SafetyEdge
Your Angle for Reducing Roadway Departures

Location: Hot Springs, AR
Date: May 24, 2022

Today’s Presenter

• Tori Brinkly, PE
Senior Safety Engineer
FHWA Resource Center
Safety & Design Team
tori.brinkly@dot.gov
Disclaimers

- The contents of this presentation do not have the force and effect of law and are not meant to bind the public in any way. This presentation is intended only to provide information to the public regarding existing requirements under the law or agency policies.
- The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this presentation only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.
- Unless noted otherwise, FHWA is the source for all images, graphics, videos, and animations in this presentation.

Topics

- Purpose and Need
 - Crash Types and Problem Locations
 - Risk Factors in Edge Drop-off Crashes
- A Practical Solution
 - Construction of the SafetyEdgeSM
 - Pavement edge Durability
 - Costs and Safety Benefits
Key Messages

The SafetyEdgeSM

• **Saves Lives**
 • Allows vehicles to safely return to the travel lane

• **Improves Durability**
 • Reduces edge raveling

• **Low Cost**
 • Minor change to paving operations
2006 FHWA / AAA Drop-Off Study

On rural paved roads with unpaved shoulders
- Drop-off crashes were **17.7%** of run-off-road (ROR) crashes in Iowa and **24.7%** of ROR crashes in Missouri
- Drop-off crashes in Iowa were **four times as likely to be fatal** as all rural crashes
- Drop-off crashes in Missouri were **twice as likely to be fatal** as all rural crashes on similar roads
- North Carolina and Illinois data also indicate edge drop-off crashes are more severe than other rural crashes

Without a SafetyEdge℠
Typical Drop-Off with Tire Scrubbing

https://www.youtube.com/watch?v=asy33BGQwUw&t=110s

With a SafetyEdge℠
Locations that Develop Drop-Offs

1. Horizontal Curves
2. Mailboxes
3. T-Intersection Bypass Areas
4. Shaded Areas
5. Other Poor Drainage Locations
6. Pavement Overlays

Horizontal Curves
Shaded Areas

Poor Drainage Areas

Source: Joa Sousa – stock.adobe.com
Asphalt Pavement Overlay

Risk Factors

What are the factors associated with pavement edge drop-off crashes?

- Speed
- Driver Experience
- Vehicle/Tires
- Drop-off Height
- Shape of Pavement Edge

https://www.youtube.com/watch?v=a1PjxqOtWNI
Averaged Test Results for All Vehicles in Scrubbing Condition

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>1.5 inch</th>
<th>3.0 inch</th>
<th>4.5 inch</th>
<th>6.0 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Subjective Rating:
- More Safe ➡ Less Safe
- No Effect ➡ Loss of Control

Longitudinal Edge Elevation (inches)

Research to Reality

Graphic Source: reproduced from TRC E-C134, Zimmer and Ivey, Figure 6

Risk Factors

What are the factors associated with pavement edge drop-off crashes?

• Speed
• Driver Experience
• Vehicle/Tires
• Drop-off Height
• Shape Of Pavement Edge

Crash Reductions

• Rollover
• Head-on (includes opposing sideswipe)
• Roadside Object

SafetyEdge℠

Depicts extension of Pavement Surface

30° - 35°

Depicts a plane parallel to Pavement Surface from the toe of the Wedge Surface

Recommendations for SafetyEdge℠

• Consolidating the pavement edge into 30° shape during paving to provide stability for vehicles recovering from a roadway departure
• Implement as a standard practice for paving and resurfacing projects
SafetyEdgeSM Implementation Status

Based on FHWA Division reporting on Proven Safety Countermeasures. Updated based on information from EDC Team.

