5 \% \\ { }^{*} 30 \% \end{gathered}$		$\begin{aligned} & 15 \% \\ & 20 \% \\ & 25 \% \\ & 35 \% \end{aligned}$	Rebars exposed side of bent Steel repainted
128.63	1 Beam	Mablevale I.C.	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 20 \% \\ & 25 \% \end{aligned}$	5\%	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	5\%	$\begin{aligned} & 10 \% \\ & 25 \% \\ & 25 \% \\ & 15 \% \\ & \hline \end{aligned}$	Spalling on bent No apron Rebars exposed on bent
130.42	1 Beam	SH 338	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 \% \\ * 15 \% \\ 15 \% \end{gathered}$	*10\%	15\%		$\begin{aligned} & 15 \% \\ & 20 \% \\ & 15 \% \\ & 15 \% \end{aligned}$	
133.46	1 Beam	Stanton Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 10 \% \\ 10 \% \end{array}$	10\%	10\%		$\begin{array}{r} 5 \% \\ 15 \% \\ 10 \% \\ 10 \% \\ \hline \end{array}$	Rebars on bottom exposed
134.22	1 Beam	Scot Hamilton	Superstructure Bent Column Apron	$\begin{gathered} 5 \% \\ 10 \% \\ \times 10 \% \\ 10 \% \end{gathered}$	$\begin{array}{r} 5 \% \\ * 5 \% \end{array}$	$\begin{gathered} * 5 \% \\ 20 \% \\ \hline \end{gathered}$		$\begin{array}{r} 5 \% \\ 10 \% \\ 15 \% \\ 30 \% \\ \hline \end{array}$	Rebars in bottom exposed
137.80	1 Beam	$\begin{gathered} \text { W. Leg } \\ \text { US } 65 \end{gathered}$	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ * 20 \% \\ * 20 \% \\ 10 \% \\ \hline \end{gathered}$	$\begin{aligned} & * 5 \% \\ & * 5 \% \end{aligned}$			$\begin{aligned} & 10 \% \\ & 20 \% \\ & 20 \% \\ & 10 \% \\ & \hline \end{aligned}$	
137.98	1 Beam	$\begin{gathered} \text { N.S. Leg } \\ \text { US } 65 \end{gathered}$	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 15 \% \\ * 15 \% \\ 10 \% \\ \hline \end{array}$	$\begin{array}{r} 5 \% \\ * \quad 5 \% \end{array}$			$\begin{aligned} & 10 \% \\ & 20 \% \\ & 15 \% \\ & 10 \% \end{aligned}$	

* Overlapping Stains
HIGHWAY: INTERSTATE 30

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
139.24	I Beam	21st St.	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ * 10 \% \\ 5 \% \\ 5 \% \\ \hline \end{array}$	$\begin{array}{r} * 5 \% \\ 5 \% \end{array}$			$\begin{array}{r} 10 \% \\ 10 \% \\ 5 \% \\ 5 \% \end{array}$	
139.67	I Beam	14th St.	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ 15 \% \\ \text { * } 15 \% \\ 10 \% \end{gathered}$	*10\%			$\begin{aligned} & 10 \% \\ & 15 \% \\ & 20 \% \\ & 10 \% \end{aligned}$	
140.04	I Beam	9th St.	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ 20 \% \\ 10 \% \\ 5 \% \end{gathered}$	5\%			$\begin{array}{r} 10 \% \\ 25 \% \\ 10 \% \\ 5 \% \end{array}$	Felt falling down from expansion joint
140.21	I Beam	6th St.	Superstructure Bent Column Apron	10% $* 30 \%$ 25% 20%	* 5\%			$\begin{aligned} & 10 \% \\ & 30 \% \\ & 25 \% \\ & 20 \% \\ & \hline \end{aligned}$	Same as above
142.54	I Beam	140	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 25 \% \\ 20 \% \\ 10 \% \\ \hline \end{array}$	5\%			$\begin{aligned} & 10 \% \\ & 25 \% \\ & 20 \% \\ & 10 \% \\ & \hline \end{aligned}$	Rust on flange
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						

[^2]HIGHWAY: INTERSTATE 40

* Overlapping Stains
General Note: Approximately 95\% of all Over Passes had a small amount of gray stain directly beneath each guardrail support. This stain was on the concrete portion of the superstructure.
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
10.96	I Beam	West Rudy Road	Superstructure Bent Column Apron.	$\begin{aligned} & \text { *20\% } \\ & \text { * } 10 \% \end{aligned}$		$\begin{gathered} { }^{*} 30 \% \\ * 20 \% \\ 80 \% \end{gathered}$		$\begin{aligned} & 45 \% \\ & 25 \% \\ & 80 \% \end{aligned}$	-
12.66	I Beam	East Rudy Road	Superstructure Bent Column Apron	$\begin{aligned} & \text { *20\% } \\ & \\ & \\ & \end{aligned} 20 \% ~$		$\begin{aligned} & * 30 \% \\ & { }^{*} 25 \% \end{aligned}$		$\begin{aligned} & 45 \% \\ & 40 \% \end{aligned}$	
13.61	I Beam	Mt. Grove Road	Superstructure Bent Column Apron	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	10\%	$\begin{aligned} & 30 \% \\ & 30 \% \end{aligned}$		$\begin{array}{r} 5 \% \\ 40 \% \\ 30 \% \\ 5 \% \end{array}$	Note: Deck drained thru sides of concrete superstructure. No gray
15.86	I Beam	Crawford County Road	Superstructure Bent Column Apron	$\begin{aligned} & \text { 20\% } \\ & \text { 10\% } \end{aligned}$	5\%	$\begin{aligned} & 20 \% \\ & 20 \% \end{aligned}$		$\begin{array}{r} 5 \% \\ 40 \% \\ 30 \% \end{array}$	Rebars rusting
17.90	I Beam	$\begin{aligned} & \text { Dyer } \\ & \text { G. S. } \end{aligned}$	Superstructure Bent Column Apron	10\%	5\%	$\begin{array}{r} 40 \% \\ 40 \% \\ * 20 \% \\ \hline \end{array}$	$\begin{gathered} 10 \% \\ { }^{10 \%} 20 \% \\ \hline \end{gathered}$	$\begin{aligned} & 55 \% \\ & 50 \% \\ & 40 \% \\ & \hline \end{aligned}$	Hwy Dept. painted over graffiti
20.05	I Beam	Georgia Ridge Road	Superstructure Bent Column Apron	$\begin{gathered} 20 \% \\ { }^{*} 80 \% \\ 10 \% \\ \hline \end{gathered}$	$\begin{gathered} 10 \% \\ * \quad 5 \% \end{gathered}$	$\begin{gathered} * 80 \% \\ 80 \% \end{gathered}$		$\begin{aligned} & 30 \% \\ & 90 \% \\ & 80 \% \\ & 10 \% \end{aligned}$	Rust bottom para pet walls; rebars sticking out
21.98	I Beam	County Road	Superstructure Bent Column Apron		5\%	50\%		$\begin{array}{r} 5 \% \\ 50 \% \\ \hline \end{array}$	
24.02	I Beam	SH 215	Superstructure Bent Column Apron		10\%	$\begin{array}{r} 10 \% \\ 5 \% \\ 50 \% \\ \hline \end{array}$		$\begin{array}{r} 20 \% \\ 5 \% \\ 50 \% \\ \hline \end{array}$	

HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
FRANKLIN COUNTY									
29.00	Girder Continuous Concrete	Toney Road	Superstructure Bent Column Apron	20\%	5\%		10\%	$\begin{gathered} 5 \% \\ \\ 10 \% \\ 20 \% \end{gathered}$	Rust around drains, Graffiti painted over (covered)
32.75	Girder Continuous Concrete	Cravens	Superstructure Bent Column Apron	10\%		5\%		15\%	
37.36	Cor-Ten	SH 219	Superstructure Bent Column Apron		30\%			30\%	Rust on footings
40.93	Cor-Ten	Altus IC	Superstructure Bent Column Apron		20\%	10\%		30\%	Rust on footings
JOHNSON COUNTY									
46.51	Concrete	SH 164	Superstructure Bent Column Apron	$\begin{aligned} & 5 \% \\ & \text { 20\% } \end{aligned}$		$\begin{gathered} 10 \% \\ 5 \% \end{gathered}$		$\begin{array}{r} 15 \% \\ 5 \% \\ 20 \% \\ \hline \end{array}$	
51.01	1 Beam	County	Superstructure Bent Column Apron	5\%		$\begin{array}{r} 40 \% \\ 5 \% \\ 5 \% \end{array}$		$\begin{array}{r} 5 \% \\ 40 \% \\ 5 \% \\ 5 \% \\ \hline \end{array}$	

* Overlapping Stains
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
53.19	Concrete	SH 352	Superstructure Bent Column Apron	5\%	10\%	$\begin{aligned} & 30 \% \\ & 10 \% \end{aligned}$		5% 40% 10%	
54.83	1 Beam	US 64 West Clarksville	Superstructure Bent Column Apron	5\% 30\%	$\begin{aligned} & * 60 \% \\ & \\ & \\ & * \end{aligned} 55 \%$	$\begin{aligned} & { }^{*} 100 \% \\ & * 100 \% \\ & 30 \% \end{aligned}$	5\%	$\begin{gathered} 5 \% \\ 100 \% \\ 100 \% \\ 60 \% \end{gathered}$	
57.14	1 Beam	SH 194	Superstructure Bent Column Apron	$\begin{gathered} 5 \% \\ * 10 \% \\ 30 \% \end{gathered}$	*10\%	$\begin{gathered} * 20 \% \\ 20 \% \end{gathered}$	5\%	$\begin{aligned} & 10 \% \\ & 30 \% \\ & 20 \% \\ & 30 \% \end{aligned}$	
58.18	1 Beam	$\begin{gathered} \text { SH } 103 \\ \text { Jamestown } \\ \text { IC } \end{gathered}$	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 20 \% \end{array}$	$\begin{gathered} * 10 \% \\ 5 \% \end{gathered}$	$\begin{gathered} * 30 \% \\ 30 \% \end{gathered}$		$\begin{array}{r} 5 \% \\ 50 \% \\ 35 \% \end{array}$	
59.98	1 Beam	County Road	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{array}{r} 5 \% \\ 20 \% \\ \hline \end{array}$	$\begin{aligned} & * 20 \% \\ & { }^{*} 20 \% \end{aligned}$	${ }^{*}{ }^{*} 80 \%$		$\begin{array}{r} 5 \% \\ 80 \% \\ 80 \% \\ 20 \% \\ \hline \end{array}$	Rust around drains. White mold or clacium on bottom of bridge deck
61.67	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & \text { *10\% } \\ & * 5 \% \\ & \text { + } 10 \% \end{aligned}$	$\begin{aligned} & * 40 \% \\ & * \\ & * \end{aligned}$	$\begin{gathered} * 60 \% \\ * 30 \% \\ \\ \hline \end{gathered}$		$\begin{aligned} & 70 \% \\ & 45 \% \\ & 30 \% \end{aligned}$	
66.62	Concrete	SH 315	Superstructure Bent Column Apron	40\%	5\%	$\begin{aligned} & 35 \% \\ & 20 \% \\ & 10 \% \end{aligned}$	30\%	$\begin{aligned} & 30 \% \\ & 40 \% \\ & 20 \% \\ & 50 \% \\ & \hline \end{aligned}$	
POPE COUNTY									