Key Design Elements

- Rounded Edge
- Springs on End Gate
NOT SafetyEdge℠ Hardware

Source (both): NCDOT, used with permission
https://safety.fhwa.dot.gov/safetyEdge/design_constr_guide/

Conventional Edge vs SafetyEdge℠

Conventional Edge
https://www.youtube.com/watch?v=_fDW9_ukloc

With SafetyEdge℠
https://www.youtube.com/watch?v=NG-mK4aa0-k
Screed Attachments

TransTech: Shoulder Wedge Maker™

Advant-Edge Ramp Champ™

End Gate Attachments

Carlson Safety Edge End Gate

Willow Designs

Carlson Installation 2010

Willow Installation 2017
Modified Attachments

North Carolina Hardware Modifications

- Electric drill to adjust height
- Guiderails stabilize device
- HMA kept away from spring

SafetyEdge℠ on PCC
Shoulder Preparation Varies

- **Edge Exposed**
- **Minor Soil Disturbance**
- **Soil/Vegetation Build Up Removed**

No prep – Iowa Highway 143

Shoulder Clipping - Pennsylvania State Route

Paving

- Image of a paving machine and workers
- Close-up of paving machinery components
Roller Pattern and Finished Angle

Iowa Installation 2010
North Carolina Foamed WMA installation 2011

Slope Results

[Graph showing slope results for various locations]
Where SafetyEdge℠ is NOT Used

- Open-Graded Top Mixes
- Mill and Fill Operations (shoulder not milled)
- Curb and Gutter

SafetyEdge℠ Benefits NOT Realized

- Areas with Non-Recoverable Slopes (steeper than 1V:4H)
- Wide Shoulders (lower B/C)
SafetyEdge℠ Under Guardrail

SafetyEdge℠ in Thin Lifts

Lift thickness does not correlate with edge depth.

Lift Thickness at Centerline
Lift Thickness at Pavement Edge
SafetyEdge™ Durability

Burke County, NC
SR 1611

No SafetyEdge™
24 months → 3.5”

Source (both): NCDOT, used with permission

SafetyEdge™ Section
24 months → 3.0”
Density Testing

- FHWA Nuclear Gage 6-inches from Edge and Cores: no statistical difference
- NCAT Edge Density of Cores:

<table>
<thead>
<tr>
<th></th>
<th>With SafetyEdge℠</th>
<th>Without</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Lift</td>
<td>70.6%</td>
<td>63.9%</td>
</tr>
<tr>
<td>Middle Lift</td>
<td>78.5%</td>
<td>74.6%</td>
</tr>
<tr>
<td>Bottom Lift</td>
<td>82.4%</td>
<td>81.3%</td>
</tr>
</tbody>
</table>

Note: Conventional nuclear gage testing for quality control does not test within 1 foot of edge because expected lower density near edge

Construction Summary

Similar to Conventional Paving
(No Effect on Production)

- Clip Shoulders
- Construct Each Lift (or overlay)
- Pull Shoulders Flush
SafetyEdge℠ Cost

- Limited Quantitative Data on HMA
- Missouri SR 19 (1 days production)
 - Paving with SafetyEdge℠: 933 tons/mile
 - Paving w/o SafetyEdge℠: 923 tons/mile
 - Percentage Difference: 0.82%*
 *Within normal expected quantity variances
- Hardware Cost
 - $1,700 - $3,000
 - Re-used on many projects

Benefits of the SafetyEdge℠

- **Construction Benefits:**
 - Safety benefit
 - Increase production
 - Reduce patching and rework of edges
- **Increased Pavement Edge Durability**
- **Reduced Crashes Over Life of the Pavement**
SafetyEdge℠ Website

https://safety.fhwa.dot.gov/SafetyEdge/

Cate Satterfield
FHWA Office of Safety
cathy.satterfield@dot.gov

Tori Brinkly
FHWA Resource Center
tori.brinkly@dot.gov

Which Side of the Road will YOU be on in Eight Years?

Original Project Constructed
July 2003

Photos taken
June 2011

With SafetyEdge℠
Without SafetyEdge℠