* Overlapping Stains
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
72.88	I Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 20 \% \\ & 15 \% \end{aligned}$	$\begin{array}{r} 5 \% \\ 10 \% \end{array}$	$\begin{aligned} & 30 \% \\ & 20 \% \end{aligned}$		$\begin{array}{r} 5 \% \\ 60 \% \\ 20 \% \\ 15 \% \end{array}$	
77.75	Concrete	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 20 \% \\ & 50 \% \\ & 40 \% \end{aligned}$	$\begin{aligned} & 30 \% \\ & 40 \% \end{aligned}$	$\begin{aligned} & 20 \% \\ & 10 \% \end{aligned}$		$\begin{aligned} & 30 \% \\ & 80 \% \\ & 60 \% \\ & 40 \% \end{aligned}$	Rebar \& Steel Rusting (severe)
81.05	Concrete	SH 7 Russellville IC	Superstructure Bent Column Apron	$\begin{gathered} * 20 \% \\ 45 \% \end{gathered}$	20\%	$\begin{gathered} * 70 \% \\ 50 \% \end{gathered}$		20\% * 70% 50% 45%	
82.29	Concrete	SH 124	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ { }^{*} 40 \% \\ { }^{4} 30 \% \\ 40 \% \\ \hline \end{gathered}$	$\begin{array}{r} 10 \% \\ * 20 \% \\ * 5 \% \\ 10 \% \\ \hline \end{array}$	$\begin{gathered} { }^{*} 90 \% \\ { }^{*} 80 \% \end{gathered}$		$\begin{aligned} & 20 \% \\ & 90 \% \\ & 90 \% \\ & 50 \% \\ & \hline \end{aligned}$	Rebar exposed in column
83.15	Concrete	SH 326	Superstructure Bent Column Apron	$\begin{array}{r} 30 \% \\ 20 \% \\ 5 \% \\ 40 \% \\ \hline \end{array}$	20\%	$\begin{aligned} & 30 \% \\ & 10 \% \\ & 10 \% \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \% \\ & 70 \% \\ & 15 \% \\ & 50 \% \\ & \hline \end{aligned}$	Rebar on bottom of bent
84.12	Concrete	SH 331	Superstructure Bent Column Apron	$\begin{aligned} & 20 \% \\ & 30 \% \\ & 20 \% \\ & 40 \% \end{aligned}$	$\begin{array}{r} 20 \% \\ 5 \% \end{array}$	$\begin{aligned} & 20 \% \\ & 20 \% \\ & 10 \% \end{aligned}$	10\%	$\begin{aligned} & 20 \% \\ & 70 \% \\ & 45 \% \\ & 60 \% \end{aligned}$	Small spalling on bent. Rebars exposed on bottom bent
87.04	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 30 \% \\ \hline \end{array}$	10\%	$\begin{aligned} & 10 \% \\ & 10 \% \end{aligned}$		$\begin{array}{r} 5 \% \\ 20 \% \\ 10 \% \\ 30 \% \\ \hline \end{array}$	
88.16	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 20 \% \\ & 40 \% \end{aligned}$	*20\%	$\begin{gathered} * 70 \% \\ 70 \% \end{gathered}$		$\begin{aligned} & 20 \% \\ & 70 \% \\ & 70 \% \\ & 40 \% \\ & \hline \end{aligned}$	

[^3]HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Ped	Graffiti		
93.87	Concrete	SH 105	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 40 \% \\ & \hline \end{aligned}$	5\%	$\begin{aligned} & 30 \% \\ & 10 \% \end{aligned}$		$\begin{aligned} & 35 \% \\ & 20 \% \\ & 40 \% \\ & \hline \end{aligned}$	
96.58	I Beam	County Road	Superstructure Bent Column Apron	30\%		$\begin{aligned} & 20 \% \\ & 10 \% \end{aligned}$		$\begin{aligned} & 20 \% \\ & 10 \% \\ & 30 \% \end{aligned}$	
97.60	I Beam	County Road	Superstructure Bent Column Apron	$\begin{gathered} { }^{*} 20 \% \\ 30 \% \end{gathered}$	$\begin{gathered} \text { *20\% } \\ 10 \% \end{gathered}$	$\begin{gathered} * 10 \% \\ 10 \% \end{gathered}$		$\begin{aligned} & 40 \% \\ & 20 \% \\ & 30 \% \end{aligned}$	
CONWAY COUNTY									
100.70	I Beam	Blackwell I.C.	Superstructure Bent Column Apron		$\begin{aligned} & 10 \% \\ & 30 \% \\ & \hline \end{aligned}$	10\%		$\begin{aligned} & 10 \% \\ & 40 \% \\ & \hline \end{aligned}$	Bird nests on beams. Rust from rockers.
103.79	I Beam Continuous	County Road	Superstructure Bent Column Apron	10\%	5\%			15\%	
105.82	I Beam Continuous	County Road	Superstructure Bent Column Apron	5% 5\%				$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	
106.51	Concrete	West Morrilton I.C. SH 95	Superstructure Bent Column Apron	5\%				5\%	

* Overlapping Stains
HIGHWAY: INTERSTATE 40

* Overlapping Stains
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
134.61	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ * 70 \% \end{array}$	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	$\begin{array}{r} 10 \% \\ 5 \% \\ * 30 \% \end{array}$		$\begin{array}{r} 5 \% \\ 15 \% \\ 10 \% \\ 70 \% \end{array}$	COMENTS
135.46	I Beam	SH 89	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ * 5 \% \\ 10 \% \\ 60 \% \end{array}$	* 5\%	$\begin{gathered} * 40 \% \\ 10 \% \end{gathered}$		$\begin{aligned} & 10 \% \\ & 40 \% \\ & 20 \% \\ & 60 \% \end{aligned}$	
PULASKI COUNTY									
142.07		Morgan I.C.	Superstructure Bent Column Apron	$\begin{gathered} 10 \% \\ 20 \% \\ * 15 \% \\ 90 \% \\ \hline \end{gathered}$	* 5\%	$\begin{gathered} * 40 \% \\ 10 \% \end{gathered}$		$\begin{aligned} & 10 \% \\ & 30 \% \\ & 20 \% \\ & 90 \% \\ & \hline \end{aligned}$	Rebar showing thru Bent on sides and bottom
144.04	I Beam	County Road	Superstructure Bent Column Apron	$\begin{gathered} * 40 \% \\ 30 \% \\ 40 \% \\ \hline \end{gathered}$		$\begin{array}{r} \text { *20\% } \\ 5 \% \end{array}$		$\begin{aligned} & 40 \% \\ & 35 \% \\ & 40 \% \\ & \hline \end{aligned}$	
147.07	Concrete	Norman Street	Superstructure Bent Column Apron	$\begin{aligned} & * 30 \% \\ & 15 \% \\ & 40 \% \\ & \hline \end{aligned}$	$\begin{array}{r} * 20 \% \\ 5 \% \end{array}$	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$		$\begin{aligned} & 40 \% \\ & 25 \% \\ & 45 \% \\ & \hline \end{aligned}$	
147.37	Concrete	1430	Superstructure Bent Column Apron	5\%				5\%	
147.61	Girder	1430	Superstructure Bent Column Apron		20\%			20\%	

[^4]HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
148.20	1 Beam	Crystal Hill I.C.	Superstructure	10\%				10\%	
			Bent	* 40%	*10\%	*10\%		60\%	
			Column	* 40%	* 5\%	*10\%		50\%	
			Apron	*30\%		*25\%		40\%	
148.75	I Beam	Crystal Hill SE	Superstructure						
			Bent	*20\%	*20\%			30\%	
			Column	*10\%	*10\%			10\%	
			Apron	30\%				30\%	
149.50	I Beam	Burns	Superstructure						
		Park	Bent	*60\%	* 5%			60\%	
		Sep.	Column	*60\%	* 5\%			60\%	
			Apron	40\%				40\%	
150.34	Concrete	Burns	Superstructure						Rebar exposed in
		Park	Bent	30\%	5\%			35\%	Bent
		I. C.	Column	10\%				10\%	
			Apron	10\%		5\%		15\%	
152.89	Concrete	SH 107	Superstructure	10\%	10\%		5\%		Rust on Rocker
			Bent	60\%				60\%	
			Column	60\%				60\%	
			Apron	20\%				20\%	
153.25	Concrete	SH 107	Superstructure	10\%				10\%	
			Bent	60\%				60\%	
			Column	60\%				60\%	
			Apron	30\%				30\%	
153;40	Concrete	$130 N$	Superstructure	* 10\%			* 5%	10\%	
		LEG	Bent	60\%				60\%	
			Column	60\%				60\%	
			Apron	20\%					
154.31	I Beam	Old US 67	Superstructure	10\%					
			Bent	* 40%	* 10%	* 10%		50\%	bottom of bent
			Column	* 40%	*10\%	*10\%		50\%	on all piers
			Apron	30\%				30\%	

* Overlapping Stains
highway: interstate 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
157.29	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} * 10 \% \\ 5 \% \\ 30 \% \\ \hline \end{array}$	$\begin{array}{r} 5 \% \\ * 10 \% \\ 5 \% \end{array}$	* 5%		5% 25% 15% 30%	Rebars on bottom of bent
158.02	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 5 \% \\ 20 \% \\ \hline \end{array}$	5\%		5\%	$\begin{array}{r} 5 \% \\ 15 \% \\ 5 \% \\ 20 \% \end{array}$	Rebars on bottom of bent
158.94	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 5 \% \\ 30 \% \\ \hline \end{array}$	10\%			$\begin{array}{r} 10 \% \\ 10 \% \\ 5 \% \\ 30 \% \end{array}$	Rusting on wf under drains. Possible green algae mixed with gray stain
160.81	I Beam	Galloway I.C.	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ * 40 \% \\ * 40 \% \\ 60 \% \\ \hline \end{array}$	$\begin{aligned} & \text { *20\% } \\ & \text { *10\% } \end{aligned}$			$\begin{aligned} & 10 \% \\ & 50 \% \\ & 40 \% \\ & 60 \% \\ & \hline \end{aligned}$	Rust under drains rebars exposed on bottom of bent
162.39	I Beam	FAS 1862	Superstructure Bent Column Apron	$\begin{array}{r} 30 \% \\ * 50 \% \\ * 40 \% \\ 30 \% \\ \hline \end{array}$	$\begin{aligned} & \text { *20\% } \\ & { }^{*} 10 \% \end{aligned}$			30% 50% 40% 30%	Same as above
LONOKE COUNTY									
164.81	Concrete	SH 5	Superstructure Bent Column Apron	$\begin{aligned} & * 10 \% \\ & \text { * } 10 \% \\ & 30 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 20\% } \\ & \text { *10\% } \\ & \text { *10\% } \end{aligned}$			$\begin{aligned} & 20 \% \\ & 15 \% \\ & 15 \% \\ & 30 \% \\ & \hline \end{aligned}$	wf need paint Rusting around drains
168.58	1 Beam	County Road	Superstructure Bent Column Apron	*10\%	$\begin{gathered} * 40 \% \\ 40 \% \end{gathered}$	5\%		$\begin{array}{r} 45 \% \\ 40 \% \\ 5 \% \\ \hline \end{array}$	

[^5]HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
171.16	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 5 \% \\ 30 \% \end{array}$	5\%	10\%		$\begin{aligned} & 10 \% \\ & 10 \% \\ & 40 \% \end{aligned}$	Rust under drains
173.15	1 Beam	SH 89	Superstructure Bent Column Apron	$\begin{aligned} & \text { 10\%\% } \\ & \text { 5\% } \\ & \text { 2 } \end{aligned}$	$\begin{aligned} & 20 \% \\ & 15 \% \end{aligned}$			$\begin{aligned} & 30 \% \\ & \text { 20\% } \\ & \text { 15\% } \end{aligned}$	Stain on I Beam Rust under drains and under (apron)
174.58	1 Beam	SH 31	Superstructure Bent Column Apron	$\begin{gathered} * 20 \% \\ { }^{* 20 \%} \\ 40 \% \end{gathered}$	$\begin{aligned} & \text { *20\% } \\ & { }^{*} 20 \% \end{aligned}$	* 5%		$\begin{aligned} & 35 \% \\ & 30 \% \\ & 40 \% \end{aligned}$	
177.29	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{gathered} * 20 \% \\ * 10 \% \\ 80 \% \\ \hline \end{gathered}$		$\begin{aligned} & * 30 \% \\ & { }^{*} 10 \% \end{aligned}$		$\begin{aligned} & 40 \% \\ & 15 \% \\ & 80 \% \end{aligned}$	
179.34	1 Beam		$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{array}{r} 5 \% \\ 5 \% \\ 20 \% \\ \hline \end{array}$	$\begin{aligned} & \text { 10\% } \\ & \text { 10\% } \end{aligned}$		5\%	$\begin{array}{r} 5 \% \\ 15 \% \\ 15 \% \\ \text { 20\% } \\ \hline \end{array}$	Graffiti \& Rebars
182.51	Concrete	SH 13	Superstructure Bent Column Apron	$\begin{gathered} \text { *20\% } \\ { }^{*} 10 \% \\ 30 \% \end{gathered}$	$\begin{aligned} & \text { *30\% } \\ & { }^{*} 20 \% \end{aligned}$	$\begin{aligned} & * 10 \% \\ & { }^{*} 10 \% \end{aligned}$		$\begin{aligned} & 50 \% \\ & 30 \% \\ & 30 \% \end{aligned}$	Spalled off chunks under Bent because of rusting rebars
183.54	I Beam	Airport Road	Bent Column Apron \qquad	$\begin{array}{r} 5 \% \\ 20 \% \\ \hline \end{array}$		$\begin{array}{r} 10 \% \\ 5 \% \end{array}$		$\begin{array}{r} 5 \% \\ 10 \% \\ 5 \% \\ 20 \% \\ \hline \end{array}$	
PRAIRIE COUNTY									

[^6]HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
186.94	I Beam	New Bethel Road	Superstructure Bent Column Apron	$\begin{gathered} * 5 \% \\ 10 \% \end{gathered}$	*20\%	$\begin{array}{r} * 5 \% \\ 5 \% \end{array}$		$\begin{array}{r} 25 \% \\ 5 \% \\ 10 \% \\ \hline \end{array}$	-
189.10	I Beam	Anderson Road	Superstructure Bent Column Apron	10\%	20\%	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$		$\begin{array}{r} 25 \% \\ 5 \% \\ 10 \% \end{array}$	
191.12	Concrete	SH 249	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 40 \% \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \% \\ 5 \% \end{array}$			$\begin{aligned} & 20 \% \\ & 15 \% \\ & 40 \% \end{aligned}$	Stain on I Beam from drain above
193.22	I Beam	SH 11	Superstructure Bent Column Apron	$\begin{gathered} * 30 \% \\ * 10 \% \\ 40 \% \end{gathered}$	$\begin{aligned} & \text { *20\% } \\ & \text { *10\% } \end{aligned}$	$\begin{array}{r} * 5 \% \\ * 5 \% \\ \\ \hline \end{array}$	5\%	$\begin{array}{r} 5 \% \\ 50 \% \\ 20 \% \\ 45 \% \\ \hline \end{array}$	Rebars exposed bottom of bent
196.32	I Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 20 \% \\ & \hline \end{aligned}$		5\%		$\begin{aligned} & 15 \% \\ & 10 \% \\ & 20 \% \end{aligned}$	Same as above
202.22	1 Beam	$\begin{gathered} \text { BISCOE } \\ \text { I.C. } \\ \text { SH } 33 \end{gathered}$	Superstructure Bent Column Apron	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 10 \% \end{aligned}$	$\begin{aligned} & 40 \% \\ & 20 \% \end{aligned}$		5\% 5\%	$\begin{array}{r} 5 \% \\ 50 \% \\ 30 \% \\ 15 \% \\ \hline \end{array}$	Rebars showing on bent
203.50	I Beam	County Road	Superstructure Bent Column Apron	10\%		$\begin{aligned} & 10 \% \\ & 10 \% \end{aligned}$	5\%	$\begin{aligned} & 15 \% \\ & 10 \% \\ & 10 \% \end{aligned}$	
MONROE COUNTY									

* Overlapping Stains
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \\ & \hline \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
213.70	1 Beam	County Road	Superstructure Bent Column Apron	10\%	$\begin{gathered} 10 \% \\ { }^{*} 10 \% \end{gathered}$	*10\%		10% 15% 10%	Drains onto flange
215.74	1 Beam	Brinkley I.E. US 49	Superstructure Bent Column Apron	$\begin{gathered} 20 \% \\ { }^{*} 60 \% \\ { }^{*} 60 \% \\ 10 \% \end{gathered}$		$\begin{aligned} & * 5 \% \\ & { }^{*} 5 \% \end{aligned}$		$\begin{aligned} & 20 \% \\ & 60 \% \\ & 60 \% \\ & 10 \% \\ & \hline \end{aligned}$	
ST. FRANCIS COUNTY									
218.38	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} * 10 \% \\ 5 \% \\ \hline \end{array}$	*10\%	$\begin{array}{r} * 20 \% \\ 5 \% \end{array}$		$\begin{array}{r} 30 \% \\ 5 \% \\ 5 \% \end{array}$	Rebars in bottom of bent exposed
220.85	1 Beam	Wheatley I.C. SH 78	Superstructure Bent Column Apron	$\begin{aligned} & \text { 20\% } \\ & \text { 20\% } \end{aligned}$	5\%	$\begin{gathered} 10 \% \\ 5 \% \end{gathered}$		$\begin{aligned} & 35 \% \\ & 25 \% \end{aligned}$	
224.72	1 Beam	County Road	Superstructure Bent Column Apron	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$		$\begin{aligned} & \text { 10\% } \\ & \text { 10\% } \end{aligned}$		$\begin{aligned} & \text { 15\% } \\ & \text { 15\% } \end{aligned}$	Rebars on bottom of bent exposed
226.70	1 Beam	County Road	Superstructure Bent Column Apron	5\%	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$	$\begin{aligned} & \text { 15\% } \\ & \text { 20\% } \end{aligned}$		$\begin{aligned} & 20 \% \\ & 20 \% \\ & 10 \% \\ & \hline \end{aligned}$	Same as above
230.96	1 Beam	County Road	Superstructure Bent Column Apron	*10\%	10\%	$\begin{gathered} * 40 \% \\ 30 \% \end{gathered}$	5\%	$\begin{array}{r} 5 \% \\ 45 \% \\ 30 \% \\ 10 \% \end{array}$	

* Overlapping Stains
HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
233.22	Concrete	SH 261	Superstructure Bent Column Apron	$\begin{gathered} * 40 \% \\ 20 \% \\ 40 \% \end{gathered}$	* 30%	10\%	5\%	$\begin{array}{r} 5 \% \\ 60 \% \\ 20 \% \\ 50 \% \end{array}$	Com
236.50	I Beam	County Road	Superstructure Bent Column Apron	$\begin{array}{r} 5 \% \\ 10 \% \\ 5 \% \end{array}$	5\%	$\begin{aligned} & 5 \% \\ & 5 \% \end{aligned}$		$\begin{array}{r} 5 \% \\ 20 \% \\ 5 \% \\ 5 \% \end{array}$	
238.68	I Beam	County Road	Superstructure Bent Column Apron	*20\% 30%	$\begin{array}{r} \text { *20\% } \\ 5 \% \end{array}$	* 5%		$\begin{array}{r} 40 \% \\ 5 \% \\ 30 \% \end{array}$	
244.00	PRST	County Road	Superstructure Bent Column Apron	$\begin{aligned} & \text { *80\% } \\ & 80 \% \\ & 40 \% \end{aligned}$	*10\%	*10\%	5\%	$\begin{array}{r} 5 \% \\ 90 \% \\ 80 \% \\ 40 \% \\ \hline \end{array}$	Rebars showing thru on bent
247.05	I Beam	Widener I.C. SH 38	Superstructure Bent Column Apron	$\begin{gathered} 20 \% \\ \text { * } 10 \% \\ 20 \% \\ \hline \end{gathered}$	10\%	$\begin{array}{r} 5 \% \\ * 5 \% \end{array}$	$\begin{array}{r} 5 \% \\ * \quad 5 \% \end{array}$	$\begin{array}{r} 5 \% \\ 35 \% \\ 15 \% \\ 20 \% \\ \hline \end{array}$	
250.00	I Beam	FAS 1357	Superstructure Bent Column Apron	$\begin{aligned} & \text { 20\% } \\ & \text { 10\% } \end{aligned}$		10\%		$\begin{aligned} & 30 \% \\ & 10 \% \end{aligned}$	
252.39	I Beam	FAS 1348	Superstructure Bent Column Apron			10\%		10\%	Spalling of Apron $2^{\prime} \times 2^{\prime}$
259.50	1 Beam	County Road	Superstructure Bent Column Apron	5\%	10\%	5\%	5\%	$\begin{array}{r} 5 \% \\ 15 \% \\ \\ 5 \% \\ \hline \end{array}$	Rebars under bent exposed

[^7]HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
259.89	1 Beam	Shell Lake I.C. SH 149	Superstructure Bent Column Apron	$\begin{gathered} * 30 \% \\ 30 \% \\ 40 \% \\ \hline \end{gathered}$	$\begin{array}{r} * 10 \% \\ 5 \% \end{array}$	* 5\%		40\% 35% 40%	Rebars under bent exposed
261.01	Concrete	County Road	Superstructure Bent Column Apron	$\begin{array}{r} * 20 \% \\ 5 \% \\ 40 \% \end{array}$	$\begin{array}{r} * 15 \% \\ 5 \% \end{array}$			$\begin{aligned} & 30 \% \\ & 10 \% \\ & 40 \% \end{aligned}$	Same as above
262.27	Concrete	FAS 1969	Superstructure Bent Column Apron	$\begin{gathered} 5 \% \\ \text { 20\% } \end{gathered}$	$\begin{aligned} & \text { 20\% } \\ & \text { 10\% } \end{aligned}$			$\begin{aligned} & 25 \% \% \\ & \text { 10\% } \\ & \text { 20\% } \end{aligned}$	
CRITTENDEN COUNTY									
265.08	1 Beam	Shearerville SH 218	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	$\begin{gathered} { }^{1} 15 \% \\ \text { *10\% } \\ 20 \% \end{gathered}$	10\%	$\begin{aligned} & { }^{*} 20 \% \\ & { }^{*} 20 \% \end{aligned}$		$\begin{aligned} & 10 \% \\ & 30 \% \\ & 25 \% \\ & 20 \% \\ & \hline \end{aligned}$	Rust on beam
267.17	1 Beam	FAS 1955	Superstructure Bent Column Apron	10\%		$\begin{array}{r} 30 \% \\ 5 \% \end{array}$		$\begin{gathered} 30 \% \\ 5 \% \\ 10 \% \end{gathered}$	
273.37	1 Beam	Ebony Road	$\begin{gathered} \text { Superstructure } \\ \text { Bent } \\ \text { Column } \\ \text { Apron } \\ \hline \end{gathered}$	10\%	20\%			$\begin{aligned} & 20 \% \\ & 10 \% \end{aligned}$	
274.37	1 Beam	Bolling	Superstructure Bent Column Apron	20\%			5\%	$\begin{array}{r} 20 \% \\ 5 \% \\ \hline \end{array}$	

HIGHWAY: INTERSTATE 40

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
275.24	I Beam	Kuhn Road	Superstructure Bent Column Apron	$\begin{gathered} \text { 60\% } \\ { }^{*} 30 \% \end{gathered}$	$\begin{gathered} 10 \% \\ * 5 \% \end{gathered}$		* 5\%	$\begin{aligned} & 10 \% \\ & 60 \% \\ & 35 \% \end{aligned}$	Rebars on side of structure
277.06	Concrete	155 at 140 WYE	Superstructure Bent Column Apron	$\begin{gathered} * 40 \% \\ 20 \% \\ 30 \% \end{gathered}$	$\begin{array}{r} * 10 \% \\ 5 \% \end{array}$	* 5%		$\begin{aligned} & 50 \% \\ & 25 \% \\ & 30 \% \end{aligned}$	Spalling away of old concrete
277.19	Concrete	155	Superstructure Bent Column Apron	$\begin{gathered} \text { * } 40 \% \\ 20 \% \\ 20 \% \end{gathered}$	*15\%			$\begin{aligned} & 50 \% \\ & 20 \% \\ & 20 \% \end{aligned}$	
278.23	Concrete	$\begin{gathered} \text { Jct. SH } 191 \\ \text { in } \\ \text { West Memphis } \end{gathered}$	Superstructure Bent Column Apron	$\begin{gathered} \text { *70\% } \\ 80 \% \\ 20 \% \\ \hline \end{gathered}$	*10\%	*10\%		$\begin{aligned} & 80 \% \\ & 80 \% \\ & 20 \% \\ & \hline \end{aligned}$	
279.32	Concrete	Jct. Ingram Blvd.	Superstructure Bent Column Apron	$\begin{gathered} { }^{*} 90 \% \\ 80 \% \\ 60 \% \end{gathered}$	* 5\%			$\begin{aligned} & 95 \% \\ & 80 \% \\ & 60 \% \end{aligned}$	
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						

* Overlapping Stains
HIGHWAY: INTERSTATE 55

[^8]HIGHWAY: INTERSTATE 55

[^9]HIGHWAY: INTERSTATE 55

DESCRIPTION				STAIN TYPE				TOTAL STAIN	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
50.16	I Beam	SH 119	Superstructure Bent Column Apron	$\begin{aligned} & \text { *20\% } \\ & { }^{*} 20 \% \end{aligned}$	$\begin{aligned} & \text { *30\% } \\ & \text { "20\% } \end{aligned}$,	5\%	$\begin{array}{r} 45 \% \\ 30 \% \\ 5 \% \\ \hline \end{array}$	Rebar exposed in column. Rubber tracks from mowers on apron
52.88	I Beam	SH 158	Superstructure Bent Column Apron	$\begin{gathered} \text { *20\% } \\ 10 \% \end{gathered}$	*20\%		.	$\begin{aligned} & 35 \% \\ & 10 \% \end{aligned}$	
55.16	I Beam	County Road	Superstructure Bent Column Apron	10\%	5\%			15\%	
57.44	I Beam	SH 148	Superstructure Bent Column Apron	5\%	$\begin{array}{r} 20 \% \\ 5 \% \end{array}$			$\begin{array}{r} 25 \% \\ 5 \% \end{array}$	
59.75	I Beam	County Road	\qquad	$\begin{gathered} \text { 10\% } \\ \text { * } 20 \% \end{gathered}$	$\begin{gathered} * 20 \% \\ 10 \% \end{gathered}$			$\begin{aligned} & 10 \% \\ & 35 \% \\ & 10 \% \end{aligned}$	
61.97	I Beam	SH 312	Superstructure Bent Column Apron	5\%	10\%		5\%	$\begin{array}{r} 15 \% \\ 5 \% \end{array}$	
65.24	I Beam	SH 239	Superstructure Bent Column Apron	$\begin{array}{r} 15 \% \\ 5 \% \end{array}$	$\begin{array}{r} 20 \% \\ 5 \% \end{array}$			$\begin{aligned} & 35 \% \\ & \text { 10\% } \end{aligned}$	
66.1	GIRD		Superstructure Bent Column Apron	5\%	$\begin{array}{r} 15 \% \\ 5 \% \end{array}$			$\begin{array}{r} 20 \% \\ 5 \% \end{array}$	

[^10]HIGHWAY: INTERSTATE 55

DESCRIPTION				STAIN TYPE				$\begin{aligned} & \text { TOTAL } \\ & \text { STAIN } \\ & \hline \end{aligned}$	COMMENTS
Log Mile	Bridge Type	Route	Bridge Part	Gray	Rust	Red	Graffiti		
67.33	1 Beam	18	Superstructure Bent Column Apron	$\begin{aligned} & 40 \% \\ & 20 \% \end{aligned}$	5\%			$\begin{array}{r} 40 \% \\ 20 \% \\ 5 \% \end{array}$	
71	1 Beam	SH 150 Yarbro Exit	Superstructure Bent Column Apron	$\begin{array}{r} 10 \% \\ 5 \% \end{array}$	$\begin{gathered} 20 \% \\ 5 \% \end{gathered}$			$\begin{aligned} & 30 \% \\ & 10 \% \end{aligned}$	
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						
			Superstructure Bent Column Apron						

APPENDIX C
This appendix contains the method for removing iron stains as taken from the October 1968 report by C.F. Derrington, R.L. Stowe, and W.G. Miller, "Investigation of Methods for Removing Stains from Mortar and Concrete". This report is listed as Miscellaneous Paper C-68-8, Corps of Engineers, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

IRON STAINS

The most common stain found on concrete is iron stain, which is usually caused by excessive amounts of iron salts deposited from the curing water or by weathering of unprotected structural steel. Usually this type of stain is confined to the surface if the concrete is not permitted to dry appreciably before application of the curing water. Surface condition, length of exposure to heat and light, the concentration of iron salts in the curing water, and the rate of flow of the curing water are factors that determine the severity of the stain that is produced. Rust from structural steel produces localized areas of stain. These stains may become severe because the concrete is usually dry, and penetration of the surface will occur. The treatment necessary to remove iron stains is, of course, dependent upon the severity and penetration of the stain. The following chemical methods of iron stain removal are recommended.

Surface stains. The surface is mopped with a solution consisting of one pound of oxalic acid in one gallon of water. After two or three hours, the treated surface is scrubbed well with stiff brushes and clear water. The surface is then flushed with clear water until all traces of the acid have been removed. The stained surface should be saturated with water before application of the acid solution so that the acid will not migrate too deeply into the concrete pores.

Deeper stains.

a. Treatment with sodium citrate, water, glycerin, and calcium carbonate. One part of sodium citrate is dissolved in six parts of water that has been mixed with seven parts of glycerin; sufficient CaCO_{3} is then added and mixed well to form a paste just stiff enough to adhere adequately to the surface. The paste is applied to the stained surface with a trowel
or putty knife to a thickness of about $1 / 4$ inch and allowed to remain for at least two days. At the end of this period, the poultice is scraped off, and the concrete surface is rinsed thoroughly with clear water. This treatment produces no injurious effects and can be repeated for stubborn stains.
b. Mixture of ammonium citrate, water, glycerin, and calcium carbonate. Treatment of stains and the method of mixing the chemicals are identical with those described in subparagraph a above. However, the mixture should be removed from the stained area sooner (perhaps after one day), since the ammonium citrate produces results more quickly but may cause the concrete surface to become slightly etched.
c. Sodium hydrosulfite, sodium citrate, water, and CaCO_{3}. First the surface should be soaked with a solution of one part sodium citrate and six parts water. Soaking can be done by dipping white cloth or cotton batting into this solution and placing the cloth over the stain for 10 to 15 minutes. On horizontal surfaces, after the cloth has been removed, crystals of sodium hydrosulfite are sprinkled over the stained area, moistened with water, and covered with a stiff paste made of CaCO_{3} and water. On vertical surfaces, the CaCO_{3} paste is applied with a trowel after the sodium citrate treatment; then a layer of the sodium hydrosulfite is sprinkled onto the paste and moistened slightly. The poultice is removed after one hour, and the surface is rinsed with clear water. If the mixture is left longer than one hour, a black stain may develop. If the iron stain persists, treatment should be repeated, using fresh material.

[^0]: * Overlapping. Stains

[^1]: * Overlapping Stains

[^2]: *Overlapping Stains

[^3]: * Overlapping Stains

[^4]: * Overlapping Stains

[^5]: * Overlapping Stains

[^6]: * Overlapping Stains

[^7]: * Overlapping Stains

[^8]: * Overlapping Stains

 General Note: Approximately 95% of all Over Passes had a small amount of gray stain directly beneath each guardrail support. This stain was on the concrete portion of the superstructure.

[^9]: * Overlapping Stains

[^10]: * Overlapping Stains

